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Abstract: The Tibetan Plateau (TP) has profound thermal and dynamic influences on the atmospheric
circulation, energy, and water cycles of the climate system, which make the clouds over the TP the
forefront of atmospheric and climate science. However, the highest altitude and most complex terrain
of the TP make the retrieval of cloud properties challenging. In order to understand the perfor-
mance and limitations of cloud retrievals over the TP derived from the state-of-the-art Advanced
Geosynchronous Radiation Imager (AGRI) onboard the new generation of Chinese Geostationary
(GEO) meteorological satellites Fengyun-4 (FY-4), a three-month comparison was conducted between
FY-4A/AGRI and the Moderate Resolution Imaging Spectroradiometer (MODIS) for both cloud
detection and cloud top height (CTH) pixel-level retrievals. For cloud detection, the AGRI and
MODIS cloud mask retrievals showed a fractional agreement of 0.93 for cloudy conditions and 0.73
for clear scenes. AGRI tended to miss lower CTH clouds due to the lack of thermal contrast between
the clouds and the surface of the TP. For cloud top height retrievals, the comparison showed that on
average, AGRI underestimated the CTH relative to MODIS by 1.366 ± 2.235 km, and their differences
presented a trend of increasing with height.

Keywords: Fengyun-4A; AGRI; MODIS; cloud mask; cloud top height; the Tibetan Plateau

1. Introduction

Clouds cover about 60~70% of the globe [1,2] and exert an enormous influence on
weather and climate [3]. They are the prerequisite for precipitation, which are the interme-
diate stage between water vapor and precipitation. All moist processes in the atmosphere
ultimately involve clouds, which play an important role in Earth’s water cycle [4,5]. In
addition, because clouds interact so strongly with sunlight and infrared radiation, they
will bring significant climate feedback. As a result, clouds play an extremely critical role in
regulating the radiation budget of the Earth–atmosphere system. It can be said that clouds
dominate the energy budget of the Earth. [3]. Although clouds play a fundamental role
in our weather and climate, there is much that we do not know. An inadequate way of
representing cloud processes has long been identified as a main source of uncertainty in
climate projections [6]. To predict changes in weather and climate brings the subject of
clouds back to the forefront of atmospheric science and climate science [5].

The Tibetan Plateau (TP) exerts profound impacts on the continental to global-scale
climate [7–9], and therefore, the bulk characteristics of clouds over the TP are impor-
tant for studying cloud-climate feedback and their impacts on climate change and its
dynamics [10,11]. As the highest and largest plateau on Earth with a mean altitude of more
than 4000 m, the TP has profound thermal and dynamic influences on the atmospheric
circulation, energy, and water cycles of the climate system. It is well known to regulate the
Asian monsoon and the middle Asia dry climate by acting as a vast elevated heat source
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and a huge natural barrier [12–17]. These factors make the cloud regimes over the Tibetan
Plateau a link between the subsystems of regional weather and global climate. The diurnal
variation of summer clouds over the TP not only has a great influence on local convection
and precipitation processes, but is also closely related to floods in the Yangtze River Basin
of China, the Asian summer monsoon, and the large scale climate regime in the Northern
Hemisphere [13,16,18].

Due to the harsh natural condition of the Tibetan Plateau, few ground-based remote
sensing or in situ aircraft observations of clouds have been carried out. Since the beginning
of the satellite meteorology era, especially the advent of China’s Fengyun-2, Fengyun-3
series satellites, Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra
satellite, and the A-Train constellation, the ability to observe clouds over the TP has been
greatly developed. In addition, the earliest satellite dataset, the International Satellite
Cloud Climatology Project (ISCCP) products, also provide important information of the
clouds over the TP [11]. The A-Train constellation, integrating passive remote sensors such
as MODIS onboard an Aqua satellite with active remote sensors including Cloudsat and
Cloud–Aerosol lidar and Infrared Pathfinder Satellite Observations (CALIPSO) provides
us with a much more refined picture of clouds. The A-train satellite constellation, which
has been in operation for more than ten years, is a successful way to observe clouds from
multiple perspectives [19]. In recent years, many unique features and the role of clouds
over the TP have been revealed from satellite observations, most of which are based on
the measurements of MODIS/Terra, MODIS/Aqua, and Cloudsat/CALIPSO [10,11,20–22].
However, the Terra, Aqua, Cloudsat, and CALIPSO satellites are sun-synchronous satellites
with low temporal resolution. They can only cross twice a day over the same area, which
prohibits them from capturing the diurnal variations of clouds that vary greatly both
spatially and temporally, especially in summer [23,24].

A sufficiently high temporal resolution is required to study the diurnal changes of the
clouds that seriously affect the energy budget of the Earth [23,25–27]. In terms of temporal
resolution, satellites in geostationary (GEO) orbit have an unquestionable advantage. They
can continuously observe the same area, and this is undoubtedly extremely valuable for
studying and monitoring clouds and their daily cycle. Fengyun-4 (FY-4) introduced a
new generation of Chinese GEO meteorological satellites, with the first FY-4A launched
in December 2016. The satellite’s highly improved Advanced Geosynchronous Radiation
Imager (AGRI) has capabilities comparable to those of state-of-the-art imagers onboard
the new generation GEO meteorological satellites such as Advanced Baseline Imager (ABI)
on board the U.S. GEO Operational Environmental Satellite (GOES-R) [28] and Japan’s
Advanced Himawari Imager (AHI) on board Himawari-8 [29]. Combining much higher
radiation, spectrum, and spatial resolution with shortened revisit time than its predecessor,
FY-4A/AGRI can provide a new level of ability to identify and track rapidly changing
weather phenomena and derive quantitative products [30,31].

