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Abstract: The lockdown of cities in the Yangtze River Delta (YRD) during COVID-19 has provided
many natural and typical test sites for estimating the potential of air pollution control and reduction.
To evaluate the reduction of PM2.5 concentration in the YRD region by the epidemic lockdown policy,
this study employs big data, including PM2.5 observations and 29 independent variables regarding
Aerosol Optical Depth (AOD), climate, terrain, population, road density, and Gaode map Point of
interesting (POI) data, to build regression models and retrieve spatially continuous distributions
of PM2.5 during COVID-19. Simulation accuracy of multiple machine learning regression models,
i.e., random forest (RF), support vector regression (SVR), and artificial neural network (ANN) were
compared. The results showed that the RF model outperformed the SVR and ANN models in the
inversion of PM2.5 in the YRD region, with the model-fitting and cross-validation coefficients of
determination R2 reached 0.917 and 0.691, mean absolute error (MAE) values were 1.026 µg m−3 and
2.353 µg m−3, and root mean square error (RMSE) values were 1.413 µg m−3, and 3.144 µg m−3, re-
spectively. PM2.5 concentrations during COVID-19 in 2020 have decreased by 3.61 µg m−3 compared
to that during the same period of 2019 in the YRD region. The results of this study provide a cost-
effective method of air pollution exposure assessment and help provide insight into the atmospheric
changes under strong government controlling strategies.
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1. Introduction

Coronavirus disease 2019 (COVID-19), as an infectious disease, was identified in
the city of Wuhan, China, and spread to nearly every country around the globe [1–3].
On 20 January 2021, COVID-19 has been known to cause more than two million deaths
worldwide, with a global mortality rate of 3.4%. In response to the outbreak of COVID-19,
a nation-wide lockdown of cities was proposed by the Chinese government after January
2020, putting its 1.3 billion citizens inside their homes [4–6]. Almost all production activi-
ties, such as transportation, construction, and industries were completely restricted [7–9].
Such unprecedented stagnation of industrial production and residents’ consumption has
effectively reduced air pollution emission, providing natural and typical test sites for
estimating the impacts of human activities controlling on the air pollution control and
reduction [10–13].
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At present, studies on PM2.5 pollution during COVID-19, mainly use PM2.5 concentra-
tions, which are generally sourced from ground observations and satellite remote sensing
inversions [14–19]. Ground observations provided by meteorology stations are at a diurnal
scale with high accuracy. However, these stations are usually sparsely distributed, limiting
the knowledge of spatially continuous distributions of PM2.5 concentrations. Compara-
tively, satellite remote sensing inversions can provide a spatially continuous distribution of
PM2.5, which can fill the data gap in areas where there is no monitoring station [20–22]. As
a result, this study uses satellite remote sensing inversions to obtain high-precision PM2.5
concentration data to assess PM2.5 changes during COVID-19. To build the inversion model,
variables regarding aerosol optical depth (AOD), climate, LUCC (land use and land cover)
were usually selected according to previous studies [23–26]. Classic model and machine
learning methods have been applied to fit the linear and non-linear relations between
environmental variables and PM2.5 concentrations in previous research work [27–30]. It is
suggested that classic models are usually sensitive to collinearity between independent
variables and fail to handle a very large sample with missing data or outliers [31]. Although
the variance expansion test and statistics can avoid the influence of collinearity by deleting
those collinear variables [32], such a screening step can lose some important variables by
mistake [33]. The linear models, e.g., multiple linear regression, failed to detect non-linear
relations [22,34,35], given that the formation, diffusion, migration, and transformation of
PM2.5 are complex, and perhaps non-linearly related to environmental factors. Machine
learning methods can handle a very large sample with fast computing speed [36]. They
were proved to be robust and insensitive to missing data and outliers. In recent years,
machine learning methods, such as random forest (RF) [23,30,37,38], support vector regres-
sion (SVR) [39], and artificial neural network (ANN) [40] have been successfully used in
estimating PM2.5 concentrations. Consequently, machine learning methods can be used to
estimate the PM2.5 concentration during COVID-19.

