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Abstract: Water management and irrigation practices are persistent challenges for many agricul-

tural systems, exacerbated by changing seasonal and weather patterns. The wild blueberry industry 

is at heightened susceptibility due to its unique growing conditions and uncultivated nature. Stress 

detection in agricultural fields can prompt management responses to mitigate detrimental condi-

tions, including drought and disease. We assessed airborne spectral data accompanied by ground 

sampled water potential over three developmental stages of wild blueberries collected throughout 

the 2019 summer on two adjacent fields, one irrigated and one non-irrigated. Ground sampled 

leaves were collected in tandem to the hyperspectral image collection with an unoccupied aerial 

vehicle (UAV) and then measured for leaf water potential. Using methods in machine learning and 

statistical analysis, we developed models to determine irrigation status and water potential. Seven 

models were assessed in this study, with four used to process six hyperspectral cube images for 

analysis. These images were classified as irrigated or non-irrigated and estimated for water poten-

tial levels, resulting in an R2 of 0.62 and verified with a validation dataset. Further investigation 

relating imaging spectroscopy and water potential will be beneficial in understanding the dynamics 

between the two for future studies. 

Keywords: hyperspectral; agriculture; vegetation indices; irrigation; machine learning; water po-

tential; UAV; VNIR; reflectance 

 

1. Introduction 

The application and use of hyperspectral imaging technology to plant (stress) health 

and vegetation traits has made great advances in the past decade [1]. Hyperspectral im-

aging, or imaging spectroscopy, is a method used in detecting and classifying objects 

based on the light reflectance (or spectral signature) across narrowly-resolved wave-

lengths within the optical portion of the electromagnetic spectrum [2]. Applications range 

from differentiating tree species [3] to aiding agricultural quality control [4]. One of im-

aging spectroscopy’s most valued benefits is its ability to collect information in a non-

destructive manner as it does not require direct contact with the scanned object [5]. In this 

work, hyperspectral data analysis was used to classify irrigation status of blueberry crop 

areas, and determine water potential of the plant canopies.  

Remote sensing has played an increasingly important role in monitoring and as-

sessing plant health. Through its growing application (i.e., added satellite missions, sen-

sor development, etc.) [6] and user-friendliness (i.e., programming, large data manage-

ment, etc.) [7], remote sensing can provide timely and quality data over different cover 

types [8]. Targets of plant health include physiological responses detectable through re-
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mote sensing techniques such as hyperspectral imaging [9]. These responses include nu-

trient declines indicating disease [10], in addition to chlorophyll content estimated 

through the band ratio NDVI (normalized difference vegetation index), to show sugar-

cane health [11]. In relation to remote sensing, imaging spectroscopy can be used as a 

means to estimate water potential [12]. 

Water management and irrigation practices are a persistent challenge for many agri-

cultural systems in the world [13]. The effects of water stress are complex and highly in-

fluential on plant growth and productivity [14]. With many factors involved in water 

stress, numerous methods in quantifying water status have been developed and imple-

mented including evapotranspiration models, soil water balance measurements, and leaf 

water potential [15]. Water potential is the chemical potential reduction (force that causes 

water movement) relative to pure water at sea level, or is a measure of the driving force 

of water flow [16,17] and has been shown to be an effective indicator of water stress 

[18,19]. Measuring water stress can further our understanding of vegetation health within 

natural resources, including forested lands and agricultural crops [20].  

Wild blueberries (Vaccinium angustifolium Ait.) (also referred to as lowbush) are 

grown commercially in only Quebec, Atlantic Canada, and the state of Maine [21]. Low-

bush blueberries require unique growing conditions including acidic and infertile soils, 

unsuitable for many other crop types [22]. This distinctive environment increases vulner-

ability due to its uncommon land makeup, further amplified by climate change factors 

[23,24]. In recent years, wild blueberry production has faced challenges relating to warm-

ing, drought, freezing, and pathogens [25,26]. As a result, forecasting land conditions and 

taking prompt mitigative action, including water management, have become increasingly 

needed. We analyzed the reflectance properties of blueberry crops throughout different 

development stages to detect patterns temporally and spatially. 