FY-4 will become an important component of the space-based Global Observing
System (GOS) [32]. To promote better applications and popularization of FY-4 series GEO
satellite data, the Fengyun GEO Algorithm Testbed (FYGAT) was developed by scientists in
the FY-4 Algorithm Working Group (AWG) of the National Satellite Meteorological Center
of the China Meteorological Administration (NSMC/CMA). FYGAT is a near real-time
processing system that can process four types of GEO imaging sensor data including
FY-4A/AGRI, Himawari-8/AHI, Meteosat Second Generation/Spinning Enhanced Visible
and Infrared Imager (MSG/SEVIRI), and FY-2/Visible Infrared Spin Scan Radiometer
(VISSR) for weather and climate research and applications [30,31]. This system has the
ability to produce a variety of operational quantitative products including pixel-level cloud
products such as cloud mask and cloud top height. These cloud products are not only
critical for weather services and nowcasting applications, but are also used in the retrieval
of other key products such as “clear sky radiation (CSR)” and “atmospheric motion vector
(AMV)” for numerical weather forecasting. In addition to severe weather monitoring,
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forecasting, and NWP services [30], these science products generated by FYGAT are also
used in the research of cloud climatology and cloud and precipitation microphysics [33,34].

Both weather forecast and climatology research require an understanding of the
uncertainties of cloud records [35]. In order to recognize the uncertainties and limitations
of the AHI, AGRI, and their cloud products based on the FYGAT algorithm in different
geographical contexts, comparison and verification studies are needed. Some quantitative
evaluations have been conducted. Wang et al. [31] employed MODIS as the benchmark for
AGRI and AHI cloud mask validation during the 21-day period. Their results suggest that
they had high consistency, and cloudy scene identification was better than that observed for
clear skies for both AGRI and AHI. Lai et al. [36] compared the cloud properties from AGRI
with MODIS cloud retrievals from four months. Their comparison indicates that the cloud
mask and cloud phase of these two instruments were consistent, while clear differences
were noticed for cloud optical thickness and cloud effective radius results. Min et al. [37]
used CALIPSO to verify the AHI cloud top height for one year. Their results indicated
that samples with cloud top height higher than 12.0 km were significantly underestimated,
while the average underestimation of high layer clouds was about 5 km. Wang et al. [38]
compared the AGRI cloud fraction and cloud top pressure products with MODIS over
East Asia for a month. The results showed that the two products from AGRI and MODIS
generally agreed well. From these verifications, it can be seen that cloud products based
on the FYGAT algorithm generally had good performance, and were consistent with the
cloud products retrieved from MODIS and CALIPSO.

Although these comparisons have provided important overall insight, they have been
limited by the lack of specific evaluation of the cloud products’ performance in the TP
region. Holz et al. [35] pointed out that the difficulty in characterizing cloud observation
uncertainties is compounded by their strong regional dependence. The Tibetan Plateau
has the highest altitude and most complex terrain in the world [18], which will make
cloud retrieval more challenging, resulting in the overall evaluation results of these cloud
products not applicable to TP regions.

In addition, considering the influence of observation geometry, FY-4/AGRI, located
at 104.7◦E, with the capability of providing a complete image of the TP, has an advantage
over Himawari/AHI, located at 140.7◦E, in observing the TP and clouds above it. The
Himawari/AHI viewing zenith angle (VZA) of the pixels on the eastern flank of the TP
reaches over 50◦, and a large area in the western part of the TP is beyond its scanning range.
Consequently, the cloud properties obtained from FY-4A/AGRI are very valuable for the
observation and study of clouds in this area. So far, the performance of pixel-level cloud
properties derived from FY-4A/AGRI over the TP has not been evaluated.

Therefore, it is necessary to verify and understand the performance and limitations
of AGRI cloud products over the TP based on the FYGAT algorithm to ensure the correct
interpretation of the existing and future cloud datasets obtained from the measurements of
the FY-4 series GEO satellite. In this context, we investigated the performance of the AGRI
cloud mask and cloud-top height over the TP by comparing it with the coincident cloud
retrievals of MODIS. In this paper, an accurate and computationally efficient collocation
process was developed to facilitate direct comparisons of the AGRI and MODIS level-2
cloud retrievals. We also discuss the impacts of the TP’s complex topography on the
comparison results.

The rest of this paper is organized as follows. A description of the AGRI and MODIS
cloud retrievals is provided in Section 2. The collocation methodology and algorithm
developed for comparison is described in Section 3, followed by a comparison method. The
results of three months of the TP collocated AGRI and MODIS quantitative comparisons of
cloud mask and cloud top height are presented in Section 4. A discussion about the cloud
retrievals’ performance distribution and the impacts of the TP’s complex topography on
the comparison results is given in Section 5. Conclusions are then presented in Section 6.
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2. Moderate Resolution Imaging (MODIS) and Advanced Geosynchronous Radiation
Imager (AGRI) Measurements

The primary objective of this study was to assess the performances of cloud retrieval
over the TP region from AGRI flown on the FY-4A platform. We compared three months
(from 1 June to 31 August 2020) of collocated AGRI and MODIS pixel-level cloud mask (CM)
and cloud top height (CTH) products over the area, 25◦N~45◦N, 70◦E~105◦E, following
the definition of the TP region by Sato et al. [39]. Due to significant differences in the
spatial and temporal sampling between AGRI and MODIS, it is necessary to collocate cloud
products from these two instruments. Therefore, a collocation algorithm was designed to
be computationally efficient and accurate, allowing for rapid identification of the coincident
MODIS and AGRI observations.

