
remote sensing  

Article

Heap Leach Pad Surface Moisture Monitoring Using
Drone-Based Aerial Images and Convolutional Neural
Networks: A Case Study at the El Gallo Mine, Mexico

Mingliang Tang and Kamran Esmaeili *

����������
�������

Citation: Tang, M.; Esmaeili, K. Heap

Leach Pad Surface Moisture

Monitoring Using Drone-Based

Aerial Images and Convolutional

Neural Networks: A Case Study at

the El Gallo Mine, Mexico. Remote

Sens. 2021, 13, 1420. https://doi.org/

10.3390/rs13081420

Academic Editors: Margherita Fiani

and Maurizio Barbarella

Received: 25 February 2021

Accepted: 2 April 2021

Published: 7 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Civil & Mineral Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada;
mingliang.tang@mail.utoronto.ca
* Correspondence: kamran.esmaeili@utoronto.ca

Abstract: An efficient metal recovery in heap leach operations relies on uniform distribution of
leaching reagent solution over the heap leach pad surface. However, the current practices for
heap leach pad (HLP) surface moisture monitoring often rely on manual inspection, which is labor-
intensive, time-consuming, discontinuous, and intermittent. In order to complement the manual
monitoring process and reduce the frequency of exposing technical manpower to the hazardous
leaching reagent (e.g., dilute cyanide solution in gold leaching), this manuscript describes a case
study of implementing an HLP surface moisture monitoring method based on drone-based aerial
images and convolutional neural networks (CNNs). Field data collection was conducted on a gold
HLP at the El Gallo mine, Mexico. A commercially available hexa-copter drone was equipped with
one visible-light (RGB) camera and one thermal infrared sensor to acquire RGB and thermal images
from the HLP surface. The collected data had high spatial and temporal resolutions. The high-
quality aerial images were used to generate surface moisture maps of the HLP based on two CNN
approaches. The generated maps provide direct visualization of the different moisture zones across
the HLP surface, and such information can be used to detect potential operational issues related to
distribution of reagent solution and to facilitate timely decision making in heap leach operations.

Keywords: heap leach pad monitoring; convolutional neural network; surface moisture mapping;
unmanned aerial vehicle; drone; gold leaching; mining

1. Introduction

Heap leaching (HL) is a hydrometallurgical technology that has been widely adopted
by the mining industry in recent years due to its easy implementation and high economic
feasibility for metal and mineral extraction from low-grade ore deposits [1]. In an HL
operation, metal-bearing ore is piled on an impermeable pad (i.e., an engineered liner),
and a water-based lixiviant (or leaching reagent) is irrigated on top of the heap surface [2].
The leach solution, driven by gravity, flows through the rock pile and contact with the ore,
such that the metal or mineral of interest is extracted from the rock and dissolved into the
solution [3]. The solution exits the base of the heap through slotted pipes and a gravel
drainage layer located above the liner [2]. The metal-bearing pregnant leach solution (PLS)
is collected in the PLS pond (commonly called pregnant pond) and then pumped to the
processing facility for recovery of the extracted metal [1,2]. After the valuable metal is
recovered from the PLS, the barren leach solution is pumped to the barren solution pond
and reapplied to the heap surface after refortifying with lixiviant chemicals [2,4].

In the leaching process, a high ore recovery requires an even lixiviant coverage over
the surface of the heap leach pad (HLP, the facility that contains the ore material) because a
non-uniform distribution of surface moisture can lead to suboptimal leaching conditions,
which may further result in operational challenges [2,5–8]. As HL is a continuously
ongoing operation, monitoring plays a critical role in optimizing the production process
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and providing feedback to mine managers and decision-makers. The current practices
of HLP surface moisture inspection are often performed by naked-eye observation and
manual sampling, which are time-consuming, discontinuous, and intermittent. Moreover,
the manual inspection is labor-intensive and can frequently expose technical personnel to
the hazardous leaching reagent (e.g., dilute cyanide solution in gold leaching) [9].

There are limited efforts made in HL operations to develop practical tools for stream-
lining the surface moisture monitoring workflow and detecting operational issues, such
as surface ponding of leaching reagent, defects of irrigation units (e.g., sprinklers or drip
emitters), and poor compliance between the actual solution application pattern and the
designed irrigation pattern. This raises a necessity to develop efficient and on-demand
HLP monitoring methods. To achieve this goal, we present a practical framework for HLP
surface moisture monitoring, starting with drone-based aerial image collection, followed
by surface moisture map generation using convolutional neural networks (CNNs).

In recent years, data acquisition using drones (or unmanned aerial vehicles, UAVs)
together with digital imaging sensors has been applied in various mining and geology
projects [10–13]. The usefulness of UAVs for geological surveys have been proved by the
ever increasing use of drones in outcrop mapping [14], post-earthquake monitoring [15],
magnetic anomalies detection [16], and geological features annotation and identifica-
tion [17,18], just to name a few. In addition to geological surveys, numerous studies and
applications have demonstrated the practicality and effectiveness of employing UAVs in
mining environments to perform surveying and monitoring tasks, including dust monitor-
ing [19,20], blasting process monitoring [21], haul road monitoring [22], rock fragmentation
analysis [23], and structural pit wall mapping [24,25]. However, to the best of our knowl-
edge, the use of UAVs and sensing technology to perform HLP surface moisture monitoring
has not been widely adopted, except that a few recent studies showcased the feasibility of
using UAVs equipped with thermal infrared sensors for moisture monitoring [26,27]. In
this paper, we present a case study of a UAV equipped with a dual gimbal system which
allowed mounting a visible-light camera and a thermal infrared sensor on the drone to
acquire aerial images. The high-resolution aerial sensing data was then processed through
digital photogrammetry methods and CNNs to produce surface moisture maps, which
visually depict the different moisture zones across the HLP surface.

Over the past several years, many studies and applications (e.g., agricultur, and
forestry) utilized remote sensing and CNNs to conduct surface moisture recognition and
monitoring tasks [28–33]. For instance, Sobayo et al. [28] employed a CNN-based regression
model to generate soil moisture estimates using UAV-based thermal images acquired over
farm areas; Ge et al. [31] adopted a CNN model with 1-D convolutions to estimate soil
moisture on a global scale, based on four sources of satellite data; Wang et al. [34] collected
soil echoes using an ultra-wideband radar sensor over a bare soil field and used two
CNNs to classify the moisture levels associated with the different soil echoes patterns; and
Isikdogan et al. [33] proposed a CNN, named DeepWaterMap, to generate surface water
maps on a global scale (e.g., continential scale) based on satellite imagery.

A number of factors are contributing to make CNNs popular and applicable in a
wide variety of application domains. First, CNNs are a particular type of neural network
that typically consists of multiple layers, which have the ability to extract hierarchical
features from the model input [35,36]. Layers that are close to the input can extract low-
and mid-level features, while later layers can learn high-level (i.e., more abstract and
semantically meaningful) feature representations [37]. Such a feature extraction ability
allows predictive CNN models to exploit spatial and/or temporal correlations in the
data when making predictions. The extracted features at different layers of the networks
are learned automatically from the data through the training process [38,39]. There is
no hand-engineered feature required, which improves the models’ generalization ability
when applied to data within the same problem domain but previously not observed by
the models [39–41]. When CNNs are used to process image data, they are often robust
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against challenging image conditions, including complex background, different resolution,
illumination variation, and orientation changes [42].

The abovementioned characteristics contribute to the popularity of CNNs to process
data with a grid-like topology (e.g., images, and videos) and make them suitable for
tasks like scene classification and semantic segmentation (also known as pixel-wise image
classification) [39,43]. In remote sensing, scene classification is referred to as categorizing a
scene image into one of several predefined classes [44–46]. The scene images are often local
image patches (or image blocks) extracted from one or multiple large-scale remote sensing
images [47]. In contrast, semantic segmentation is referred to as assigning a semantic
class to every pixel of an input image [38,43], and it is a natural step towards fine-grained
inference after scene classification [48,49]. In this work, two CNN-based approaches for
generating HLP surface moisture maps are presented, including a scene classification
model, and a semantic segmentation network.

Overall, this article aims to showcase a thorough case study, presenting the experimen-
tal procedures, implementation details, and the generated outputs of the proposed surface
moisture monitoring workflow. Field data collection was conducted over a gold HLP, and
data analysis was performed off-line. The following sections elaborate our methodology for
the UAV-based data acquisition and the moisture map generation process. Illustrations of
the experimental results are included which is followed by a discussion on the advantages,
limitations, and possible improvement of the proposed method.