Our goal was to assess the utility of a high-resolution remote sensing system to clas-

sify and predict irrigation status and water stress in blueberry crops. To address this goal, 

we collected hyperspectral imagery over wild blueberry fields in Downeast Maine using 

an unoccupied aerial vehicle (UAV), a remotely controlled aircraft also referred to as a 

drone [27]. From this imagery we then developed, applied, and tested machine-learning 

models to associate reflectance measurements to (1) a categorical response (irrigated or 

non-irrigated) [28] and (2) water potential as a continuous variable [29]. We planned to 

achieve this through: 

1. Collecting airborne data on an irrigated and non-irrigated field over three plant de-

velopment stages. 

2. Acquire water potentials of canopy leaf samples in each field. 

3. Generate classified maps of irrigated vs. non-irrigated areas and estimated water po-

tentials to determine locations of low or high plant canopy water stress.  

The objectives were to configure methods and processes that will allow for more ef-

ficient detection via freely available code [30]. The process of configuration involves com-

bining spatial measurements and ground data, in addition to approaches in UAV systems, 

image processing, and machine learning classifiers [31]. We sought to remotely assess ir-

rigation status and water potentials in wild blueberry fields as a means to offer techniques 

in crop health monitoring. 

2. Materials and Methods 

2.1. Study Site 

Our research was conducted on commercial blueberry fields in Deblois, Maine, 

owned by Jasper Wyman and Son (Wyman’s), a corporation specializing in frozen fruit. 

Maine’s coastal region has a four-season climate with an average low of −10.6 °C and high 

of 24.2 °C (lowest and highest month’s average over 2006–2010), and monthly average 

precipitation low of 85.1 mm and high of 136.4 mm (lowest and highest month’s average 
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over 1981–2010) [32]. The site includes an irrigated and a non-irrigated [33] field, approx-

imately 23 and 16 hectares, respectively (Figure 1 displays these two fields). The irrigated 

field is uniformly irrigated with Nelson Full-Circle Impact sprinklers (Walla Walla, Wash-

ington, USA). Each irrigation event compensates for natural precipitation with a maxi-

mum irrigation regime of 2.5 cm of water per acre every 3 to 4 days as needed. The location 

is defined by Spodosols soils of the series Masardis consisting of a fine sandy loam with 

0%–3% slope. These crop fields tend to contain a number of different genotypes, growing 

in sections within a particular field [34,35]. Due to this pattern, a number of plots were 

selected from the area in order to accurately assess the locations and tendencies of water 

potential. The irrigated and non-irrigated experimental fields are co-located adjacent to 

one another to reduce climate and geologic site variability and to act as a comparison be-

tween a treated and untreated site. 

 

Figure 1. Study site of the irrigated field (upper light blue polygon) and non-irrigated field (lower 

light green polygon) with field sampling points and polygons. 
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2.2. Workflow Overview 

The project workflow is outlined in Figure 2. Input data included the ground data 

(irrigated/non-irrigated classes and water potential) and the manually digitized polygons 

from the imagery that trained the predictor models. These points and polygons are dis-

played on the study site fields in Figure 1. The remainder of the nodes relate to model 

processing steps which are detailed further below. The models were applied to images, 

generating maps which were compared to validation ground measurements [36,37].  

 

Figure 2. Process flow from data collection to classified and predicted images. 

2.3. Ground Sampling 

Measurements were taken over the two fields three times in the 2019 spring and sum-

mer including peak bloom (June 7), green fruit (July 3), and color break (July 25). These 

represent some of the development stages of wild blueberries throughout the summer 

growing season [38,39], where peak bloom is determined when 50% of flower buds have 

opened, green fruit by green color and initial fruit enlargement caused by active cell divi-

sion, and color break as the period of fruits changing from green to pink to blue through 

cell expansion. We chose to collect data over the different stages to determine temporal 

variation in water conditions and spectral response over the seasonal cycle of blueberry 

growth [40].  