Cloud mask and cloud top height are crucially important and fundamental cloud prod-
ucts. Identifying cloud pixels from background environment, known as cloud detection
or cloud mask, is fundamental and critical for optical remote sensing and for subsequent
accurate image analysis [31,40,41]. Generally, the cloud mask algorithm lies at the top of
the data processing chain and must be versatile enough to satisfy the needs of many appli-
cations [42]. Regardless of how sophisticated the new remote sensors and their applications
become, cloud mask is usually the first processing step required [43].

Cloud top height is made available to all subsequent algorithms that require knowl-
edge of the vertical extent of the clouds. It plays a critical role in determining the cloud
cover, cloud layers [44], cloud classification [4,19,45], and cloud thermodynamic phase
determination [46]. The broadband radiative impact of clouds is largely determined by
their height [39]. In addition, as a critical parameter, CTH products are assimilated into
numerical weather prediction (NWP) models [47,48].

First, AGRI and MODIS instruments and their respective level-2 CM and CTH retrieval
algorithms are presented.

2.1. Moderate Resolution Imaging (MODIS)

Since the National Aeronautics and Space Administration (NASA) launched the
“Terra” satellite in 1999 and the “Aqua” satellite in 2002, MODIS has become a keystone
instrument and one of the most widely used satellite remote sensing platforms in the Earth
Observing System (EOS) [46,49]. MODIS measures reflected solar and emitted thermal
radiation in 36 spectral channels ranging from the visible (VIS) to the infrared (IR), with
a spatial resolution of 250 m (two bands), 500 m (five bands), and 1000 m (29 bands).
These channels, essentially covering all of the key atmospheric bands located between
0.415 and 14.235 µm, have been carefully selected to enable advanced studies of land,
ocean, and atmospheric features, which provides unique spectral and spatial capabili-
ties for retrieving cloud properties [46,50]. MODIS cloud properties’ retrieval algorithms
have evolved over the past two decades [46,49,51–54]. MODIS cloud products have been
validated by comparing them with active remote sensor observations and radiance sim-
ulations [35,41,53,55], and are widely used in studies of cloud macro-microphysical and
optical properties [5,10,20,56–60]. In addition, MODIS cloud products are also used as
benchmarks or truth values for the verification and evaluation of satellite cloud products
and retrieval algorithms [29,31,36,61,62].

The newest MODIS reprocessing dataset of the products, Collection 6 (C6), was
completed in 2014 and 2015 for Aqua and Terra, respectively. The C6 update activity has
benefited greatly from being able to compare MODIS radiance data and derived products
with various sensors that compose the A-Train [54]. MODIS pixel-level (level-2) cloud
products are generated on a granule basis, known as MOD06 and MYD06 for Terra and
Aqua, respectively. A granule consists of 5 min of data. MOD06 and MYD06 in C6 provide
the cloud parameters at a 1 km spatial resolution.

When we were working on this study, the MYD06 data (from June to August 2020)
downloaded from the official MODIS website were incomplete, that is, there is a large
amount of MYD06 data that are missing during that time period. In addition, to avoid the
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uncertainty of comparison due to the differences between Terra and Aqua in this study,
only cloud products of MOD06 in Collection 6 were used as the benchmark to compare
and validate the level-2 cloud products of FY-4A/AGRI based on the FYGAT algorithm.

Cloud mask is based on the contrast between the cloud and background environ-
ment. Contrast can be defined by differing signals for individual spectral bands, spectral
combinations, or temporal and spatial variations of these [49]. The MODIS cloud mask
algorithm employs up to 19 spectral bands to maximize reliable cloud detection [35]. In
fact, the Collection 6 cloud mask algorithm uses as many as 22 bands [42]. After a series
of sequential tests on the passive reflected solar and infrared observations, a degree of
clear-sky confidence is assigned to the result to assess the likelihood that clouds obstruct
a given pixel. Then, final cloud mask confidence (Q) is based on three thresholds (i.e.,
0.66, 0.95, and 0.99). Test results can classify cloud contamination in every pixel of data
as either confident clear (Q > 0.99), probably clear (Q > 0.95), probably cloudy (Q > 0.66),
or cloudy (Q ≤ 0.66) [49]. Based on the comparison with three years of coincident obser-
vations, an assessment of the performance of MODIS cloud mask algorithm showed that
the MODIS algorithm agrees with the combined radar and lidar from ground about 85%
of the time [41]. Globally, the MODIS 1-km cloud mask and the CALIOP 1-km averaged
layer product agreement is 87% for cloudy conditions for both August and February; for
clear-sky conditions, the agreement is 85% (86%) for August (February) [35].