In this study, we hypothesized that the government’s “lockdown policy” may have
reduced air pollution in urban agglomeration. To address the influence of “lockdown
policy” on PM2.5 concentrations, spatial PM2.5 concentrations during COVID-19 (2020-I)
and the same period in 2019 (2019-I) were compared. Firstly, 29 independent variables
regarding AOD, climate, terrain, population, road density, and Gaode map POI data were
collected to build the RF, SVR, and ANN PM2.5 retrieving models. Secondly, the prediction
accuracies of the three models were evaluated by determination R2, the cross-validation
(CV), MAE, and RMSE. The importance of variables was assessed to examine the impact
of each predictor on PM2.5 concentration. Finally, the optimal model was determined and
applied in PM2.5 retrieval, to further estimate the influence of “lockdown policy” on PM2.5
concentrations. Investigation of PM2.5 changes before, and during, COVID-19 not only
quantitatively evaluate the impact of the epidemic on economic activities and emission
reductions, but also help understand the potential for pollution control in the Yangtze
River Delta (YRD). This study aims to obtain high-resolution spatial continuous PM2.5 data
and analyze the potential of PM2.5 pollutant emission reduction during COVID-19. The
findings provide a reference for future air pollution control in the YRD.

2. Data and Methods

The Yangtze River Delta is located in the north-central subtropical zone and at the
junction of eastern coastal China and the Yangtze River, including Shanghai, Zhejiang
Province, and Jiangsu Province, as shown in Figure 1. The study region is the Yangtze
River Delta’s core area, including 16 cities, such as Shanghai, Nanjing, and Hangzhou.
The Yangtze River Delta accounts for 2.2% of the national land and 11.7% of the national
population, contributing about 21% of the country’s gross domestic product (GDP). The
urbanization level has reached 64.7%, and the urban space layout is still expanding. There-
fore, the Yangtze River Delta is China’s leading economic development area. However,
the rapid development of industrialization and urbanization has caused unprecedented
pressure on the ecological environment leading to frequent pollution incidents.
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Figure 1. Location Map of the Yangtze River Delta.

2.1. Data

Independent variables covered both natural and socio-economic aspects and were
divided into a training dataset (80% of the observation) and a testing dataset (20% of the
observation). Table 1 lists seven types of data that were used to fit the PM2.5 concentration
inversion model and evaluate the accuracy. The retrieval and pre-processing of these
datasets in the current study are described below.

Table 1. Datasets used in this study.

Datasets Format Source

PM2.5 Table Ministry of Ecology and Environment, China
AOD Grid 1-km MODIS MAIAC AOD

Meteorological Table China Meteorological Administration
Elevation Grid Geospatial data cloud of China

POIs Point features Gaode Map Services, China
Road network Line features Open Street Map

Boundary maps Line features Open Street Map
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The workflow for processing data, fitting the model to produce the PM2.5 map, and
assessing accuracy is exhibited in the flowchart in Figure 2.

Figure 2. Flowchart for producing and assessing the accuracy of the PM2.5 map.

2.1.1. PM2.5 Data

PM2.5 data were derived from hourly observations in the real-time publishing platform
of urban air quality at China Environmental Monitoring Station (http://www.cnemc.cn/
sssj/ accessed on 1 December 2020). There is a total of 214 monitoring stations, with the time
range from 12 January to 20 February 2019 and 1 January to 9 February 2020. In accordance
with the requirements for the validity of air pollutant concentration data in GB3095-2012,
the quality control of PM2.5 data was performed [15]. Firstly, values of the hourly PM2.5
concentrations ≤ 0 and missing values were excluded. Secondly, if the measured data have
been missing for more than 4 h in a day, all the data would be invalidated and excluded
from the calculation of average daily PM2.5. Finally, a few anomalies with the hourly
PM2.5 concentrations > 900 µg m−3 were also eliminated. A monthly average of PM2.5 was
obtained based on the arithmetic mean of the daily average concentration.