We used 20 ground sample measurements on each field that were selected by a ran-

dom sampling design, guided by genotypic distinction to cover spatial variations. The 

samples entailed a small branch of leaves attached to the stem. These were gathered as 

the drone captured image data. The samples were immediately stored in moist plastic 

Ziploc bags in coolers to minimize water loss, and measured approximately two hours 

later for water potentials. The water potential measurements were taken using a leaf pres-

sure chamber (Model 1505D; PMS, Albany, OR, USA) in a climate-controlled laboratory 

space in Wyman’s facilities.  

2.4. Image Data Collection and Sampling  

We used a Micro A-Series Sensor hyperspectral imaging spectrometer manufactured 

by Headwall Photonics (Bolton, MA, USA). The device is attached to a DJI Matrice 600 

Pro UAV, and operates as a line-scanning (pushbroom) instrument. The sensor captures 
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the visible and near-infrared portion of the electromagnetic spectrum from 400 to 1000 nm 

and collects 324 spectral bands. The number of flight lines, heights, and speeds were de-

termined by site area, takeoff distance from scanning area, land topography, and specific 

daylight conditions. Data collection with the UAV was conducted between 10:00AM and 

2:00PM local time to avoid shadows in the data. Image collection was limited to these 

timeframes, battery capacity, and the amount of time access was allowed to the field sites. 

Imagery was processed using the Headwall application Spectral View. A white tarp 

taken in the imagery and a spectralon panel were both considered as the white reference 

for image processing, however the spectralon provided more accurate spectra reflectances 

and greater consistency. Processing entailed transforming imagery from its raw form, to 

radiance, reflectance, and then orthorectification. The ground sampling distance was ap-

proximately 10 × 10 cm per pixel. 

Using the collected imagery, we delineated pixels of ground sampled, or known irri-

gation status, blueberry leaves through the ENVI software program (version 5.5 64-bit). 

These delineations were extracted and used as samples, which were partitions in both the 

training and validation data. All downstream analyses from this point were performed in 

the R programming environment [30]. 

Training pixels in the irrigated/non-irrigated categorical model were digitized in 

large samples. With a binary response of irrigated and non-irrigated uninfluenced by the 

water potential ground reference data, we digitized large polygon areas within each field 

to gain a larger training size. Four samples from two images of each field were digitized 

for each stage. 

The water potential digitizations were guided by ground reference samples. Four to 

eight pixels were digitized around the coordinates of where samples were collected. Pixels 

that were in clouded or shadowed images were discarded. Two samples were removed 

from the first scan date, and eight from both the second and third. 

2.5. Model Development  

A series of spectral indices were calculated from the reflectance values to use as pre-

dictors in our models [41,42]. One of these methods in deriving the variables included 

resampling at 5, 10, 50, and 100 nm [43,44]. These values were selected to roughly simulate 

wider bandpass, common in multi-spectral sensors that are commercially available. The 

other method of calculating vegetation indices capitalized on the ‘vegindex’ function from 

package ‘hsdar’ [45], which calculates almost 100 different indices depending on the band-

pass of the data. The resampling and vegetation indices totaled 260 variables as predictors.  

A random forest model (classifier which uses decision trees) was trained to classify 

images [46] with the calibration data (either water potential or irrigated/non-irrigated) 

using the ‘ranger’ package to determine the relationship between the water potentials of 

ground measurements and the spectral index predictors. Ranger was selected rather than 

the ‘Random Forest’ package due to its speed and improvements in variable importance 

measures and bias [47].  

The process of developing the models (to classify and predict images) first entailed 

removing intercorrelated variables among all predictors using the ‘caret’ package in R 

through Pearson correlation coefficient [48]. After removing these variables, we applied 

ranger to determine which predictors are most important. Then, we again used ranger on 

the top 50 important variables. A list of models was produced, each utilizing a different 

number of the most important variables with accuracy rates. We selected the model that 

utilized the fewest number of variables, but produced a low error rate.  