2. Materials and Methods
2.1. Study Site

The study site is a sprinkler-irrigated HLP at the McEwen Mining’s El Gallo mine
(25◦38′ N, 107◦49′ W), located in Sinaloa State, Mexico, approximately 100 km northwest
of Culiacan, and 350 km northwest of Mazatlán (Figure 1a). The mine site resided in the
Lower Volcanic Series of the Sierra Madre Occidental, dominated by rocks of andesitic
composition [50]. The mineralization is hosted within a northeast structural trend with
numerous sub-structures (e.g., breccia, and quartz stockwork) [21]. Gold is the primary
metal produced, and heap leaching is used to extract the metal from the crushed ores. The
HLP was constituted of multiple lifts, where the designed lift height was 10 m, and the
maximum heap height was 80 m. The HLP had a footprint of approximately 22 hectares
and was located north of the mine site [26]. The HLP material was crushed gold-bearing
rock with an 80% passing particle size (P80) of 8 to 10 mm [26]. The HLP’s irrigation
system had an average sprinkler spacing of 3 m, and a dilute cyanide solution was applied
continuously at an average irrigation rate of 8 L/h/m2 during the field experiment.

2.2. UAV Platform and Sensors

During the field data collection, a DJI Matrice 600 Pro hexa-copter (DJI, Shenzhen,
China) was equipped with one visible-light (RGB) camera, DJI Zenmuse X5 (DJI, Shenzhen,
China), and one thermal infrared (TIR) sensor, DJI Zenmuse XT 13 mm (FLIR Systems,
Wilsonville, OR, USA) in a dual gimbal setup to acquire aerial images (Figure 2). The dual
gimbal was a custom-built system, consisting of a front gimbal installed with a global
positioning system (GPS) and a bottom gimbal without a GPS. This dual gimbal setup
enabled the acquisition of both RGB and thermal images simultaneously. The RGB camera
is a 16-megapixel camera with a maximum resolution of 4608 × 3456 pixels, and it was
paired with a DJI 15 mm f/1.7 ASPH lens, which had a 72◦ field of view (FOV). This camera
has a dimension of 120 mm × 135 mm × 140 mm and a mass of 530 g. The TIR sensor
has a FOV of 45◦ × 37◦ and can capture electromagnetic (EM) radiation with wavelength
ranging from 7.5 to 13.5 µm. The focal length of the TIR sensor is 13 mm, and the thermal
images acquired have a resolution of 640 × 512 pixels. The TIR sensor has a dimension of
103 mm × 74 mm × 102 mm and a mass of 270 g. The UAV platform was selected because
of its high payload capacity and versatile payload configuration. The two imaging sensors
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were selected because of their easy integration with the dual gimbal system, and more
importantly, their suitability for conducting aerial remote sensing surveys [21,51–53].
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2.3. Data Acquisition and UAV Flight Plans

From March 6th to 8th, 2019, field experiment and data acquisition were conducted
over the HLP at the El Gallo mine. Two data collection campaigns were conducted in each
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surveying day, resulting in six campaigns in total throughout the field experiment. For each
surveying day, the first data collection campaign was carried out in the morning (10 a.m.),
and the second was in the afternoon (2 p.m.). This survey agenda was made to follow the
mine site’s shift schedules and safety policies. During each data collection campaign, two
flight missions were performed, where the first flight mission covered the top two lifts of
the HLP, and the second covered the entire HLP surface (Figure 1b). The second mission
was flown immediately after the completion of the first mission, and the total flight time
for two missions together was approximately 30 min.

To generate flight plans for the two flight missions, the guidelines and practices
described by Tziavou et al. [54] and Bamford et al. [21] were employed in this study.
Several factors should be considered to create a flight plan for photogrammetry data
collection, including image overlaps, target distance, and the sensors’ resolution, focal
length, and field of view [21]. In this study, the data collection was performed by observing
the HLP from a top-down view (i.e., the imaging sensors were tilted down to the nadir),
and the distance between the HLP surface and UAV system was considered the main
controllable parameter. To determine an appropriate flight altitude with respect to the HLP
surface, the first step was to decide the objective ground sampling distance (GSD). The
GSD is defined as the ground distance covered between two adjacent pixel centers of an
image. In this study, the sprinkler spacing over the HLP was 3 m, and it was aimed to
capture information with a spatial resolution finer than the sprinkler spacing. Bamford
et al. [21] suggested that the objective GSD should be at least an order of magnitude smaller
than the target dimension (i.e., 3 m in this case). Therefore, a GSD of approximately 10 to
15 cm/pixel was adopted for the field experiment. After determining the objective GSD,
the required flight altitude was calculated as

z =

√√√√ GSD2iwih

4 tan
(

fh
2

)
tan
(

fv
2

) (1)

where iw and ih are the image width and height in pixels, respectively; fv and fh are the lens
vertical and horizontal angle of view, respectively; GSD is the ground sampling distance in
meters per pixel; and z is the flight altitude in meters [21,55]. Since the images taken by the
TIR sensor had a lower spatial resolution than the ones taken by the RGB camera at the
same flight altitude, the TIR sensor’s FOV and image size were used to design the flight
plans. In this way, the range of flight altitude for the UAV system to achieve a GSD of 10 to
15 cm/pixel in the thermal images was 80 to 120 m. Once the fight altitude was determined,
the detailed flight plans (e.g., flight lines, flight velocity, and flight duration) for image
collection were automatically generated using the DJI Ground Station Pro application (DJI
GS Pro) by inputting the flight altitude, the desired image overlaps, and a polygon of the
area of interest to the application. In this study, the front and side overlaps for the thermal
images were designed to be 85% and 70%, respectively, and the corresponding front and
side overlaps for the RGB images were both approximately 80%. The details of the flight
plans are summarized in Table 1 [26].

Table 1. Details of the flight missions for each data collection campaign.

Flight Parameters Flight Mission 1 Flight Mission 2

Region of interest Top two lifts of the HLP Whole HLP

Flight altitude 90 m 120 m

Flight duration 7 min 24 min

Area surveyed 4 ha 22 ha

Ground sampling distance (RGB) 2.3 cm/pixel 3.0 cm/pixel

Ground sampling distance (thermal) 12 cm/pixel 15 cm/pixel
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In each UAV data collection campaign, the following setup was used to collect the
aerial images. The RGB camera was mounted on the UAV’s bottom gimbal, and the TIR
sensor was attached to the front gimbal. The RGB and TIR sensors were operated using the
DJI GS Pro and DJI GO applications, respectively, where both sensors were tilted down
90◦ to observe the HLP surface from a top-down view. The shutter intervals (i.e., the time
between taking images) were set to five seconds per RGB image and two seconds per
thermal image. The RGB images were saved in JPEG format, and the thermal image format
was set to R-JPEG (radiometric JPEG). By the end of the field experiment, 24 sets of data
were collected, which contained approximately 4750 thermal images and 2115 RGB images.
Half of the datasets were for the whole HLP, and the other half were collected for the top
two lifts of the HLP. Table 2 summarizes the number of data collected at each flight mission,
where the thermal and RGB data are reported separately. It is worth mentioning that the
front gimbal was installed with a GPS so that the GPS time synchronization between the
drone and the TIR sensor resulted in georeferenced thermal images, whereas the RGB
images were not georeferenced by the time of data collection because the bottom gimbal
was not paired with a GPS device. Therefore, it was necessary to locate ground control
points (GCPs) within the study area to help obtain positioning information. A GCP is an
object with known real-world coordinates that can be identified in the collected images [56].
In this study, 12 GCPs were placed within the study area, and their locations were decided
according to the accessibility over the HLP. The GPS coordinates of the GCPs were recorded
using a portable GPS device prior to the first data collection campaign. The same 12 GCPs
were used throughout the field experiment, and the locations of the GCPs are indicated
in Figure 1b.

Table 2. The number of aerial images collected during the field experiment.

6 March 2019 7 March 2019 8 March 2019
Morning Afternoon Morning Afternoon Morning Afternoon

Whole HLP * T: 620 T: 618 T: 618 T: 621 T: 618 T: 619
C: 273 C: 281 C: 270 C: 289 C: 290 C: 275

Top two lifts * T: 178 T: 170 T: 174 T: 169 T: 170 T: 173
C: 58 C: 74 C: 74 C: 81 C: 73 C: 76

* T: number of thermal images; C: number of color (RGB) images.