2.1.2. Aerosol Optical Depth (AOD) Data

In this study, the MODIS Collection 6 MAIAC AOD products (MCD19A2) at a spatial
resolution of 1 km from 12 January to 20 February 2019, and 1 January to 9 February 2020,
covering the YRD region, were collected. Here, only the MAIAC AOD retrievals at 550 nm,
and passing the recommended quality assurance (QA), are used, which yield a reliable
data quality in China, especially in bright urban areas [41–43]. Last, the Terra and Aqua
MAIAC AOD data were averaged and integrated to expand the spatial coverage of PM2.5
estimates.

2.1.3. POIs Data

POIs is a kind of place or a kind of thing marked on the map, including name, category,
coordinate and other information, which can reflect social and economic activities. POIs
were retrieved from the Gaode Map (https://www.amap.com/ accessed on 24 September
2020), which is the largest desktop and mobile map service provider in China. We obtained
8,806,799 POI records from 2019 to 2020 using Gaode Map’s application programming
interface. Gaode Map classified these POIs into 23 categories based on their Chinese
semantic phrase. All records were unified as Gauss Kruger coordinate system. Table 2
presents the 20 categories and the number of POI records for each category, excluding the
3 categories of Place Name and Address, Incidents and Event, and Indoor facilities.

http://www.cnemc.cn/sssj/
http://www.cnemc.cn/sssj/
https://www.amap.com/
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Table 2. Categories of Gaode Map POIs.

Category Counts Category Counts

Food & Beverages 962,507 Auto Service 127,669
Road Furniture 3619 Auto Repair 53,193

Tourist Attraction 35,668 Auto Dealers 25,941
Public Facility 79,557 Commercial House 242,212

Enterprises 874,211 Daily Life Service 836,412
Shopping 1,959,948 Sports & Recreation 109,452

Transportation Service 349,160 Pass Facilities 393,393
Finance & Insurance Service 85,445 Medical Service 138,940

Science/Culture & Education
Service 244,247

Governmental
Organization & Social

Group
232,836

Motorcycle Service 10,517 Accommodation
Service 106,669

2.1.4. Meteorological Data

Meteorological data were gathered from the Chinese meteorological data sharing
service network (http://data.cma.cn/ accessed on 24 September 2020), including daily
average wind speed, atmospheric pressure, temperature, relative humidity, and 24 h
cumulative precipitation. The data was pre-processed and interpolated to obtain the
meteorological elements’ continuous surface in the area.

2.1.5. Elevation Data

Elevation data were downloaded from China’s geospatial data cloud (http://gdex.
cr.usgs.gov/gdex/ accessed on 24 September 2020), with the spatial resolution Define if
appropriate.of 30 m, and the corresponding location altitude was extracted through the
monitoring stations.

2.1.6. Boundary and Road Network Data

The boundary maps at city levels were obtained from the Open Street Map (https://
www.openstreetmap.org/ accessed on 24 September 2020). Such datasets include China’s
national highways, city roads, provincial, county, and township-level roads. The road
density is calculated and generated by the kernel density method of ArcGIS software.

2.2. Model Structure and Validation
2.2.1. Random Forest Model

The random forest is a new machine learning algorithm consisting of multiple classifi-
cations and regression tree (CART) integrations [22,44,45]. Compared with CART, there
are three distinct characteristics. First, random forests generate many trees, each of which
is generated by a bootstrap sample in the original dataset, while in CART, all raw data are
utilized to create only one tree. Second, the segmentation of tree nodes is performed by
random forest each time based on an optimal variable in the subset of predictors, while
CART selects the optimal variable among all predictors to segment the tree nodes. Finally,
the trees in the random forest are completely grown without prune. This makes the random
forest model not easy to overfit [46]. Three training parameters need to be defined in the
random forest algorithm: n_estimators, the number of trees in the forest-based on a boot-
strap sample of the observations; max_features, the number of features to be considered
when looking for the best split (the default setting is “auto”: then max_features=n_features)
and min_samples_lea, the minimum number of samples required to be at a leaf node (the
default value is one). The two main parameters (i.e., n_estimators and max_features) in
predicting the PM2.5 were determined and optimized, based on the out-of-bag (OOB) error
rate of calibration.