Prior to final model selection and image classification, we performed a validation test 

on the water potential models. We redeveloped the models with a split of 70% calibration 

and 30% validation from the total sample set, randomly chosen from each field. The split 

was chosen due to the small sample sizes with peak bloom having 139 pixel samples, 

green fruit 115, and color break 99. The global model prediction, however, used an 80% 

and 20% split of the total sample data due to the combined sample sizes. 
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3. Results 

We developed models that used the extracted pixel samples and water potential 

measurements as inputs to predict characteristics of unknown areas of imagery [49]. Us-

ing functionality developed by related projects, the products of the models were gener-

ated maps of irrigated or non-irrigated areas, and water potential classifications [30].  

The imagery dataset of irrigated and non-irrigated fields consists of 48 images col-

lected in the three phenological stages, with a spatial resolution of approximately 10 cm. 

Ground referenced water potentials were measured as described above. One section on 

the irrigated field experienced winter damage, leading to a duplicated sample to detect 

potential differences. 

3.1. Model 

Different models were developed from the digitized samples of known conditions 

[50]. Two models were created for each field stage, with one as a binary classification (ir-

rigated or non-irrigated), and the other a continuous estimation (water potential). Addi-

tionally, a global model for water potential was trained with combined samples from all 

three stages. Table 1 outlines the model information and error rates. 

Model fit improved when highly intercorrelated predictors were removed. Errors in 

removing intercorrelated predictor variables were calculated at 0.9, 0.93, 0.96, and 0.99 

pair-wise absolute correlation cutoff levels. Removing these at a 0.99 cutoff produced the 

highest accuracy rates. 

Each model’s sample size was the number of digitized pixels. The categorical models 

had out-of-bag (OOB) errors from 0.003% to 1.402%. The stage-specific (or local) models 

for water potential had an R2 ranging from 0.437 to 0.487. The global model utilized all 

pixel samples as training data and resulted in an R2 of 0.554. For further analysis, predic-

tions were also conducted for all four of these water potential models. 

Table 1. Model information used in image classification with each collection stage having a sepa-

rate model, and combined stages for global model regression. The table also includes out-of-bag 

prediction errors as percentages for classification, and mean squared error and R2 values for re-

gression. 

 
Irrigated/Non-Irrigated 

Local Classification 

Water Potential 

Local Regression 

Water Poten-

tial Global 

Regression 

 
Peak 

Bloom 

Green 

Fruit 

Color 

Break 

Peak 

Bloom 

Green 

Fruit 

Color 

Break 
 

Sample Size 

(pixels) 
47,758 32,018 103,135 139 115 99 353 

Independent 

variables 
25 25 25 15 25 25 20 

Out-of-bag 

(OOB)  

prediction 

error/MSE 

1.346% 0.003% 1.402% 320 679 754 709 

R2 

(OOB) 
NA 0.487 0.458 0.437 0.554 

3.2. Validation  

To further analyze the performance of the continuous models, predictions using cal-

ibration and validation samples were conducted. The increased split ratio for calibration 

data in the global water potential model was increased because it improved the model’s 



Remote Sens. 2021, 13, 1425 7 of 19 
 

 

R2 while still maintaining a validation size of about 70. Table 2 outlines each model’s OOB 

error, R2, and calculated RMSE. 

Table 2. Outline of global and local regression model statistics for predicting water potential. 

Validation  

Metric 

Local Regression  

Prediction 

Global Regression 

Prediction 

 
Peak 

Bloom 

Green 

Fruit 

Color 

Break 
 

OOB prediction 

error (MSE) 
237 533 556 616 

R2  

(OOB) 
0.554 0.563 0.564 0.617 

Calculated  

RSME 
29.8 36.9 45.2 46.4 

The table shows that all three local models had very similar R2 values although cal-

culated RMSEs were dissimilar and increased with each model. The global model had a 

comparable RMSE to the third local model but also had the highest R2. As a result of the 

prediction, we decided to use only the global water potential model for our image classi-

fications. 