MODIS cloud top pressure (CTP) is determined using five thermal infrared bands
(both day and night). The 11 µm infrared window brightness temperature data are used
to estimate low clouds. Mid- to high-level clouds are derived from radiance ratios of
bands located within the broad 15 µm CO2 absorption region by applying the CO2 slicing
technique [53]. The theoretical basis of the CO2 slicing technique is that as the wavelength
increases from 13.3 to 15 µm, the atmosphere becomes more opaque due to the absorption
of CO2, resulting in the radiation obtained from these spectral bands being sensitive to
different layers in the atmosphere. CTP retrieval is derived from ratios of differences in
radiances between cloudy and clear-sky regions at two nearby wave lengths [63]. Once
the CTP is derived, it is converted to cloud-top height and temperature through gridded
temperature profiles provided by the National Centers for Environmental Prediction
(NCEP) Global Forecast System (GFS). Differences between model-derived and measured
clear-sky radiances are mitigated with a radiance bias adjustment to select the optimal
CTP. [53]. Globally, when compared to the CALIOP 1-km products, MODIS underestimates
the CTH relative to CALIOP by 1.4 ± 2.9 km; when only high clouds above 5 km are
considered, the differences are found to be greater than 4 km. Some differences in CTH
between MODIS and CALIOP are expected since MODIS sees into the cloud to an optical
thickness of approximately 1, while CALIOP senses the cloud top [35].

2.2. Advanced Geosynchronous Radiation Imager (AGRI)

AGRI is one of the most important payloads on the FY-4A GEO meteorological satellite
platform. It measures radiances at 14 spectral bands covering the range of wavelengths
from 0.47 to 13.5µm. These spectral band locations are very similar to those planned
for other greatly improved imagers on board the new generation of GEO meteorological
satellites such as AHI on Himawari-8 [29], ABI on GOES-R [28], and the European MTG
Flexible Combined Imager (FCI). The spatial resolution of AGRI at the sub-satellite point is
1 km, 2 km, and 4 km in the visible (VIS), near infrared (NIR), and other IR spectral bands,
respectively [32]. FY-4A offers full-disk Earth-view coverage every 15 min with the option
for more rapid regional and mesoscale observation modes. The information from AGRI
will be used for many applications related to cloud and aerosol properties, severe weather,
tropical cyclones and typhoons, aviation, natural hazards, land and ocean surfaces, etc.
AGRI will offer the same products and information for applications over China and its
adjacent regions [30,32]. Enhanced calibration accuracy of FY-4A is better than 1 K for the
thermal infrared bands and 5% for the reflective solar bands, which can greatly benefit
quantitative applications [32].
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AGRI scientific products are generated by the product generation system (PGS) of
NSMC/CMA based on FYGAT algorithms. FYGAT algorithms are partially inherited from
the FY-2/VISSR algorithm and partially referenced from the GOES-R/ABI algorithm [30].
Operational cloud mask algorithm for AGRI also classifies each pixel as being either clear,
probably clear, probably cloudy, or cloudy. This cloud mask algorithm combines 13 spectral
and spatial uniformity tests, and two restore tests to produce a cloud mask product for
every pixel of data. The restore tests refer to tests that “restore” probably cloudy pixels to
clear pixels and “restore” cloudy pixels to probably cloudy pixels. The purpose of restore
tests is to provide a conservative estimate on cloudiness. Specifically, the spectral tests
include six infrared independent tests, three solar reflectance tests, two shortwave infrared
tests, a reflectance uniformity test, and a thermal uniformity test. These tests have different
thresholds over land, ocean, and snow/ice. Some of these thresholds are derived from the
statistical analysis from the comparisons with collocated CALIPSO products, and some
from simulated data [31].

The cloud top pressure retrieval algorithm for AGRI combines two IR window band
(11 and 12 µm) observations with a single CO2 absorption band (13.5 µm) observation to
estimate cloud height without large assumptions on cloud microphysics. This is the well-
known CO2/Split-Window algorithm, originally designed for ABI flown on the GOES-R
series [44,47]. The split-window approach is based on two window band (11 and 12 µm)
observations. It can provide accurate measurements of cloud emissivity and its spectral
variation, but lacks sensitivity to cloud height for optically thin cirrus [47,64]. However,
the CO2/Split-Window method benefits from combining the sensitivity to cloud height
offered by a CO2 channel with the sensitivity cloud microphysics offered by IR window
channels [44]. First, the retrieval methodology employed the optimal estimation approach
(also referred to as a 1DVAR approach) to retrieve cloud top temperature product at the
pixel level; once the cloud top temperature is computed, the Numerical Weather Prediction
temperature profiles are used to interpolate the values of cloud top pressure, and cloud
top height. For pixels determined to be multi-layer clouds, information about the height
of the surrounding low clouds is used to estimate the height of low clouds underneath
higher clouds [37]. Table 1 listed the key bands used for cloud mask and cloud top height
in MODIS and AGRI.

Table 1. Moderate Resolution Imaging (MODIS)/Advanced Geosynchronous Radiation Imager
(AGRI) bands used in the MODIS/AGRI cloud mask algorithm and cloud top height algorithm.