2.4. Image Processing

Image processing was conducted off-line after collecting data from the field experi-
ment. A data preprocessing step was first performed for the RGB and thermal datasets. For
the 12 RGB image sets, the corrupted and inappropriately exposed images were manually
removed from the dataset. In total 4 out of 2114 RGB images were removed. The RGB
images that cover one or multiple GCPs within the field of view were recorded manually
so that the GPS coordinates of the GCPs could be used to geo-reference the images in the
later steps. For the 12 thermal image sets, the poor-quality images were first removed
by manual inspection, resulting in a removal of 47 out of 4748 images from the dataset.
Then, an intensity transformation and mapping step was performed over the thermal
images [26]. The FLIR Atlas SDK for MATLAB was used to extract the digital temperature
value at each pixel location of the thermal images. The highest and lowest temperature
values (denoted as Tmax and Tmin, respectively) within each of the 12 thermal image sets
were then determined. Thus, 12 pairs of Tmax and Tmin were determined, where each pair
corresponded to one of the thermal image sets [26]. Afterwards, the intensity value at each
pixel location of the thermal images was mapped as

I(j)
x,y = round

 T(j)
x,y − Tmin

Tmax − Tmin
× 255

 (2)
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where round(·) denotes the rounding function, which returns an integer intensity value
within the range of 0 to 255 (i.e., 8-bit); T(j)

x,y is the surface temperature in degree Celsius
at the (x,y) pixel location of the jth image in the current image set; Tmax and Tmin are the
highest and lowest temperature values in degree Celsius of the current image set; and I(j)

x,y
is the mapped pixel intensity value at the (x,y) pixel location of the jth image [26]. The
above process was applied to each of the 12 thermal image sets independently, to generate
12 sets of grayscale images with the same number of images as the thermal image sets.

After completing the data preprocessing step, orthomosaics were generated in the
Agisoft Metashape Professional software [57] using the preprocessed images. For the
RGB image sets, the orthomosaic generation process started with importing the images
into the software. Since the RGB images were not georeferenced, the images were not
automatically registered after importation. Therefore, the GCP locations were manually
pinpointed within the software interface, and the corresponding GPS coordinates were
inputted into the software. The RGB orthomosaics were then generated using the Structure
from Motion (SfM) workflow of the software, and this process was repeated using the same
software settings for the 12 RGB image sets. For the thermal image sets, since the images
were georeferenced during the data acquisition, they were automatically registered based
on their georeference information after importation. The GCP coordinates were also used
in this case mainly to refine the precision of image alignments. The SfM workflow was then
used to generate the thermal orthomosaics. Figure 3a,c depicts examples of the generated
RGB orthomosaics for the whole HLP and the two upper lifts.
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Figure 3. Examples of the generated orthomosaics and temperature maps using the collected aerial images. (a,b) are
generated based on March 6, Morning datasets; (c,d) are the generated orthomosaic and temperature map, respectively, for
the top two lifts of the heap leach pad based on March 8, Afternoon datasets.

Overall, 12 RGB and 12 thermal orthomosaics were generated, where half of these
orthomosaics correspond to the whole HLP, and the other half are related to the top two lifts
of the HLP. The generated RGB orthomosaics have a GSD of 2 cm/pixel and are in 24-bit
image format (8-bit for each red, green, and blue channel), while the thermal orthomosaics
have a GSD of approximately 10 cm/pixel and are in 8-bit image format (i.e., single-channel
grayscale). The pixel intensity values of the thermal orthomosaics were converted to digital
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temperatures using the “Raster Calculator” function in the open source QGIS software
(Version 3.4). The temperature value at each pixel location of a thermal orthomosaic was
calculated as

Tx,y = Tmin + (Tmax − Tmin)
Ix,y − Imin

Imax − Imin
(3)

where Ix,y is the pixel intensity value at the (x,y) pixel location of the thermal orthomosaic;
Imax and Imin are the highest and lowest pixel intensity values, respectively; Tmax and
Tmin are the highest and lowest temperature values in degree Celsius of the corresponding
thermal image set; and Tx,y is the converted temperature value in degree Celsius at the
(x,y) pixel location of the thermal orthomosaic [26]. This process resulted in 12 surface
temperature maps of the HLP, each map corresponded to one of the 12 thermal image sets
(see Figure 3b,d for examples of generated temperature maps).

At this point, the 24 sets of images have been converted into 12 RGB orthomosaics
and 12 temperature maps. Each orthomosaic was paired with one temperature map
according to the region of interest and data acquisition time (Table 2). The next task was to
superimpose the RGB orthomosaics over their corresponding temperature maps to produce
12 four-channel orthomosaics, where the first three channels contain the intensity values
for the red, green, and blue colors, and the fourth channel containing the temperature
information. The process of overlaying two images of the same scene with geometric
precision is known as co-registration [58]. The co-registration process was achieved in
three steps using the QGIS software. First, each pair of orthomosaic and temperature map
was imported into the software, and the “Georeferencer” function was used to position
the two images to the same spatial context. Since the RGB orthomosaics had a finer spatial
resolution (GSD of 2 cm/pixel) than the temperature maps, the “Align Raster” function
was then used to down-sample the RGB orthomosaic to achieve the same spatial resolution
as the temperature map (GSD of 10 cm/pixel). The last step was to combine the two aligned
images by “Merge” function in QGIS to generate the four-channel orthomosaic, where the
data values in all four channels were single-precision floating-point numbers.

2.5. Dataset Creation and Partition for Moisture Map Generation Using CNN

In order to utilize the four-channel orthomosaics for HLP surface moisture mapping,
two convolutional neural network (CNN) approaches were used. The first approach
formulated the moisture map generation process as a scene classification task, while the
second approach set up the process as a semantic segmentation problem. The CNN models
employed in these two methods require different training, validation, and testing data, thus,
the classification and segmentation datasets were prepared separately using the generated
four-channel orthomosaics.

Overall, the dataset creation process comprises three steps. The first step was to
subdivide the 12 four-channel orthomosaics into a number of non-overlapping image
patches (or image blocks) such that each patch covers a small area of the HLP surface.
Secondly, the small image patches were partitioned into training, validation, and test sets,
which would be used in the CNN training and evaluation processes. Lastly, an image
annotation step was performed to label all the examples (i.e., the image patches) so that the
labelled examples can be used to train the networks in a supervised learning manner.

2.5.1. Creation of Scene Classification Dataset

To prepare the classification dataset, the 12 four-channel orthomosaics were first
subdivided into a set of non-overlapping image patches with a size of 32 × 32 × 4
(height × width × channel) in the QGIS software. The image patches that covered ar-
eas outside the HLP were manually removed. In total 125,252 image patches were created.
The image size of 32 × 32 pixels was used because this is one of the commonly used
image resolutions in practice for the scene classification task [32,59,60]. Moreover, since
the images had a GSD of 10 cm/pixel, every image patch represented approximately a
3.2 m by 3.2 m area on the HLP surface, which matched with the sprinkler spacing of the
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HLP’s irrigation system. The image patches related to the last data collection campaign (i.e.,
March 8, afternoon) were grouped as the held-out test set, for the model evaluation. The
image patches from the other 11 data collection campaigns were then shuffled randomly
and partitioned into the training set and validation set. Thus, the classification dataset
is composed of a training set of 84,528 image patches (~70%), a validation set containing
20,008 image patches (~15%), and a test set with 20,716 image patches (~15%).

In this study, the classification model was expected to predict the moisture of the
ground area covered by an input image patch. The predicted moisture condition should be
given in one of the three classes, namely, “wet”, “moderate”, and “dry”. In other words,
the models were trained to learn the correlation between pixel values and moisture levels
and return a class estimate that best describes the moisture condition of a given area on
the HLP surface. Therefore, each classification example was annotated with one of the
three moisture classes. To annotate a classification example, a moisture estimation equation
developed by the authors [26] was applied over the temperature channel, and the moisture
value at each pixel location was calculated as

ω = −0.5103
(
Tx,y

)
+ 23.77 (4)

where Tx,y is the temperature value in degree Celsius at the (x,y) pixel location; andω is
the estimated HLP surface material gravimetric moisture content (%). The steps taken to
develop the equation are elaborated in [26]. In short, Equation (4) was derived using linear
regression based on 30 ground samples collected from the HLP. During each data collection
campaign, five ground samples were collected. Care was taken during the sampling
process to collect only the surface material (top 5–10 cm). The collected samples were sent
to the on-site laboratory to measure their gravimetric moisture content. The sampling
points were pinpointed within the acquired thermal images, and the temperature values at
these locations were determined. Equation (4) was then derived through linear regression
using the digital temperature values of the sampling locations as the independent variable
and the measured moisture content of the ground samples as the dependent variable. The
linear regression resulted in an R2 of 0.74 and a root mean square error (RMSE) of 1.28%,
which demonstrated a good agreement between the predicted and measured moisture
contents of the collected samples [26]. Using Equation (4), a mean value of moisture content
for each classification example was calculated, followed by a thresholding operation. In
this study, the “wet” class was defined as a moisture content greater than 8%, the “dry”
class was defined as a moisture content smaller than 4%, and “moderate” class was for any
moisture value falling within the range of 4% to 8%. These thresholds were defined based
on site-specific operational practice and material properties. In this way, every classification
example (i.e., image patch) was annotated by a moisture class, which indicated its moisture
condition. Table 3 summarizes the frequencies and percentages of each moisture class
in the classification dataset. It is important to note that different number of classes and
moisture ranges can be considered for other heap leach sites.