3.3. Variable Importance 

Each model was developed through particular predictor variables and a certain num-

ber of the top predictors [51]. These predictor variables, or spectral derivatives, consist of 

vegetation indices and resampled bands. Models of differing numbers of top predictors 

(in multiples of five) were generated in the process along with accuracy rates, however 

the one with a lower number of variables with a comparable lower error rate was selected 

to improve efficiency but maintain efficacy. The plots of the top predictors show the di-

minishing importance of each variable and how, despite there being a level of relevancy, 

inclusion of more variables does not improve model accuracy. 

Figure 3 is a plot of the 35 most important predictor variables in the global model 

with the importance levels, and Table 3 lists the top 20 predictors that were used in the 

model. Bandpasses are expressed with an ‘X’ preceding the bandpass wavelength, fol-

lowed by the resampling range. All of the top five predictors involve bands in the 700 to 

800 nm region, a range associated with chlorophyll measurements. The top predictor was 

the Datt index, which was developed to estimate chlorophyll content, particularly in 

higher plants or tree canopies [52]. The Giltelson index is a measure of chlorophyll fluo-

rescence, which is proportional to actual chlorophyll content [53]. The third most im-

portant variable was TOCARI2OSAVI2, which incorporates soil adjustment in chloro-

phyll measurements and has been recommended for agricultural applications [54]. 

In the supplementary, Figures S1 and S2 show the top predictor variables for each 

model of local classification and regression. The top predictors of the three categorical 

models showed very distinct variable selection results with no model containing a shared 

top five variable. The first shared predictor was CRI2 as the fifth for color break and the 

eighth of green fruit. This predictor was the 24th for peak bloom. Green fruit and color 

break had predictors focused on chlorophyll whereas the top predictor of peak bloom was 

bandpass X897.593 resampled at 100 nm. In all three individual models for water poten-

tial, MTCI (MERIS Terrestrial Chlorophyll Index) was a high predictor. Medium Resolu-

tion Imaging Spectrometer (MERIS) terrestrial chlorophyll index measures chlorophyll in 

the red edge region distinguishing it from other red edge position indices by its sensitivity 

to higher levels of chlorophyll [55]. The local regression plots are included in the supple-

mentary materials to show the similarities and differences among local predictors, and in 

comparison to the global model. 
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Figure 3. Chart of the 35 most important predictor variables in the global water potential model, 

the first 20 of which were included in the selected classifier, and corresponding importance levels. 

Table 3. Top 20 predictor variables used in the global water potential model with description and 

band formula. 

 Abbreviation Name Formula 

1 Datt ‘Chlorophyll & height’ (R749 − R720) − (R701 − R672) 

2 Gitelson ‘Chlorophyll’ 1/R700 

3 TCARI2OSAVI2 

Transformed Chlorophyll Ab-

sorption Ratio 2/Optimized Soil 

Adjusted Vegetation Index 2 

(3 * ((R750 − R705) − 0.2 * (R750 

−R550) * (R750/R705)))/ 

((1 + 0.16) * (R750−R705)/(R750 + R705 

+ 0.16)) 

4 
X692.593_wvl_005

nm 
 

‘Bandpass 692.593 resampled at 

5 nm’ 

5 Maccioni ‘Chlorophyll’ (R780 − R710)/(R780 − R680) 

6 Datt2 ‘Chlorophyll & height’ R850/R710 

7 MTCI 
MERIS Terrestrial Chlorophyll 

Index 
(R754 − R709)/(R709 − R681) 

8 DD Double Difference Index (R749 − R720) − (R701 − R672) 

9 DWSI4 Disease Water Stress Index 4 R550/R680 

10 GDVI4 
Green Difference Vegetation In-

dex 4 
(R4800 − R4680)/(R4800 + R4680) 

11 GI Greenness Index R554/R677 
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12 CARI 
Chlorophyll Absorption Ration 

Index 

R700 * abs(a * 670 + R670 + b)/R670 * 

(α2 + 1)0.5 

α = (R700 − R550)/150 

b = R550 − (550 *α) 