Cloud Mask Channels (µm) Cloud Top Height Channels (µm)

MODIS
0.659, 0.865, 0.47, 0.555, 1.24, 1.64, 2.13,

0.415, 0.443, 0.905, 0.936, 3.75, 3.959, 1.375,
6.175, 7.235, 8.55, 11.03, 12.02, 13.335, 13.935

11.03, 13.335, 13.635, 13.935, 14.235

AGRI 0.65, 1.60, 3.8, 7.12, 11.0, 12.09 11.0, 12.09, 13.55

3. Collocation and Evaluation Methodology
3.1. Collocation and Evaluation Methodology

The focus of this paper was to quantify the performance of the cloud products over the
TP from the recently launched AGRI onboard FY-4A by a comparison with the coincident
MODIS cloud retrievals. However, there are not only significant differences in the temporal
sampling between AGRI and MODIS, but also spatial sampling differences between these
two instruments. First, in order to avoid uncertainties in their comparison caused by the
changes of cloud properties due to different observation time, only cloud retrievals of the
exactly the same start scan time of these two systems were selected for comparison. Then,
the spatial collocation rule was formulated as follows. For AGRI, the cloud mask and cloud
top height are generated at a 4-km resolution. For MODIS, CM, and CTH products are
retrieved at 1-km resolution. Therefore, multiple MODIS ground-projected instantaneous
field-of-view (GIFOV) pixels will be collocated for a single AGRI retrieval, that is, the
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AGRI 4-km GIFOV is the “reference” with multiple MODIS measurements within the
AGRI GIFOV. To find the MODIS pixels within the AGRI GIFOV means that the distance
between AGRI pixel and MODIS pixel is required ≤2 km (i.e., half of AGRI resolution).
If it is based on a conventional method, the distance between pixels of these two sensors
has to be calculated individually. The total computation time complexity will be O(N2),
which requires a huge computational resource. Assuming that AGRI and MODIS each
have N pixels at a certain observation time over a certain area, for any single AGRI pixel, to
find those points within 2 km from it among the N MODIS pixels, N distance calculations
must be carried out. As ARGI has N pixels, the total number of computation is N × N. In
computer science, the time complexity of this calculation is defined as O(N2).

In order to solve this massive computation problem as well as minimize the uncertain-
ties resulting from the spatial sampling differences, a collocation algorithm—”multiple grid
matching algorithm”—was developed in this paper to facilitate comparisons of the MODIS
and AGRI cloud retrievals. This multiple grid matching algorithm was designed to be
computationally efficient and accurate, allowing for rapid identification of the coincident
MODIS and AGRI observations. The grid can be implemented by hash table keywords in
computer science. The procedure is described in detail as follows.

First, pixels of AGRI and MODIS are subsampled and placed onto an equal-angle grid
over the TP. The distance between AGRI pixel and MODIS pixel in the same grid cell should
be within 2 km as much as possible. Then, AGRI and MODIS pixels are scanned separately
and all pixels fall into each grid cell. Those pixels within the same grid box are exactly the
required matches. However, it is possible that the nearest pixel is in the adjacent grid box.
The next step is adjusting the size of the grid or shifting the coordinates of the entire grid
appropriately, and scanning the AGRI and MODIS samples respectively in another iteration.
The target pixels (distance within 2 km) and the nearest pixel can easily fall into a new grid cell.
Figure 1 outlines this process. There is no doubt that multiple grid matching can significantly
improve the matching accuracy. The side effect of multiple grid matching is the possibility of
duplicate matches. Therefore, a step to remove duplicates is also required. Finally, it must
be verified that the distance between these matching pixels are indeed less than 2 km. This
multiple grid matching algorithm can reduce the computation time complexity to O(N). Thus,
this approach can be affordable with limited computational resources.

Figure 1. Schematic diagram depicting how the Advanced Geosynchronous Radiation Imager (AGRI)
pixel (the blue dot) is collocated with Moderate Resolution Imaging (MODIS) pixels (the green dot
and the red dot) by using multiple grid matching methodology. These three dots represent the central
position of each pixel. First, by using the grid of large size (red grid), the AGRI pixel (the blue dot)
and one MODIS pixel (the green dot) can fall into the same cell (the red cell) and become collocated.
However another MODIS pixel (the red dot), which is closer to the AGRI pixel than the green one, is
missed by this large red grid. Then, by using the grid of small size (black grid), this MODIS pixel,
which was missed last time, and the AGRI pixel can fall into a new box, the black box, and they are
collocated with each other.
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In addition, the MODIS scanner may view a particular MODIS FOV at an angle
that departs significantly from the nadir, which may lead to increased uncertainty of the
comparison. Therefore, the MODIS samples with sensor viewing zenith angle (VZA) more
than 45◦ were filtered out. Only MODIS samples with VZA less than 45◦ can be used for a
comparison with the AGRI samples.

3.2. Evaluation Methodology

To quantitatively compare the cloud mask results, three validation scores (i.e., Proba-
bility of Detection (POD), False-Alarm Ratio (FAR), and Hit Rate (HR)) were employed to
analyze the statistics of the agreement between the two systems. The definitions are given
by Wang et al. [31]:

PODcld =
a

a + c
(1)

PODclr =
d

b + d
(2)

FARcld =
b

a + b
(3)

FARclr =
c

c + d
(4)