Table 3. Statistics of the classification dataset.

Moisture
Classes

Whole Dataset
(125,252 Images)

Training Set
(84,528 Images)

Validation Set
(20,008 Images)

Test Set (20,716
Images)

“Dry” 37,251 24,851 5696 6704

“Moderate” 68,115 44,250 10,679 13,186

“Wet” 19,886 15,427 3633 826

2.5.2. Creation of Semantic Segmentation Dataset

Similar to the classification dataset, the preparation of the segmentation dataset started
with splitting the 12 four-channel orthomosaics into a set of non-overlapping image patches.
The image size was set to 64 × 64 pixels (height × width), resulting in the creation of
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31,313 image patches in total. The image patches associated with the last data acquisition
campaign (i.e., March 8, afternoon) were grouped as the held-out test set, and the remainder
of the image patches was partitioned into the training and validation sets stochastically.
Thus, the portions of the training set (21,132 examples), validation set (5002 examples),
and test set (5179 examples) achieved an approximately 70/15/15 split of the data. In the
semantic segmentation setup, the model was expected to classify every pixel of a given
image into one of the three moisture classes (i.e., “wet”, “moderate”, and “dry”). A pixel-
wise classification is used in the semantic segmentation [38,43]. The pixel-wise classification
required the examples to be annotated at a pixel level. To annotate a segmentation example,
Equation (4) was first applied to every pixel value in the temperature channel of the image
patch. Subsequently, a pixel-wise thresholding operation was conducted to categorize the
moisture values into one of the three moisture classes, with the same moisture content
defined in the classification approach. The numbers “0”, “1”, and “2” were used to denote
the “dry”, “moderate”, and “wet” classes, respectively. By following the above procedures,
every segmentation example had its corresponding label image (or mask), and each mask
was saved as a single-channel image with possible pixel values of “0”, “1”, and “2”. Table 4
summarizes the (pixel-level) percentage of each moisture class present in the dataset.

Table 4. Statistics of the segmentation dataset.

Moisture
Classes

Whole Dataset
(128.3 M Pixels)

Training Set
(86.6 M Pixels)

Validation Set
(20.5 M Pixels)

Test Set
(21.2 M Pixels)

“Dry” 31.3% 30.8% 30.1% 34.1%

“Moderate” 51.3% 49.4% 50.3% 60.2%

“Wet” 17.4% 19.8% 19.6% 5.7%

As shown in Tables 3 and 4, it can be concluded that the majority of the data were
labelled with a “moderate” moisture class, and the “wet” moisture class was a minority
class in both the classification and segmentation datasets. The phenomenon of having
skewed data distribution is called class imbalance, which naturally arises in many real-
world datasets [43,61–63]. In this study, the data had an intrinsic imbalance; an imbalance
created by naturally occurring frequencies of events rather than external factors like errors
in data collection or handling [64]. The majority of the areas over the HLP surface were
expected to have a moderate moisture condition, while the dry and wet areas should be
minorities because the extreme moisture conditions may relate to operational issues. Sev-
eral studies have shown that deep learning models can be successfully trained, regardless
of class disproportion, as long as the data are representative [65]. It is also argued that
the percentage of the minority becomes less influential if the minority class contains a
sufficient number of examples [64]. In our case, the prepared datasets should be considered
sufficient for training the CNNs because the number of training examples in the minority
class (i.e., the “wet” moisture class) is already of the same size as the majority class of some
benchmark datasets that have been extensively used in practice [59,64,66].

2.6. Scene Classification CNNs

This section introduces the network architectures and training setup of the three clas-
sification CNNs employed in this study. The three networks adopted for the experiment
were AlexNet [67], ResNet [68], and MobileNetV2 [69], where several modifications over
the network architectures were made to adapt for the prepared dataset. AlexNet was
initially proposed by Krizhevsky et al. [67], which has revolutionized the field of computer
vision and is one of the key contributors to the recent renaissance of neural networks [36].
AlexNet and its variants have been extensively used as baseline models in many research
studies [34,36,70]. A modified version of AlexNet was adopted in this work to learn the
correlation between the image input and the moisture class output. ResNet (or Residual
Network) is a ground-breaking architecture proposed by He et al. [68] that has signifi-
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cantly improved the performance of CNNs in image processing and visual recognition
tasks. The residual learning framework has been proved useful for training deep neural
networks [37,71]. In this study a 50-layer ResNet (ResNet50) was used for the moisture
classification task. The last network adopted was a modified version of MobileNetV2. This
network was initially proposed by Sandler et al. [69], and is an efficient network particu-
larly designed for resource-constrained computational devices (e.g., onboard computers)
while preserving high prediction accuracy.

2.6.1. Network Architectures of Classification CNNs

The modified AlexNet implemented in our experiment contained eight layers with
weights, where the first five layers were convolutional (Conv), and the reminders were
three fully-connected (FC) layers. There were also two max pooling layers without weight
involved in the architecture to down-sample the intermediate feature maps (also called
activation maps). The architecture is summarized in Table 5.

Table 5. Architecture of the modified AlexNet implemented in this study.

Layer Name Layer Output Dimension
(Height ×Width × Channel) Operation Stride

Input 32 × 32 × 4 - -

Conv1 30 × 30 × 96 Conv 3 × 3, 96 1

Conv2 28 × 28 × 256 Conv 3 × 3, 256 1

MaxPool1 14 × 14 ×256 Max pool 2 × 2 2

Conv3 14 × 14 × 384 Conv 3 × 3, 384, padding 1 1

Conv4 14 × 14 × 384 Conv 3 × 3, 384, padding 1 1

Conv5 14 × 14 × 256 Conv 3 × 3, 256, padding 1 1

MaxPool2 7 × 7 × 256 Max pool 2 × 2 2

FC1 1 × 1 × 1024 Flatten, 1024-way FC -

FC2 1 × 1 × 1024 1024-way FC -

FC3 (Output) 1 × 1 × 3 Three-way FC, softmax -

The inputs to the network were image patches with a dimension of 32 × 32 × 4
(height × width × channel). All of the Conv layers in the network used 3 × 3 kernels
with a stride of one. The first and the second layers did not use zero padding to adjust
the layer’s input dimension, whereas the third to the fifth convolutional layers adopted a
zero padding to ensure that the layer’s input and output had the same height and width.
Max pooling layers with 2 × 2 non-overlapping windows and a stride of two were used
to down-sample the feature maps such that the height and width became one half after
each pooling operation. The last three layers were FC layers, where the first two had
1024 neurons (or hidden units) each, and the final layer was a three-way FC layer with
softmax. The final output of the network was a 3 × 1 vector, containing the predicted
probabilities for each of the three moisture classes. The ReLU activation function [72] was
applied to all convolutional and fully-connected layers except for the output in which a
softmax was used [67]. The whole network included 17.2 million trainable parameters.