13 TCARI2 
Transformed Chlorophyll Ab-

sorption Ratio 2 

(3 * ((R750 − R705) − 0.2 * (R750 

− R550) * (R750/R705))) 

14 Boochs2 Single Band 703 Boochs D703 

15 mSR modified Simple Ratio (R800 − R445)/(R680 − R445) 

16 Ctr5 Carter 5 R695/R670 

17 EVI Enhanced Vegetation Index 
2.5 * ((R800 − R670)/(R800 − (6 * R670)  

− (7.5 * R475) + 1)) 

18 SumDr1 ‘LAI & % green cover’ ∑ 𝐷1𝑖

795

𝑖=626

 

19 TCARIOSAVI 

Transformed Chlorophyll Ab-

sorption Ratio/Optimized Soil 

Adjusted Vegetation Index 

(3 * ((R700 − R670) − 0.2 * (R700 − 

R550) * (R700/R670)))/ 

((1 + 0.16) * (R800 − R670)/(R800 + 

R670 + 0.16)) 

20 
X397.593_wvl_100

_nm 
 

‘Bandpass 397.593 resampled at 

100 nm’ 

A component of this study assessed variable importance for each model to under-

stand how our imaging spectroscopy methods provide information. Most top predictor 

variables in the models focus on assessing chlorophyll levels. Some, however, include el-

ements of soil adjustment such as TCARI2OSAVI2 and REPLi. Most of the vegetation in-

dices and relevant bands range between 650 to 800 nm on the electromagnetic spectrum, 

or in the visible to near infrared region, which is displayed in the reflectance spectra (Fig-

ure 4).  

3.4. Spectral Signatures 

Various spectra of blueberry samples and pixels were observed to assess radiometric 

calibration and provide visual representation. The critical analysis, however, was using 

these spectra in development of the spectral variables, being the calculations of the vege-

tation indices and band resampling values. Nonetheless, the signatures can showcase in-

formation of interest. Figure 4 plots the median value signatures of combined samples, 

one from each field over each development stage. As can be seen in the figure, the spectra 

of peak bloom in the shades of pink closely align in the 500 to 700 nm range, but diverge 

after where the reflectance of the non-irrigated field shows higher than the irrigated. The 

reflectance of green fruit (shades of green) and color break (shades of blue) differ from the 

first stage where the irrigated signatures have higher reflectance rates than the non-irri-

gated, although the spectra of color break have similar values in the higher section of the 

spectrum. The difference of the irrigated and non-irrigated spectra of green fruit are also 

much larger than that of color break. These median reflectance spectra display the col-

lected data in a raw form, but the transformations of these is what the model is developed 

from, and used to classify imagery. 
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Figure 4. Spectral plots of median reflectance for all sampled blueberry pixels from each field and stage. 

3.5. Classification 

Cube images of the same area that were well-illuminated for all three stages were 

classified for analysis which amounted to a total of 12. Figures 5–7 each represent a sepa-

rate stage, or date the image was taken with an irrigated image on top, and non-irrigated 

image on bottom. They first display NDVI images of the two sections, followed by a clas-

sified image as irrigated or non-irrigated, and then a predicted image of water potentials. 

The cube images from the different stages are of the same area and extent on the irrigated 

and non-irrigated fields.  

All categorical images were classified accurately, meaning a majority of each image 

was classified as it actually was. All irrigated images were classified correctly, and the 

same result occurred with the non-irrigated. The global water potential model estimated 

large portions of the irrigated fields to have higher values than the non-irrigated fields of 

the same stage. This was especially evident in the peak bloom stage, which is consistent 

with the conditions of that year as precipitation was high that spring. The collection date 

also took place later in the season than scheduled due to unanticipated rain dates, result-

ing in the collected data being more representative of the transition stage between peak 

bloom and green fruit. The images are also shown to decrease in values throughout the 

season, or become more stressed throughout the summer.  
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Figure 5. Processed scene images of irrigated (top images) and non-irrigated (bottom images) field sections over peak 

bloom. (a) (normalized difference vegetation index (NDVI) images of scenes. (b) Classified images of irrigated and non-

irrigated scenes. (c) Predicted images of water potential. 
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Figure 6. Processed scene images of irrigated (top images) and non-irrigated (bottom images) field sections over green 

fruit. (a) NDVI images of scenes. (b) Classified images of irrigated and non-irrigated scenes. (c) Predicted images of water 

potential. 
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Figure 7. Processed scene images of irrigated (top images) and non-irrigated (bottom images) field sections over color 

break. (a) NDVI images of scenes. (b) Classified images of irrigated and non-irrigated scenes. (c) Predicted images of water 

potential. 