HR =
a + d

a + b + c + d
(5)

where a and d represent the numbers of collocated samples that are all identified as
cloudy and clear, respectively, by both AGRI and MODIS; b represents the number of
matched samples determined as cloudy by AGRI but clear by MODIS; c represents the
number of collocated samples classified as clear by AGRI but cloudy by MODIS. Note
that the categories of “probably cloudy” and “probably clear” scenes are not included
in the statistics here (i.e., only the pixels that classified as “cloudy” or “clear” by both
AGRI and MODIS are considered here for comparison). PODcld and PODclr represent the
efficiency of the AGRI cloud mask algorithm for detecting the cloudy and clear condition,
respectively. The higher the POD value, the higher the efficiency. FARcld and FARclr
indicate that the AGRI cloud mask algorithm misjudged collocated samples as “cloudy”
and “clear”, respectively. The HR or accuracy represents the overall efficiency of the AGRI
cloud mask algorithm. Specifically, HR represents the identification accuracy of AGRI’s
cloud mask when only the detection results of cloud-sky and clear-sky conditions are
compared, without considering the detection results of probably cloudy and probably
clear conditions. At the extremes, there are two cases: (1) if the AGRI cloud mask agrees
perfectly with MODIS, the POD and the HR will be one, and the FAR will be zero, while (2)
no agreement results in the POD and the HR being zero, and the FAR being one.

To quantitatively compare CTH, similar to Min et al. [37], four parameters (i.e., Stan-
dard Deviation (STD), Mean Absolute Error (MAE), Mean Bias Error (MBE), and Correlation
Coefficient (CC)) were used to quantify the CTH statistics of differences between AGRI
and MODIS.

STD =

√
1
N ∑N

i=1

(
∆xi − ∆x

)2 (6)

MAE =
1
N ∑N

i=1|∆xi| (7)

MBE =
1
N ∑N

i=1 ∆xi (8)

CC =
∑N

i=1[(xAi − xA)(xMi − xM)]√
∑N

i=1(xAi − xA)
2
√

∑N
i=1(xMi − xM)2

(9)
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where xAi and xMi represent the AGRI CTH and MODIS CTH, respectively, and N repre-
sents the numbers of collocated samples. ∆xi = xAi− xMi, ∆x = 1

N ∑N
i ∆xi, xA = 1

N ∑N
i=1 xAi,

xM = 1
N ∑N

i=1 xMi.
Either one, or several 1-km pixel-level MODIS CTH retrievals can fall within a sin-

gle 4-km AGRI CTH retrieval. Therefore, similar to Lai et al. [36], it was the distance
weighted averaged MODIS CTH that was compared to the AGRI products within the AGRI
4-km FOV.

CTH =
∑N

i=1

[(
1− r2

i
R2

)
CTHi

]
∑N

i=1

[(
1− r2

i
R2

)] (10)

4. Results

Three months (June, July, and August 2020) of collocated AGRI and MODIS cloud
detection and CTH retrievals over the TP area were compared. The three months of
collocated AGRI and MODIS cloud retrievals resulted in approximately 3.2 and 1.5 million
cases for cloud detection and cloud top height comparison, respectively. The results
were separated by month and included statistics of the agreement with MODIS. For the
comparison of the cloud mask results, only AGRI pixels where all the collocated MODIS
pixels were identical (i.e., either all clear, all probably clear, all probably cloudy, or all
cloudy) were included in the statistics. As a result of this requirement, approximately 37.5%
of the collocated scenes were not included in the statistics, and approximately 2.0 million
cases were included in the statistics in Table 2.

Table 2. Fractional agreement, probability of detection (POD), false-alarm ratio (FAR), and hit rate
(HR) scores for clear-sky and cloudy-sky conditions of AGRI cloud mask products over the TP during
the periods June, July and August 2020. In the statistics, MODIS cloud mask results were used as
a benchmark.

Month
Collocated
Samples

Cloudy Clear
HR

Agreement POD FAR Agreement POD FAR

Jun. 615,076 0.941 0.971 0.078 0.726 0.868 0.051 0.932
Jul. 667,130 0. 942 0.975 0.064 0.764 0.909 0.035 0.947

Aug. 714,889 0.915 0.972 0.137 0.713 0.832 0.035 0.905
ALL 1,997,095 0.932 0.973 0.093 0.734 0.868 0.040 0.927

4.1. Cloud Mask

The AGRI 4-km cloud mask was evaluated using the collocated MODIS/Terra Collec-
tion 6 (i.e., MOD06) level-2 1-km cloud detection products.

As earlier discussed (Section 3.1), either one or several MODIS cloud mask retrievals
can fall within a single 4-km AGRI cloud mask retrieval. In order to mitigate the uncer-
tainty of comparison due to sub-pixel inhomogeneity [36], only AGRI pixels where all the
collocated MODIS cloud mask retrievals were identical (i.e., either all clear, all probably
clear, all probably cloudy, or all cloudy) were included in the statistics.

Figure 2 shows the fraction of the various identification results of the AGRI cloud
mask for collocated samples when the MODIS cloud detection results were “cloudy”,
“probably cloudy”, “probably clear”, and “clear” respectively. The four colors represent
these four different scenes. The evaluation results are presented as a fractional agreement.
Fractional agreement is similar to POD score. The difference between POD score and
fractional agreement is that the POD score is calculated from the matched sample dataset
that only includes the pixels classified as “cloudy” or “clear” by both AGRI and MODIS,
while the fractional agreement is calculated based on all matched samples that are flagged
either “cloudy”, “probably cloudy”, “probably clear”, or “clear”.