For the ResNet50 architecture, the network comprised 50 layers with weights, includ-
ing 49 Conv layers and one FC layer [68]. There was also one max pooling and one global
average pooling layer, which did not have trainable weight. Batch normalization [73]
was applied after every Conv layer, and the ReLU nonlinearity was used as the activation
function except for the output layer. The architecture of ResNet50 is summarized in Table 6,
and the final output of the network was a 3× 1 vector containing the predicted probabilities
for each of the three moisture classes. In Table 6, each square bracket in the third column
represents a bottleneck residual block, and every row in the brackets denotes one layer of
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operation. The inner structure of a bottleneck residual block is illustrated in Figure 4a [68].
Every bottleneck residual block consisted of three layers: a 1 × 1 Conv layer [74] for
dimension reduction, a 3 × 3 Conv layer of regular convolution, and a 1 × 1 Conv layer
for dimension restoration [75]. Moreover, the bottleneck residual block included a shortcut
connection that skipped the Conv layers and performed an identity mapping. One copy
of the input first propagated through the three stacked convolutional layers, followed
by adding another copy of the input from the shortcut to generate the block output [75].
The use of bottleneck residual blocks leads to an effective and computationally efficient
training process of ResNet50 [68]. Overall, the whole network had 23.6 million parameters,
including 23.5 million trainable and 53 thousand non-trainable parameters.

Table 6. Architecture of ResNet50.

Layer/Block Name Layer/Block
Output Dimension Operation Stride

Input 32 × 32 × 4 - -

Conv1 16 × 16 × 64 Conv 7 × 7, 64 2

MaxPool1 8 × 8 × 64 Max pool 3 × 3 2

Block1_x 8 × 8 × 256
 Conv 1× 1, 64

Conv 3× 3, 64
Conv 1× 1, 256

× 3
1

Block2_x 4 × 4 × 512
 Conv 1× 1, 128

Conv 3× 3, 128
Conv 1× 1, 512

× 4
1

Block3_x 2 × 2 × 1024
 Conv 1× 1, 256

Conv 3× 3, 256
Conv 1× 1, 1024

× 6
1

Block4_x 1 × 1 × 2048
 Conv 1× 1, 512

Conv 3× 3, 512
Conv 1× 1, 2048

× 3
1

FC (Output) 1 × 1 × 3 Global avg. pool, three-way
FC, softmax -Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 29 
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In this study, a modified version of MobileNetV2 [69] was implemented, and the
network architecture is summarized in Table 7. The model took image patches with a di-
mension of 32 × 32 × 4 (height × width × channel) as input, and outputted a 3 × 1 vector
containing the predicted probabilities for each of the three moisture classes. The network
started with a regular 3 × 3 Conv layer with 32 filters, followed by six inverted residual
blocks, and ended with a global average pooling, a three-way FC layer, and a softmax. In
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Table 7, each square bracket in the third column represents an inverted residual block, and
every row in the brackets denotes one layer of operation. In general, an inverted residual
block appears similar to the building block of ResNet (i.e., Figure 4a), except that the
shortcut connection directly occurs between bottleneck layers rather than feature maps that
have a high number of channels [69]. The reduction in the number of channels for the block
outputs can be seen by comparing the second column of Tables 6 and 7. Moreover, the
inverted residual blocks replace regular convolution with depth-wise convolution (Dwise
Conv) [76] to reduce the number of multiply-adds calculations and model parameters [69].
The extensive use of inverted residual blocks in concert with Dwise Conv layers in Mo-
bileNetV2, significantly lessens its memory footprint and computational burden, resulting
in a highly efficient network [69]. It is worth noting that the inverted residual blocks with
different stride values had different inner structures. For “Block1” to “Block5” in Table 7,
the stride of each block is provided in the last column of the table, and the corresponding in-
ner structures are depicted in Figure 4. Overall, the network had 109 thousand parameters
in total, which included 103 thousand trainable and 6 thousand non-trainable parameters.

Table 7. Architecture of the modified MobileNetV2 implemented in this study.

Layer/Block Name Layer/Block
Output Dimension Operation Stride for 3 × 3

Convolution

Input 32 × 32 × 4 - -

Conv1 16 × 16 × 32 Conv 3 × 3, 32 2

Block0 16 × 16 × 16
 Conv 1× 1, 32

Dwise Conv 3× 3, 32
Conv 1× 1, 16

 1

Block1 8 × 8 × 24
 Conv 1× 1, 96

Dwise Conv 3× 3, 96
Conv 1× 1, 24

 2

Block2 8 × 8 × 24
 Conv 1× 1, 144

Dwise Conv 3× 3, 144
Conv 1× 1, 24

 1

Block3 4 × 4 × 32
 Conv 1× 1, 144

Dwise Conv 3× 3, 144
Conv 1× 1, 32

 2

Block4 4 × 4 × 32
 Conv 1× 1, 144

Dwise Conv 3× 3, 144
Conv 1× 1, 32

 1

Block5 4 × 4 × 32
 Conv 1× 1, 192

Dwise Conv 3× 3, 192
Conv 1× 1, 32

 1

Conv2 4 × 4 × 1280 Conv 1 × 1, 1280 1

FC (Output) 1 × 1 × 3 Global avg. pool,
three-way FC, softmax -

2.6.2. Training Setup of Classification CNNs

All three architectures were implemented in TensorFlow 2 (TF) [77], and the network
training was deployed using TensorFlow’s Keras API [78]. All networks were trained from
scratch using RMSProp optimizer [79] with a learning rate of 0.001, a momentum of zero,
and a decay (named rho in TF) of 0.9. There was no extra learning rate decay used during
the training, and the cross-entropy loss (named sparse categorical cross-entropy in TF) was
used as the loss function. The training data were normalized to have zero mean and unit
standard deviation for every channel, and no data augmentation was performed during the
training process. The validation and testing data were also normalized using the training
set’s mean and standard deviation [68,80].
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For the training of AlexNet, dropout [81] was applied to the first two FC layers
with a dropout probability of 0.5, whereas there was no batch normalization (BN) used
in the architecture [67]. In contrast, no dropout was used in ResNet50, but BN with a
momentum of 0.99 was used after every convolution and before activation [68]. Similarly,
no dropout was adopted for MobileNetV2, while BN with a momentum of 0.999 was
applied after every convolutional operation, including regular, depth-wise, and 1 × 1 (also
called pointwise [76]) convolutions [69].

To train a model, the training process started with initializing the network’s weights
using the Kaiming initialization proposed by He et al. [82]. The model was then trained
for 20 epochs with a minibatch size of 72 examples. It is worth noting that the training
set contained 84,528 examples, which can be divided by 72 with no remainder so that
each epoch consisted of 1174 steps (or iterations). In order to conduct a fair comparison
regarding the performance of the three employed architectures, 30 copies of each network
(i.e., 30 models for each architecture, 90 models in total) with different initialization of
the network parameters were trained. After completing the 20 epochs of training, the
trained models were examined against the validation set. Since different initialization for
the weights of a network can lead to variations in the model performance, the one (out of
30 models with the same architecture) that resulted in the best prediction accuracy on the
validation set was chosen to be the final model. Thus, three final models were determined
(one for each architecture), and they were evaluated on the test set to compare the three ar-
chitecture’s classification accuracy. All models were trained on a computer with an NVIDIA
GeForce RTX 3090 graphical processing unit (GPU), AMD Ryzen 3950X central processing
unit (CPU), and 128 GB of random access memory (RAM). The training time for 20 epochs
of the modified AlexNet, ResNet50, and modified MobileNetV2 using the abovementioned
training setup were approximately 6.5 min, 34 min, and 5 min, respectively.

2.7. Semantic Segmentation CNN

This section presents the network architecture and training setup of the semantic
segmentation CNN employed in the experiment. A modified version of U-Net was used
that had a typical encoder-decoder structure [83,84]. U-Net is a semantic segmentation
CNN originally proposed by Ronneberger et al. [83]. The network architecture is comprised
of two parts: the encoder part (also called contracting path or compression stage) that
convolves an input image and gradually reduces the spatial size of the feature maps; and the
decoder part (also called expansive path or decompression stage) that gradually recovers
the spatial dimension of the intermediate features and produces an output segmentation
map with the same or a similar height and width as the input [83,85]. The two parts of the
network are more or less symmetric, and the network appears as a U shape, leading to the
name of the architecture [83].

2.7.1. Network Architectures of Segmentation CNN

The network architecture of the implemented modified U-Net is summarized in Table 8.
The encoder part of the network involved four encoder blocks, and each block consisted
of two 3 × 3 convolutions (with a zero padding and a stride of one), each followed by a
ReLU nonlinearity. The output of each encoder block had a doubled number of feature
channels as the input, and the output of the last encoder block had 512 feature channels.
The down-sampling between encoder blocks was performed using a 2 × 2 max pooling
layer with a stride of two such that the height and width of the feature map were halved
after the pooling operation (Table 8).
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Table 8. Architecture of the modified U-Net implemented in this study. All convolutional (Conv),
up-convolutional (Up-Conv), and Conv 1 × 1 layers used a stride of 1. The Conv 3 × 3 layers used a
padding of 1.