http://data.cma.cn/
http://gdex.cr.usgs.gov/gdex/
http://gdex.cr.usgs.gov/gdex/
https://www.openstreetmap.org/
https://www.openstreetmap.org/
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2.2.2. Support Vector Regression Model

Support Vector Regression, SVR was proposed by Corinna Cortes and Vapnik in
1995 [47,48], which constructs a hyperplane or a set of hyperplanes in a high- or infinite-
dimensional space, which can be used for classification, regression, or other tasks. The
performance of SVR can be decided by three parameters, i.e., the kernel function, penalty
factor (C), and the variance in kernel function (Gamma). Grid search and cross-validation
were applied to determine the optimal values of the three parameters. In this study, radial
basis function settings (RBF) with C = 8 and Gamma = 11 were optimal according to the
validation results.

2.2.3. Back Propagation Artificial Neural Network

Back Propagation Artificial Neural Network (ANN) was proposed by Rumelhart and
McClelland in 1986 [49], which consists of an interconnected group of artificial neurons. It
processes information using a connectionist approach to computation. ANN is a non-linear
statistical data modeling tool that can fit complex relationships between inputs and outputs,
or find patterns in data. The structure of the ANN model includes three levels: Input
level (29 neurons), an implication level (25 neurons), and an output level (1 neuron). The
activation function was Relu, and the solver was Sigmoid.

2.2.4. Cross Validated Model Accuracy

The model performance is evaluated by determination coefficient (R2), mean absolute
error (MAE), and root mean square error (RMSE). The larger the R2, the smaller the MAE
and RMSE, indicating that the model prediction accuracy is higher. The relevant calculation
formulas are as follows,

R2 =
n

∑
i=1

(
Pi −M

)2/
n

∑
i=1

(
Mi −M

)2 (1)

MAE =
1
n

n

∑
i=1
|Mi − Pi| (2)

RMSE =

√
1
n

n

∑
i=1
|Mi − Pi|2 (3)

where M is the measured value, P is the predicted value, M is the mean measured value,
and n is the number of samples in the validation set.

3. Results and Analysis
3.1. Model Performance

Determination coefficient R2, MAE, and RMSE were applied to estimate the accu-
racy of modeling. As shown in Table 3, during the period of 2019-I (the same period
in 2019), values of R2, MAE, and RMSE of the RF model were 0.938, 1.663 µg m−3,

and 2.696 µg m−3, respectively; for SVR, values of R2, MAE, and RMSE were 0.740,
2.148 µg m−3, and 5.522 µg m−3, respectively; for ANN, values of R2, MAE, and RMSE
were 0.739, 3.582 µg m−3, 5.538 µg m−3, respectively. During the period of 2020-I (dur-
ing COVID-19), values of R2, MAE, and RMSE of RF model were 0.917, 1.026 µg m−3,
and 1.413 µg m−3, respectively; for SVR, values of R2, MAE, and RMSE were 0.705,
1.521 µg m−3, and 2.663 µg m−3, respectively; for ANN, R2, MAE, and RMSE was 0.917,
2.476 µg m−3, and 3.258 µg m−3, respectively. In general, the RF model performed best in
retrieving PM2.5 concentrations during both periods, followed by SVR and ANN.
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Table 3. Modeling set the precision of estimated PM2.5 concentrations.

RF SVR ANN
R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE

2019-I 0.938 1.663 2.696 0.740 2.148 5.522 0.739 3.582 5.538
2020-I 0.917 1.026 1.413 0.705 1.521 2.663 0.559 2.476 3.258

RF model provides an important assessment for each predictor variable. The im-
portance of each variable could be assessed via the percent increase in prediction error
(MSE) resulting from randomly permuting the values of an explanatory variable for the
out-of-bag observations [22]. The importance assessment can make the variable selection
more efficient.

As shown in Figure 3, during 2019-I, the five impact factors ranked by importance
were as follows: temperature, precipitation, DEM, wind speed, tourist attraction. In
contrast, during 2020-I, the order of importance was as follows: Temperature, road fur-
niture, atmospheric pressure, relative humidity, and precipitation. It is suggested that
RF models utilized a higher number and diverse selection of predictors for PM2.5. Over-
parameterization can be avoided as = the RF can detect non-linear relations between
variables and PM2.5 concentration, and the variable selection was included as a part of the
cross-validation process [22,38].