Remote Sens. 2021, 13, 1418 10 of 18

Figure 2. The fraction of AGRI cloud mask results (i.e., cloudy, probably cloudy, probably clear, or
clear) for each category of MODIS cloud mask results of matched samples. The color bar represents
the different classifications of cloud mask: red, yellow, green and blue represent “cloud”, “probably
cloud”, “probably clear”, and “clear”, respectively.

As shown in Figure 2, compared with the spatiotemporally collocated cloud detection
results of MODIS, AGRI could identify clear and cloudy pixels with high agreement,
showing good performance. Over the TP area, it was found that compared to the MODIS
1-km cloud mask, the fractional agreement of AGRI 4-km cloud mask was 0.932 for cloudy
conditions. For clear-sky conditions, the fractional agreement was 0.734. However, there
were distinct differences for the “probably clear” and “probably cloudy” scenes. This
phenomenon is consistent with the result of the full-disk comparison [31]. These differences
can mainly be attributed to the two totally different theoretical methodologies used by
AGRI and MODIS for identifying “probably clear” and “probably cloudy” pixels. The
MODIS Collection 6 cloud mask algorithm uses the final cloud mask confidence value
based on three thresholds, as earlier mentioned (Section 2.1). In contrast, the current cloud
detection algorithm for GEO satellite imagers uses spatial uniformity and two cloudy/clear
restoral tests to identify “probably clear” and “probably cloudy” samples, which are closely
linked to the results of neighbor pixels [31].

The TP region statistical results of the cloud mask comparison for the three months
of collocated samples are presented in Table 2. The fractional agreement, POD, FAR, and
HR scores of AGRI cloud mask performance were examined, and the results are separated
by clear and cloudy FOVs as determined by MODIS in columns 3–9 of Table 2. Here,
collocated MODIS cloud detection results were used as a benchmark. As earlier defined
(Section 3.2) for POD, FAR, and HR, the categories of “probably cloudy” and “probably
clear” scenes were not included in the statistics, while for the fractional agreement both
in “cloudy” condition and in “clear” condition, the four scenes were all considered in the
statistics. Therefore, the POD value was 0.973 for cloudy-sky conditions and 0.868 for
clear-sky conditions, which was higher than the fractional agreement values (0.932 and
0.734). It should be noted that although the POD scores for cloudy conditions were higher
than those for clear conditions, the FAR score was 0.093 for the cloudy condition, which
was higher than that for clear-sky scene (0.04). In other words, there were more collocated
samples that were misjudged as cloudy than those misjudged as clear. This finding is
contrary to the result of the full-disk comparison [31]. In the full-disk comparison, FAR
scores were higher for clear-sky scenes than for cloudy-sky scenes.

The results of the three months were similar. The fractional agreement and POD
values were both above 0.9 under cloudy-sky conditions, while they were above 0.7 and
0.8, respectively, under clear-sky conditions. The HR scores of each month were higher
than 0.9, indicating a high consistency of cloud mask between AGRI and MODIS.

In general, the AGRI cloud mask compared more favorably with MODIS cloudy scenes
than for clear scenes. This result is consistent with the result of the full-disk comparison [31].
It can be inferred that AGRI cloud mask may be designed to be clear-sky conservative; that
is, if there is uncertainty in the spectral tests, the AGRI cloud mask may tend to label the
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scene as cloudy. In addition, the AGRI cloud mask retrieval requires clear contrast between
clear-sky and cloudy-sky conditions, which is dependent on both surface and atmospheric
properties. The TP is associated with cold surfaces, causing low contrast between clear-sky
and cloudy-sky scenes. Therefore, it is difficult to assign the pixels “clear” or “cloudy” in
the algorithm confidence.

4.2. Cloud Top Height

Collocated 4-km AGRI cloud top height products were compared with MODIS
1-km CTH retrievals. As discussed earlier (Section 3.2), the distance weighted averaged
pixel-level MODIS CTH retrieval was compared to the AGRI products within the AGRI
4-km FOV.

Based on this approach, CTH retrievals were collocated and compared for June, July,
and August 2020. The statistical results of the comparison including mean absolute error,
mean bias error, standard deviation, and correlation coefficient are presented in Table 3.
The monthly comparison results were similar, with the CTH differences between AGRI
and MODIS the smallest in June. For each month, the CTH difference was negative, and
the average for these three months was −1.366 ± 2.235 km. The negative mean cloud top
height differences (AGRI-MODIS) suggest that on average, AGRI underestimated the CTH
relative to MODIS by 1.366 ± 2.235 km. The correlation coefficient value of each month
was more than 0.74, indicating good correlation between the two datasets.

Table 3. Cloud top height over the Tibetan Plateau (TP) statistics of the mean absolute error (MAE),
mean bias error (MBE), standard deviation (STD), and correlation coefficient (CC) between AGRI
and MODIS during the periods June, July and August 2020. MODIS cloud top height retrievals are
used as a benchmark.

Month Collocated Samples MAE (km) MBE (km) STD (km) CC

Jun. 510,529 1.501 −1.037 2.006 0.773
Jul. 492,715 1.902 −1.541 2.266 0.760

Aug. 498,454 1.933 −1.531 2.383 0.748
ALL 1,501,698 1.776 −1.366 2.235 0.759

Figure 3 shows the validations of CTH products of AGRI for the complete collocated
samples. The color bar represents the total number of matched samples in every bin at an
interval of 0.25 km. It can be seen that the collocated samples were basically concentrated
on the 1:1 line. There were a large number of collocated samples in the height range of
7~10 km, where the AGRI CTHs was clearly lower than that of MODIS. Mean absolute error,
mean bias error, standard deviation, correlation coefficient, and the number of collocated
samples for the whole period was also marked, which was 1.776 km, −1.366 km, 2.235 km,
and 0.759, respectively.