Block/Layer Name Operation Output Dimension
(Height ×Width × Channel)

Input - 64 × 64 × 4

Encoder1
[

Conv 3× 3, 64
Conv 3× 3, 64

]
64 × 64 × 64

MaxPool1 Max pool 2 × 2, stride 2 32 × 32 × 64

Encoder2
[

Conv 3× 3, 128
Conv 3× 3, 128

]
32 × 32 × 128

MaxPool2 Max pool 2 × 2, stride 2 16 × 16 × 128

Encoder3
[

Conv 3× 3, 256
Conv 3× 3, 256

]
16 × 16 × 256

MaxPool3 Max pool 2 × 2, stride 2 8 × 8 × 256

Encoder4
[

Conv 3× 3, 512
Conv 3× 3, 512

]
8 × 8 × 512

UpConv1 Up-Conv 3 × 3, 256 16 × 16 × 256

Concatenation1 Concatenate output of Encoder3 16 × 16 × 512

Decoder1
[

Conv 3× 3, 256
Conv 3× 3, 256

]
16 × 16 × 256

UpConv2 Up-Conv 3 × 3, 128 32 × 32 × 128

Concatenation2 Concatenate output of Encoder2 32 × 32 × 256

Decoder2
[

Conv 3× 3, 128
Conv 3× 3, 128

]
32 × 32 × 128

UpConv3 Up-Conv 3 × 3, 64 64 × 64 × 64

Concatenation3 Concatenate output of Encoder1 64 × 64 × 128

Decoder3
[

Conv 3× 3, 64
Conv 3× 3, 64

]
64 × 64 × 64

Conv1 Conv 1 × 1, 3, softmax 64 × 64 × 3

Output Pixel-wise Argmax 64 × 64 × 1

In the decoder part of the network, every preceding decoder block was connected
to the succeeding one through an up-convolution (also called transposed convolution or
sometimes deconvolution) that halved the number of channels and doubled the height and
width of the feature map. Meanwhile, a skip connection was used to copy and concate-
nate the output of the corresponding encoder block to the up-sampled decoder feature
map (i.e., the concatenate operations in Table 8). The concatenation of the feature maps
helped the model learn to create well-localized hierarchical features and assemble precise
output [83,86]. Within each decoder block, two 3 × 3 convolutions (with a zero padding
and a stride of one) were included, followed by a ReLU nonlinearity after each convolution.

To generate the model output, a 1 × 1 convolution with softmax was used to map the
64-channel features to the final three-channel feature map, where each channel contained
the predicted probabilities for the corresponding moisture class at each pixel (i.e., the first
channel at a pixel contained the probability for the “dry” class, and the second and the third
channels were for the “moderate” and “wet” classes, respectively). The single-channel
segmentation map was then created by applying a pixel-wise Argmax operation over the
three-channel feature such that the moisture class with the highest probability was used to
represent the moisture condition at each pixel location. In total, the network had 7.7 million
parameters, which were all trainable parameters.
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2.7.2. Training Setup of Segmentation CNN

The modified U-Net architecture was implemented in TensorFlow 2 [77], and the
networks were trained using the prepared segmentation dataset. All models were trained
from scratch using RMSProp optimizer [79] with a learning rate of 0.001, a momentum
of zero, and a decay of 0.9. Neither dropout nor batch normalization was applied in the
network, and there was no extra learning rate decay used during the training. The training
data were normalized to have zero mean and unit standard deviation for every channel,
and the validation and test data were also normalized using the training set’s mean and
standard deviation [68]. Similar to the classification case, 30 copies of the network were
trained, where the parameters of the models were initialized differently using the Kaiming
initialization method [82]. Each model was trained for 20 epochs with a minibatch size of
36 examples, and the cross-entropy loss was used as the loss function. The training time for
20 epochs was approximately 8.5 min for each model. After completing the training, the
one model (out of 30) that returned the best performance on the validation set was selected
to be evaluated against the test set.

2.8. Moisture Map Generation

The moisture map generation pipeline of the two approaches is summarized in
Figure 5. Overall, the workflow started with subdividing the input orthomosaic into mul-
tiple non-overlapping image patches with the same size (32 × 32 for classification and
64 × 64 for segmentation). These image patches were then used as input to the predictive
CNN models to produce the corresponding prediction for each image patch. Finally, the
model predictions were combined based on their initial positions in the input orthomosaic
to create the moisture map output (Figure 5). For both approaches, the workflow’s input
was the generated four-channel orthomosaics, where the first three channels were red,
green, and blue channels, respectively, while the fourth was the temperature channel. All
pixel values in the orthomosaics were floating-point numbers, and the intensity values
in the color channels were within the range of 0 to 255 (inclusive). The values in the
temperature channel had a unit of degree Celsius, and the digital numbers generally fell
within the range of 10 to 70 in the prepared data.
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For the classification approach, a trained CNN moisture classifier was utilized in the
pipeline, and the input orthomosaic was split into non-overlapping image patches with a
size of 32 × 32 pixels (height × width). The pixel values of the image patches were then
normalized by subtracting the per-channel mean and dividing by the per-channel standard
deviation of the (classification) training set. Afterwards, the CNN moisture classifier was
used to assign a class to each image patch, and the image patches were color-coded based
on the assigned moisture class (i.e., one color for all pixels in an image patch). The “wet”,
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“moderate”, and “dry” classes were denoted by a blue, greenish, and red color, respectively,
as shown in Figure 5.

In the segmentation approach, the input orthomosaic was split into image patches
with 64 × 64 pixels, and the modified U-Net model was used to create segmentation
maps. The pixel values of the image patches were normalized by first subtracting the
(segmentation) training set’s per-channel mean, and then dividing by the per-channel
standard deviation. Since the segmentation model performed pixel-wise classification,
every pixel in the image patches was assigned with one moisture class and color-coded
with the corresponding color (Figure 5). The moisture map of the HLP surface was then
generated by combining the individual segmentation maps based on their corresponding
positions in the input orthomosaic.

3. Results
3.1. Evaluation of Classification CNN

The box plots in Figure 6 summarize the model performance of the trained CNN
moisture classifiers on the validation set. As mentioned in Section 2.6.2, there were 30 mod-
els trained for each of the three network architectures, and each box plot in Figure 6
represents the distribution of prediction accuracy for the 30 models after 20 epochs of
training. Two nonparametric statistical tests, namely two-sample Kolmogorov–Smirnov
(KS) test and Wilcoxon rank-sum (WRS) test (also known as Wilcoxon–Mann–Whitney
test), were conducted to assess whether there are significant differences among the three
empirical distributions [87–89]. The statistical tests were carried out in a pair-wise manner
(i.e., AlexNet to ResNet50, AlexNet to MobileNetV2, and ResNet50 to MobileNetV2), and
the null hypothesis of each test states that the underlying distributions of classification
accuracy on the validation set for the two architectures are identical [87,89]. As shown
in Table 9, the statistical test results indicate that the modified AlexNet’s classification
accuracy on the validation set may have a significant difference compared to the other
two architectures because the null hypothesis was rejected at the 5% significance level in
both KS and WRS tests. On the other hand, the null hypothesis was not rejected when
comparing the ResNet50 to the modified MobileNetV2, indicating that there may be a
distributional equivalence between the two distributions [87–90].
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Table 9. Statistical test results of the two-sample Kolmogorov–Smirnov (KS) test and Wilcoxon
rank-sum (WRS) test for the there distributions shown in Figure 6.

Tested Models

KS Test Result WRS Test Result
Statistically

Similar
(5% Significance)

p-Values
Statistically

Similar
(5% Significance)

p-Values

AlexNet—ResNet50 No 0.0025 No 0.0493
AlexNet—MobileNetV2 No 0.0025 No 0.0006

ResNet50—MobileNetV2 Yes 0.5941 Yes 0.7789

Overall, the models with all three architectures were able to converge and achieve
a high accuracy (more than 92%) on the validation data. The ResNet50 and modified
MobileNetV2 networks, on average, had a better performance than the modified AlexNet
models given the training setup described in the previous section. Among the three
architectures, the ResNet50 models had the broadest range of validation accuracy, and
this variation in model performance reveals the inherent randomness and uncertainty
involved in the model training process. The best classifiers of the modified AlexNet,
ResNet50, and modified MobileNetV2 had a classification accuracy of 97.8%, 99.0%, and
98.7%, respectively, on the validation set. These three models, which resulted in the highest
prediction accuracy among their architecture, were selected to evaluate against the test set
(data of March 8, afternoon), and the results are summarized in Table 10.