4. Discussion 

This study utilized machine learning and remote imaging spectroscopy to predict 

water irrigation status and water potentials in wild blueberry fields. The spectral indices 

produced using the ranger package were found to be effective as predictor variables in 

classifying hyperspectral cube images, where the indices used had a logical premise and 

displayed spectral sensitivity through band transformations. We analyzed our developed 

models to understand how the results were predicted.  

The predictors in the local categorical models showed more variation among the 

three than those predicting local water potentials. This result is likely due to the prediction 

method in which the binary model target was more generalized than the continuous. As-

signing a broad binary response to the large input sample data may have been too encom-

passing for a diverse sample, leading the model to use varying predictor variables [56]. 

Conversely, a specific water potential value assigned to fewer input pixels could have 

resulted in more refined and distinct predictor variables. Predictors in the local water po-

tential models were found to be less variable than those of the categorical models, how-

ever both of these sets also showed differences as a result of the development stages. 

The models in each set of local predictors exhibited variation, potentially a result of 

developmental growing patterns and a reflection of the distinct characteristics of each 

stage used for estimation. Our observations provide a framework in which each date rep-

resented a stage, where peak bloom is characterized as healthy and lush vegetation but 

lower leaf area, green fruit as higher vegetation area with additional purples, pinks, and 

whites from flowerings, and color break expressing darker shades from fruit maturity and 
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the start of senescing leaves. The predicted images of water potential display temporal 

variance between the blueberry development stages, and both categorical and continuous 

models showed distinction in statistics and outputs. This was shown particularly between 

the first stage and the following two of the categorical models. These observations are 

supported through peak bloom having more distinguishable phenology from the other 

two, where leaf area was much smaller and ground soils were relatively more exposed 

[57]. Capturing the bare ground may have been a factor in the soil adjusted indices that 

were relevant in the first blueberry scanning [58]. In contrast, green fruit and color break 

had more vegetation coverage which can be observed in the NDVI images of Figures 5–7 

(with the exception of the non-irrigated image of the color break stage, possibly a result 

of drought stress or other factors). Due to the respective training inputs, differences be-

tween local models are to be expected [59], however the differences between local models 

and one that is global can be analyzed to understand how targets are estimated. 

The global model used input data from all three development stages as training data, 

differing from the local models which used only those data from its respective date. Its 

estimation method was the result of a consolidation of characteristics from peak bloom, 

green fruit, and color break, resulting in important indices that will account for the varia-

bility [59]. It can be observed that the top three predictors of the global model had a sig-

nificant level of importance over the following ones, or in other words, the importance 

level of the fourth predictor is much lower than the third. This differs from the local mod-

els where the levels had a more gradual decline in importance. The diverse training sam-

ples may have resulted in generalized predictors that emphasize traits related to chloro-

phyll [60,61], rather than a specific index, such as the first predictor of the local water 

potential model of color break, which was plant senescence reflectance index (PSRI) [62]. 

Understanding the manner in which the global water potential model makes estimates 

provides guidance in interpreting the predicted images.  

The predicted water potential images for each field in each development stage show 

variations that correspond to conditions of that field or season. As the season progressed, 

estimated images exhibit increased water stress in all scenes. The irrigated fields show to 

be less stressed than the non-irrigated, supporting the irrigation management practices. 