Figure 3. Feature importance during 2019-I and 2020-I.

3.2. Cross Validated Model Accuracy

Cross-validation on the validation data set was applied to check to overfit of models.
The cross-validated R2, MAE, and RMSE for PM2.5 and model type are presented in Figure 4.
As shown in Figure 4, during the period of 2019-I (the same period in 2019), values of R2,
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MAE, and RMSE of RF model were 0.774, 3.914 µg m−3, and 4.756 µg m−3, respectively; for
SVR, values of R2, MAE, and RMSE were 0.703, 4.679 µµg m−3, and 5.458 µg m−3, respec-
tively; for ANN, values of R2, MAE, and RMSE were 0.702, 4.578 µg m−3, 5.468 µg m−3,
respectively. During the period of 2020-I (during COVID-19), values of R2, MAE, and
RMSE of RF model were 0.691, 2.353 µg m−3, and 3.144 µg/m3, respectively; for SVR,
values of R2, MAE, and RMSE were 0.571, 2.794 µg m−3, and 3.702 µg m−3, respectively;
for ANN, R2, MAE, and RMSE were 0.529, 2.995 µg m−3, and 3.889 µg m−3, respectively.
Values of R2 all decreased slightly, while values of MAE and RMSE all increased slightly
after cross-validation. The results of cross-validation suggested that the three models are
slightly over-fitting.

Figure 4. Validation between predicted and measured PM2.5 by different methods.

In the Yangtze River Delta, the regional mean value of PM2.5 concentrations during
2019-I (the same period in 2019) and 2020-I (during COVID-19) were 38.353 µg m−3 and
29.94 µg m−3, respectively. According to ground-truth observations. The values are very
close to the estimations of the RF model, of which the values are 38.628 µg m−3 and
30.453 µg m−3, respectively. The results indicate that the RF estimation should be a good
approximation to the true state of PM2.5 concentrations in the Yangtze River Delta.

The regional mean value of measured PM2.5 and predicted PM2.5 (RF) of 16 cities in
the Yangtze River Delta are shown in Figure 5. During 2019-I (the same period in 2019),
differences between measured PM2.5 and predicted PM2.5 ranged from 0.089 µg m−3 to
−2.867 µg m−3; comparatively, during 2020-I (during COVID-19), differences between
measured PM2.5 and predicted PM2.5 ranged from 0.121 µg m−3 to 1.669 µg m−3. RF model
performed well in most cities of Yangtze River Delta with satisfying goodness of fit. Cities
with relatively big estimations errors are Zhoushan, Nantong, Taizhou, and Huzhou. The
cities, as mentioned above, are coastal cities with low concentrations of PM2.5, where the
weather conditions are complex and changeable, and which give rise to larger estimation
errors.
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Figure 5. Regional mean measured/predicted PM2.5 average monitored concentrations and average simulated concentration
of each city (a:2019-I; b:2020-I).

In conclusion, a comprehensive comparison between models shows that R2 values
of RF model are higher than SVR and ANN, while MAE values and RMSE values of RF
are lower than those of SVR and RMSE. The results suggest that RF model is optimal in
predicting PM2.5 concentrations. Therefore, RF model was selected for estimation of PM2.5.

3.3. PM2.5 Estimates during COVID-19

In this study, RF model was developed to estimate PM2.5 in the Yangtze River Delta
with MODIS AOD data, meteorological, DEM, road density, and POI data. The results
of the prediction of PM2.5, which are based on RF were mapped in the ArcGIS platform
(Figure 6). According to our estimates, the mean value of PM2.5 concentrations during
2019-I (the same period in 2019) in the Yangtze River Delta was 25.129 µg m−3, while in
2020-I (during COVID-19), the mean value was 21.519 µg m−3. The highest/lowest values
of PM2.5 concentrations during 2019-I (the same period in 2019) in Yangtze River Delta was
51.245 µg m−3, and 20.247 µg m−3, respectively; while in 2020-I (during COVID-19), the
highest/lowest values decreased to 34.85 µg m−3, and 19.81 µg m−3, respectively. Higher
PM2.5 concentrations were found in Jiangsu Province, especially in Wuxi, Changzhou,
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Suzhou, Taizhou, and other southern and middle Jiangsu regions. The low values of PM2.5
were mainly observed in the mountainous areas of Zhejiang Province, where the weak
human activities in the mountains resulted in fewer emissions of PM2.5 precursors.