Table 10. Confusion matrices and overall accuracies of the three models on the test set (all numbers in %).

Model Predicted Class
True Class Label

Dry Moderate Wet

Modified AlexNet
Overall Accuracy: 98.4

Dry 98.8 0.5 0
Moderate 1.2 99.1 15.4

Wet 0 0.4 84.6

ResNet50
Overall Accuracy: 99.2

Dry 99.3 0.2 0
Moderate 0.7 99.3 3.4

Wet 0 0.5 96.6

Modified MobileNetV2
Overall Accuracy: 99.1

Dry 99.5 0.4 0
Moderate 0.5 99.0 2.9

Wet 0 0.6 97.1

As presented in Table 10, all three models achieved high overall accuracy on the test set
(98.4% for modified AlexNet, 99.2% for ResNet50, and 99.1% for modified MobileNetV2).
However, the modified AlexNet had the lowest true-positive rates (i.e., sensitivity or recall)
for both the “dry” (98.8%) and “wet” (84.6%) examples among the three models, resulting
in the highest miss rates (false-negative rate) for these two moisture classes. The high miss
rate led to 15.4% of the “wet” examples predicted as the “moderate” moisture class, which
implies that the model could overlook a considerable amount of overly irrigated area on
the HLP surface if the model were used in practice. Both ResNet50 and MobileNetV2
models achieved similar performance on all three moisture classes, and the miss rate for
the “wet” class was approximately one-fifth of the modified AlexNet model. In addition
to the prediction accuracy, the inference time (with a batch size of one) of the modified
MobileNetV2 was approximately one half of the ResNet50 in our experimental setup, and
thus the modified MobileNetV2 model provided the best balance between classification
accuracy and computational efficiency for our prepared data.

3.2. Evaluation of Segmentation CNN

To evaluate the performance of the modified U-Net models, two commonly used
accuracy metrics for semantic segmentation, namely Global Accuracy (also called pixel
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accuracy, PA) and Mean Intersection over Union (MIoU), were adopted. Pixel accuracy is
a simple metric that calculates the ratio between the number of correctly classified pixels
and the total number of pixels [48,49]. The expression of PA is defined as

PA =
∑Ncls

i=1 nii

Npixel
(5)

where PA is the pixel accuracy expressed in percentage; Ncls is the total number of classes,
which is equal to three in this study for the three moisture classes; nii denotes the number of
pixels that are both predicted and labelled as the ith class (i.e., true positives, TP); and Npixel
is the total number of pixels of the data [86]. The PA metric is commonly used due to its
simplicity, but it is not always a good measure of the model performance when the dataset
has a class imbalance issue. A model that consistently biases toward the majority class can
still result in a relatively high pixel accuracy. In contrast, the Intersection over Union (IoU)
metric takes the similarity and diversity of the predicted and labelled segmentation maps
into account [86]. The expression of per-class IoU is defined as

IoUi =
nii

∑Ncls
j=1 nij + ∑Ncls

j=1 nji + nii
, i 6= j (6)

where Ncls is the number of classes; subscript i and j are indices denoting different classes;
IoUi is the intersection over union of the ith class in percentage; nii is the true-positives
with the same definition as in Equation (5); nij is the number of pixels that are predicted as
the ith class, but the true label is the jth class (i.e., false positives, FP); and nji is the number
of pixels that are predicted as the jth class, but the true label is the ith class (i.e., false
negatives, FN) [86]. In short, the per-class IoU metric is the ratio between true positives
(intersection) and the sum of TP, FP, and FN (union) for each class [49]. The MIoU metric is
the class-averaged IoU defined as

MIoU =
1

Ncls

Ncls

∑
i=1

nii

∑Ncls
j=1 nij + ∑Ncls

j=1 nji + nii
, i 6= j (7)

where all terms have the same definitions as in (6). In practice, MIoU is considered the
standard metric for evaluating semantic segmentation techniques [48,49,86].

The model evaluation process started with computing the PA and MIoU metrics for
the 30 trained models on the validation set. The one model that returned the highest
sum of the two metrics was selected to be the final model, which was subsequently used
to evaluate against the test set. Among the 30 trained networks, four models failed to
converge, resulting in MIoU values less than 50% on both the training and validation data.
For the remaining models that successfully converged, the box plots in Figure 7 summarize
their performance on the validation set. A model that achieved a PA of 99.7% and an
MIoU of 99.4% on the validation data was selected, and its performance on the test set is
summarized in Table 11. The per-class F1 score (also known as the dice coefficient) metric
shown in Table 11 is calculated as

F1 scorei =
2 × TPi

FPi + FNi + 2 × TPi
(8)

where TPi, FPi, and FNi are the number of true positives, false positives, and false nega-
tives, respectively, of the ith class as defined in Equation (6) [86]. Despite some segmentation
errors are observed in the “wet” moisture class, the final model achieved similar perfor-
mance on the test set compared to the validation set, and the model demonstrated a good
competency and generalization ability in creating accurate segmentation maps based on
our prepared data.
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Table 11. Confusion matrix, per-class F1 score, intersection over union (IoU), mean IoU (MIoU), and
pixel accuracy (PA) of the modified U-Net model on the test set (all numbers in %).

Model Predicted Label
True Label

Dry Moderate Wet

Modified U-Net
PA: 99.7

MIoU: 98.1

Dry 100 0.1 0.0
Moderate 0.0 99.9 4.6

Wet 0.0 0.0 95.4

F1 score 99.9 99.7 97.4
IoU 99.9 99.5 95.0

3.3. Generated HLP Surface Moisture Maps

Figure 8 illustrates the generated moisture maps for the whole HLP based on the
data collected on March 8 (afternoon) using the classification approach. The modified
AlexNet, ResNet50, and modified MobileNetV2 classifiers produced comparable results
against each other, and only minor differences were observed in the resultant outputs. The
reference moisture map (Figure 8d) was created by following the same procedure used
to prepare the training, validation, and testing data described in Section 2.5. Overall, the
correlation between the input image patches and their corresponding moisture classes were
effectively learned by the trained models, and the generated results provided a high-level
overview of the moisture status across the HLP surface. Since the classification models
only returned one prediction for each input, this implies that the moisture condition was
assumed uniform within the area covered by each image patch. Such an assumption
is acceptable if only an overview of a large study area is required. Nevertheless, some
monitoring tasks in practice, such as pinpointing malfunctioning sprinklers, may require
moisture maps with a fine resolution (e.g., sub-meter level). In order to generate moisture
maps with higher resolution for depicting a fine-grained moisture distribution over the
HLP, the segmentation approach was employed to perform pixel-wise moisture prediction
for the input orthomosaics.

Figure 9 shows examples of the generated moisture maps using the segmentation
approach. The results shown in Figure 9 demonstrate that the trained model effectively
learned the pixel-wise mapping between the input image and the output segmentation
maps. The generated moisture maps had the same GSD (10 cm/pixel) as the input or-
thomosaic, and a comparison between the outputs of the two approaches is provided in
Figure 10. As shown in Figure 10a, both methods created moisture maps displaying the
same moisture distribution pattern across the whole HLP surface. However, the distinction
becomes apparent when the moisture variation of a relatively small region is depicted
(Figure 10b,c. The produced results by the classification method appear pixelated, and
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the wetted area (or wetted radius) of each sprinkler is not noticeable in the classification
case. In contrast, the segmentation moisture maps preserve fine-grained details, and the
boundaries of different moisture zones are clearly outlined.
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and modified MobileNetV2 classifiers, respectively. (d) is the reference moisture map generated by following the same
procedure used to prepare the training, validation and testing data for the classification models.
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Figure 10. Comparison between the classification- and segmentation-based moisture maps, created using the modified
MobileNetV2 and modified U-Net models, respectively. (a) Generated moisture maps for the whole HLP using the
classification (left) and segmentation (right) models. (b) Generated moisture maps for the top two lifts of HLP using
the classification (left) and segmentation (right) models. (c) Generated moisture maps based on image patches from the
segmentation dataset (one from each training, validation, and test set). The upper rows are the input to the models, and the
bottom rows are the model outputs. Each input image patch had a size of 64 × 64 pixels.