This does however raise the question of what conditions are most conducive to blueberry 

yield, and what stresses might be permissible [63]. Understanding the baseline levels of 

water potential for each stage is critical in determining favorable or damaging conditions 

[64]. Typically, we have observed that the irrigated field generates a much higher yield 

than the non-irrigated, however in 2019, the irrigated field only produced a small amount 

more. The cause of this decreased yield however, was determined to be winter damage 

from a consistent freeze in the irrigated field [65]. Overall, the water potential model was 

found to estimate well across the development stages. The categorical models of predict-

ing irrigated and non-irrigated also classified accurately, however these results raise the 

question of how useful the information actually is. 

An objective of this study was to associate reflectance measurements with a categor-

ical treatment (irrigated or non-irrigated) to make predictions. This was achieved, how-

ever there were areas that were misclassified. These misclassifications may show the re-

gions of the field that are particularly water stressed in the irrigated field, or water suffi-

cient in the non-irrigated field. Regardless, the method of classifying areas as irrigated or 

non-irrigated prompts questioning about how constructive the answer actually is. The lo-

cal models were separated using only data taken from the respective date. This was due 

to the relativity in deeming a field irrigated or not irrigated throughout a changing season 

[66]. An area classified as irrigated at the beginning of the season may not be classified the 

same towards the end. The irrigated/non-irrigated distinction is a convenient method in 

classification and may be a useful precursor to mapping water potential, but finding util-

ity in it alone may be a challenge.  
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A more sensitive approach is to predict and calculate water potential which provides 

relevant values [67]. Measuring water potential and how it would impact irrigation prac-

tices is a more appropriate pursuit in providing farmers and landowners greater use. Alt-

hough the global water potential model predicted well against the validation dataset (R2 

of 0.62), adding more samples in water potential and from more than a few select dates 

would assist in more applicable predictions. Another addition in strengthening the model 

and prediction process would be to include other types of variables from other functions 

or calculations. Spectral band derivatives and extensions of these, another common 

method in determining characteristics of vegetation [68], were not heavily incorporated 

in this process, with the exception of a few vegetation indices that include derivatives in 

the index formula. It may also be helpful in reducing the resampling predictors as it may 

not have had a significant effect on the predictors, especially as the number of band 

resampling increased. 

In comparison to other studies that have used hyperspectral data and vegetation in-

dices to predict crop water potential, this study shows similar promise in predictive ability 

[69–71]. In Zhang et al. (2019), it was found that select vegetation indices were sensitive to 

water status variables including canopy water content, but would benefit with additional 

data on biomass or vegetation structure [72]. With the more rudimentary methods in our 

statistical analysis and classifier model (as opposed to Pôças, 2017) [73], our study further 

supports spectral vegetation indices through utilizing a high number of predictors. It also 

contributes to predictive efforts in producing maps which show spatial variation on 

smaller scales. Given the finer resolution, this study’s application is mainly practical for 

limited areas, such as agricultural fields. Our methods however, were developed for effi-

cient and applicable use. 

5. Conclusions 

The goal of this project was to use hyperspectral imaging processes in detecting water 

stress level practically, for the benefit of the agricultural industry. This was mainly 

achieved through the development of our models, although there are a number of actions 

that could strengthen the outcomes and better show the relationship between imaging 

spectroscopy and leaf water potential measurements. Models will be improved if larger 

training datasets are used. This is particularly relevant if other blueberry fields or varying 

crops are to be measured, such as fields in other areas. The process of streamlining by 

means of data collection, processing, and efficient programming, is also critical to provide 

timely and accurate data that can be efficiently used by the industry, which would require 

greater computing capacity and data management. With continued input additions and 

modifications, our methods can assist in improved agricultural practices. 

Many societal structures are heavily reliant on natural and agricultural resources 

[74]. With the limited commercial production of wild blueberries, efficient practices and 

maintenance in the face of climate change are critical [24,26,75]. New technologies such as 

those pertaining to precision agriculture are becoming more widely used [76], necessitat-

ing the adoption of new methods to maintain techniques in a changing environment. With 

greater sampling and in-depth studies, hyperspectral imaging methods could have many 

suitable applications. 
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