Figure 6. Spatial distributions of estimated PM2.5 concentrations in Yangtze River Delta (a) The same period in 2019;
(b) During COVID-19.

Overall, the spatial distribution of PM2.5 concentrations in the Yangtze River Delta
showed a pattern of high north and low south; PM2.5 concentrations significantly decreased
under the “lockdown policy” during COVID-19 in 2020. We pushed the PM2.5 site data
into space through the model, effectively making up for the lack of space in the PM2.5
monitoring stations and obtaining data covering the entire region during COVID-19.

3.4. PM2.5 Variations during COVID-19

The overall declining trends of PM2.5 in the Yangtze River Delta can be found during
COVID-19 in 2020, with only a few areas in Taizhou showed upward trends (Figure 7).
The regional mean value of PM2.5 in the Yangtze River Delta has declined by 3.61 µg m−3

during COVID-19, with the highest decline rate found in Yangzhou (5.70 µg m−3), and
lowest rate found in Taizhou (2.26 µg m−3), respectively. In general, higher decline rates
of PM2.5 were mainly found in the north part of the Yangtze River Delta, which is also
consistent with the spatial clustering of PM2.5 in the north part of the Yangtze River Delta.
The area with high PM2.5 concentrations is usually the area with a high concentration of
human activities. The northern part of the Yangtze River Delta has a flat terrain with a
densely distributed population, industries, and farming activities. In contrast, the southern
part is a mostly hilly and mountainous area with low population density and low air
pollutant emission. According to previous studies, PM2.5 pollution in the Yangtze River
Delta mainly comes from industry and traffic. Therefore, the obvious reductions of PM2.5
found in this study were directly related to the strict lockdown actions. The majority of fine
particles from industry and traffic emissions were the primary emissions from industrial. It
was found that traffic emissions decreased with an increase in secondary particles in PM2.5
during the COVID-19 lock period.



Remote Sens. 2021, 13, 1423 11 of 15

Figure 7. Reduction of city PM2.5 in Yangtze River Delta during COVID-19.

4. Discussion

Air pollution brings about many challenges for the sustainable development of cities.
The sparse distribution of monitoring stations limits our understanding of spatial-temporal
dynamics of air conditions. To address this gap, many researchers try to obtain the spatially
continuous distribution of PM2.5 based on relations between PM2.5 and AOD. The AOD
products, applied in earlier studies, have coarse spatial resolutions of about 10 km, which
is difficult to apply in air pollution estimation studies at the urban scale. The recent newly
developed AOD product, based on MODIS data, has a high resolution of 1 km, which
significantly improves the spatial resolution of regional PM2.5 mapping and is gradually
applied to the estimation model of urban PM2.5.

In this study, R2 value of RF model during COVID-19 in 2020 and the same periods
of 2019 are 0.93, and 0.917, respectively; and the cross-validation R2 are 0.77 and 0.69,
respectively. The RF model outperformed the SVR and ANN models in the Yangtze River
Delta. It is suggested that the RF model explained a large fraction of the measured PM2.5
spatial variability based on the monitoring data and AOD in the Yangtze River Delta. To be
comparable with our study, only those studies on AOD-PM2.5 estimations over the Yangtze
River Delta are selected (Table 4). RF model can capture 69–77% of the variations in the
sample-based CV and can outperform most previous models used for generating 3 km
resolution PM2.5 maps of Yangtze River Delta, e.g., the Spatio-temporal model (STM) (CV
R2 = 0.63; Yang et al., 2017) [25] and Linear mixed-effects (LME) model (CV R2 = 0.725;
Ma et al., 2016) [50]. The accuracy of the current RF model is close to the results of the PM2.5
mapping model with 6 km and 10 km resolutions, including the geographically weighted
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regression model (GWR) model (Jiang et al., 2017) [51] and the three-stage hierarchical
spatial and temporal statistical model (T-SSM) (She et al., 2020) [52]. The comparison
indicates that the RF model is suitable for estimating and predicting PM2.5 concentration
in the Yangtze River Delta. However, the RF model, developed in this study, is slightly
over-fitting. Humidity correction and vertical correction are suggested in future modeling
of PM2.5 to reduce the error of input variables to obtain the optimal research results.