Despite the similarity and difference of the two approaches, the decision on which
model to use may consider not only the amount of detail required from the generated out-
put but also the amount of time and computational resources available for the application.
Although the segmentation approach preserves fine-grained information in the produced
results, segmentation networks may require longer training time, larger memory footprint,
and sometimes have more model latency than classification CNN models. The computa-
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tional burden can become a challenge if efficient data analysis is required or computational
resource is limited (e.g., onboard computer).

4. Discussion

The results illustrated in Figures 8 and 9 demonstrate the effectiveness of the described
workflow for HLP surface moisture mapping using drone-based aerial images and con-
volutional neural networks. The use of UAV and sensing technology can improve data
collection over HLPs, and the advanced computer vision and image processing techniques
can bring values into the HLP monitoring process.

In general, there are several advantages of using UAV platforms equipped with
imaging sensors to acquire data over HLPs. First, the use of UAVs for data collection
increases the safety of personnel by reducing exposure to hazardous material (i.e., the
leaching reagent). The regions inaccessible to humans over the HLPs (e.g., the side slopes of
the HLP) can be observed by taking aerial images from top and oblique views. Furthermore,
UAV-based data acquisition reduces time effort in data collection because a large area
can be surveyed within a short time without disrupting ongoing production operations.
When one or more imaging sensors are mounted on a UAV, the obtained images will
become a permanent record of the field conditions at a specific point of time, which can
be revisited in the future as required [21]. These permanent records are also beneficial
for other monitoring tasks, such as design compliance audit and change detection. In
addition, the remotely sensed data are generally with high spatial and temporal resolutions,
which can not be achieved by manual point-measurement methods or even satellite-based
approaches [91]. The high-quality aerial sensing data can be processed using digital
photogrammetry programs, and the outputs can be co-registered with geometric precision
to build multi-channel orthomosaics, which simultaneously contain information captured
from different imaging sensors. The created orthomosaics can be further processed by
CNNs to generated HLP surface moisture maps.

One significant advantage of CNNs is their ability to synchronously accommodating
data with different modalities (e.g., data acquired from RGB camera and TIR sensor)
while learning complex functions automatically without the need for feature engineering
and variable selection [91]. In this study, all the classification and segmentation CNNs
were capable of learning correlations between the four-channel input images and the
corresponding output moisture classes. Most of the trained models manifested high
prediction accuracy on the prepared dataset, and the adopted training scheme was effective
for training the models to converge successfully. The two proposed approaches were both
applicable to create moisture maps depicting the moisture distribution pattern of the whole
HLP. The segmentation method can perform pixel-wise moisture prediction, preserving
fine-grained information about the moisture variations. The generated moisture maps
provide direct visualization of the different moisture zones on the HLP surface, and such
information can be used in practice to monitor and improve the HL operations.

Overall, the generated moisture maps can be utilized to detect potential safety concerns
and optimize the irrigation system of HL operations. In practice, excessive irrigation can
lead to ponding or puddles of solution over the HLP surface, and the superabundant can
potentially cause liquefaction, which can further result in catastrophic collapse or landslide
of the HLP [27,92]. Moreover, solution ponds on the heap surface can become a threat
to wildlife due to the toxicity of the leaching solution [93,94]. Therefore, the generated
moisture maps can be used to show the over-irrigated zones, and operators can take
timely measures to address the operational issues. In addition, the moisture maps can
also help locate the dry areas, which are often related to an insufficient irrigation rate or
defects of solution spreading devices (i.e., sprinklers in this study). Early detection of
malfunctioning sprinklers can help technical staff descale or replace the irrigation units
promptly, which can lead to an increase in production efficiency because dry areas may
cause a loss of mineral recovery [92]. Furthermore, the moisture maps can be integrated
into an automated irrigation system, where a controller can dynamically adjust the solution
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application rate at different regions according to their moisture status [27]. In such a setting,
the irrigation rate can be automatically lowered for the wet zones to reduce lixiviant
consumption, while a higher flow rate is sent to the dry areas to avoid a deficiency in
solution application [27,92].

Despite the aforementioned benefits, there are limitations of the proposed method
for HLP monitoring. Firstly, the use of UAVs in mining environments can be limited or
restricted by regulations, and the regulatory requirements about flying drones can vary
in different jurisdictions [21]. In addition, weather and environmental conditions have
a significant impact on the data obtained by the UAV system. The variations of lighting
conditions and cloud shadowing often have a large influence on the quality of images [26],
especially for the data captured by RGB cameras. Cloud cover, for instance, can result
in underexposed regions on the RGB images, which may add complexity to the data
processing [21]. Similarly, the ever-changing meteorological and atmospheric conditions
can affect the consistency of the measurements recorded by TIR sensors because the gasses
and suspended particles can absorb, scatter, and emit radiation during the energy transfer
process [26,95]. Moreover, current UAV platforms are generally not available to operate
in extreme weather, such as rain, snow, and storm; also, consistently exposing a UAV
system to a dusty and hot environment can damage the drone and wear the onboard
sensors, resulting in reduced durability of the equipment [21]. Beyond the environmental
conditions, several logistics factors ought to be considered during the field data collection.
Generally, data acquisition using RGB cameras should be conducted in the day shift of
the mine’s schedule because the lighting conditions during the afternoon and midnight
shifts are often suboptimal for taking visible-light images for the HLP. Since the surveyor
who is controlling the UAV during the flights should be an appropriately trained pilot, the
time available for data acquisition can be constrained because each mine may only have a
limited number of trained pilots. Therefore, a careful arrangement of the survey schedule
is important, and effective communication between the pilot and the other members of the
survey team is crucial in order to obtain the desired data.

To improve and extend the proposed workflow for HLP surface moisture monitoring,
there are several aspects which may require further investigate. In this study, data acqui-
sition was conducted at only one mine site during a three-day duration. Future studies
should conduct more field experiments and collect more representative data to refine the
proposed data collection and image analysis methods. It is worth noting that UAV-based
data acquisition practices can vary significantly even for similar applications. Different
researchers or practitioners may develop disparate practices through the learning-by-doing
approach [96]. This can be attributed to the site-specific conditions in concert with the
different combinations of drones and sensors which add flexibility and complexity to the
survey planning and data acquisition process. Therefore, conducting field experiments and
gradually refining the experimental procedures may be essential to develop a robust and
effective drone-based surveying routine for HLP monitoring. For the image processing
methods, the co-registration of the thermal and RGB orthomosaics was performed man-
ually in this study. The manual image co-registration process was labor-intensive, and
the resultant product was subject to reproducibility issues due to the extensive human
intervention. A number of studies have proposed various area-based approaches (e.g.,
Fourier methods, and mutual information methods) and feature-based approaches (e.g.,
using image feature extractors combined with the random sample consensus algorithm to
compute image transformation) to automate the co-registration of data with multimodal-
ity [43,97–99]. Future studies may incorporate and implement several of these algorithms to
streamline the image processing for more efficient data analysis. The project’s ultimate goal
should aim to develop a system capable of real-time and on-demand HLP surface moisture
monitoring, and the data processing pipeline should move towards a fully-automated
approach to minimize human intervention. Such improvement can increase the reproduc-
tivity of the generated results as well as reduce time efforts required for data processing. In
addition to the automation of the monitoring procedures, future studies may explore the
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feasibility of using UAV systems to collect multispectral or hyperspectral data for various
monitoring tasks because the remote sensing data captured in different electromagnetic
wavelengths can reveal different properties of the HLP material. This research direction
will result in a new set of data analytics methods, which will complement the proposed
framework in this study.

5. Conclusions

This article presented a thorough case study of using drone-based aerial images
and convolutional neural networks for HLP surface moisture monitoring. The presented
workflow started with acquiring RGB and thermal images by equipping a UAV with
one visible-light camera and one thermal infrared sensor. The collected aerial data were
processed through digital photogrammetry and convolutional neural networks, and the
generated results provided direct visualization of the different moisture contents across the
HLP surface. Two CNN-based moisture generation approaches were proposed, where the
first approach utilized a scene classification setup, and the second formulated the process as
a semantic segmentation task. Methodology and implementation details were elaborated
throughout the paper, and the advantages, limitations, and possible future improvements of
the presented method were discussed. The results from the experiments and data analysis
demonstrate that drone-based data collection can provide safe, continuous, on-demand,
and fast acquisition of high-quality data, while the generated surface moisture maps can
facilitate timely decision making and increase the efficiency in detecting and resolving
potential operational issues in HL operations. Future work will devote to developing more
automated systems to decrease the amount of human intervention required to complete
analysis and exploring the feasibility of using other combinations of onboard sensors to
acquire information from HLPs.
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