Table 4. Statistics for the comparisons in performances of different regression models in Yangtze River Delta.

Related Study Model Model Fitting Model Validation Spatial
Resolution

R2 MAE RMSE R2 MAE RMSE

Ma et al. (2016) LME 0.771 - 16.72 0.725 - 18.30 3 km

Jiang et al. (2017) GWR

0.838 (spring) - 12.84 0.753 (spring) - 16.12

10 km
0.85 (summer) - 6.18 0.74 (summer) - 8.29
0.915 (autumn) - 9.86 0.882 (autumn) - 12.33
0.867 (winter) - 16.34 0.785 (winter) - 21.15

Yang et al. (2018) STM 0.86 - 8.15 0.63 - 4.22 3 km
She et al. (2020) T-SSM - - - 0.72 - 23 6 km

Out study RF
0.938 (2019-I) 1.663 2.696 0.77 (2019-I) 3.914 4.756 1km
0.917 (2020-I) 1.026 1.413 0.691 (2020-I) 2.353 3.144 1km

Recent pioneer studies revealed that the mean value of PM2.5 concentrations in
367 cities during COVID-19 has decreased by 18.9 µg m−3 compared with the periods
before COVID-19; PM2.5 in the city with the worst breakouts of COVID-19: Wuhan de-
creased by 1.4 µg m−3 [53]. The mean value of PM2.5 concentrations in Zhejiang province
declined by 14.691 µg m−3 during COVID-19 [54]. The varying degree of PM2.5 varied
due to different spatial-temporal scales of studies. However, a consensus is that PM2.5
concentrations decreased, in general, under the strict “lockdown policy” during COVID-19,
and the air quality had improved [10,55–58]. This study provides a theoretical basis for
controlling human activities to enhance the quality of air under extreme air pollution
conditions. The published literature uses PM2.5 data from urban monitoring sites. This
paper compares different models and uses the most accurate model to estimate PM2.5 data
in the Yangtze River Delta during the epidemic and obtain PM2.5 data covering the entire
region. Therefore, compared with the published literature, the PM2.5 data, estimated by the
model, covers urban areas and rural areas, and can be reached through spatial analysis. The
research results revealed the spatial heterogeneity of PM2.5 pollution during COVID-19.

In summary, RF-derived PM2.5 concentrations during COVID-19 in 2020 and the same
period in 2019 were compared to assess the influence of “lockdown policy” on air pollution.
The results of this study provide an important reference for air pollution control strategy.
Although PM2.5 reduction, during COVID-19, is mainly caused by declining emissions
caused by the stagnation of production and human activities, the effects of climatic change
or previous inertia emission reduction cannot be ignored. Their contributions need to be
clarified in future studies.

5. Conclusions

The machine learning method was able to explain a large proportion of the variability
in the ambient PM2.5 concentrations in the Yangtze River Delta, with variables of meteo-
rology, elevation, population, road, and POI data. The RF model of PM2.5 outperformed
the SVR and ANN models in the Yangtze River Delta (YRD) region, and the predicted
PM2.5 concentration, based on RF model, was of high spatial variations in the YRD region.
Therefore, the RF model was found to provide an exposure assessment for studies on air
pollution in China in the future. RF-based results suggested that PM2.5 concentrations in
the YRD region decreased at multiple spatial scales during COVID-19 in 2020, compared
with the value during the same period, in 2019, under the influence of “lockdown policy”
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on air pollution. We propose that further studies could look into the applications of the
RF model as a decision-making tool in air pollution control, and the temporal and spatial
resolution should be further improved.
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