To further investigate the CTH differences between AGRI and MODIS at different
height, the layered MAE, MBE, and STD at an interval of 1 km for collocated samples are
presented in Figure 4. It can be seen that the MAE, MBE, and STD of CTH between AGRI
and MODIS showed an obvious trend of error increasing with height, and finally reached
the maximum MAE and STD (MBE minimum) value at approximately 12 km. For clouds
with a top height above 12 km, the MAE, MBE, and STD fluctuated slightly with height;
and for clouds with a top height above about 14 km, the differences in CTH between AGRI
and MODIS decreased rapidly. The large negative differences were associated with high
clouds with CTH in the range of approximately 12 to 14 km. The positive differences were
associated with low-level clouds (<4.5 km).
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Figure 3. Validation of cloud top height (CTH) products of AGRI over the TP based MODIS CTH
retrievals during the periods June, July, and August 2020. The color bar represents the number of
collocated samples in every bin at an interval of 0.25 km, and the dashed line is the one-to-one ratio
line. The total number of collocated samples (N), mean absolute error (MAE), mean bias error (MBE),
standard deviation (STD), and correlation coefficient (CC) are marked in the upper left corner.

Figure 4. MAE (blue line), MBE (green line), and STD (red line) of AGRI CTH in different layers at
an interval of 1 km for the same dataset in Figure 3.

5. Discussion

Interpretation of the cloud mask and cloud top height retrieval comparison results
is complex. Biases and uncertainties result from a combination of spectral sensitivity
differences and systematic algorithm biases from AGRI and MODIS as well as uncertainties
from the spatial sampling differences. In addition, AGRI and MODIS cloud mask and cloud
top height retrieval performance are dependent on both surface, cloud, and atmospheric
properties. The complicated cloud regimes over the TP with complex terrain can increase
the complexity of the interpretation of the comparison results.

To further investigate the performance of the AGRI cloud mask over the TP, the
AGRI cloud mask agreement distribution separated for cloudy-sky and clear-sky scenes is
presented in Figure 5. Three months of collocated samples of the same dataset in Table 2
were divided into 0.5◦ grid boxes. As shown in Figure 5, each grid box presents the
fractional agreement in cloudy-sky (Figure 5a)/clear-sky (Figure 5b) conditions for all the
matched samples within the box. The spatial distribution of the matching sample size was
also presented for clear-sky (Figure 5c) and cloudy-sky (Figure 5d) conditions.
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Figure 5. Fractional agreement between AGRI 4-km and MODIS 1-km cloud mask separated (a) for clear-sky scenes and
(b) for cloudy-sky scenes is presented. Spatial distribution of the collocated sample size for (c) clear-sky scenes and (d)
cloudy-sky scenes is also presented. The fractional agreement was calculated at a 0.5◦ resolution based on three months
(June, July, and August 2020) of collocated samples of the same dataset with Table 2. A grid cell with perfect agreement
between AGRI and MODIS will have a fractional agreement of 1 (red), while boxes of poorer agreement are colored blue.
Blank space means that there are no matched pixels under the corresponding conditions.

The largest differences over the southern part of the TP (25◦N~29◦N, 79◦E~102◦E) for
the clear-sky condition were partially due to sampling with only dozens or even fewer
samples within a grid box instead of several hundred or even more than a thousand, as
in other grid boxes. In summer, the warm and humid monsoon frequently reached the
steep southern slope of the TP, making convective cloud system dominate there [22,65],
therefore, there were few MODIS clear pixels during the summer monsoon season over
those areas (Figure 5c). Surprisingly, there was poor agreement for clear sky conditions
over the western part of the TP (36◦N~40◦N, 75◦E~85◦E, the area where China’s largest
desert, the Taklimakan Desert, and largest basin, Tarim Basin, are located). Although it is
expected that the desert and basin area should be associated with warm surfaces, causing
high thermal contrast between clouds and the surface, leading to better clear-sky detection;
in fact, the differences over the under clear-sky condition were obvious. This is likely due
to the fact that AGRI thresholds of the infrared tests are not applicable for the desert area,
leading to poor agreement. It was found that cloud occurrence frequencies obtained from
AGRI reached the peak at night and were the least during the day over that area. Radiation
cooling at night will cause a significant temperature drop in desert areas. Additionally,
the low temperature of the desert at night results in poor thermal contrast between the
clouds and surface, which will increase the difficulty for cloudy-sky/clear-sky detection. It
is necessary to further study what caused these differences in future work.

It is obvious that AGRI and MODIS were in better agreement for cloudy scenes than
for clear-sky scenes. The fractional agreement was better than 0.9 over much of the TP for
cloudy-sky condition. While AGRI and MODIS were generally in good agreement under
this circumstance, there were some small regions located in the southern, southwestern,
and northeastern part of the TP with poor agreement. To help interpret similarities and
differences, Figure 6 presents the averaged MODIS cloud top height for two separated
conditions: (1) for those cases where both MODIS and AGRI identify cloud scenes; and
(2) for those cases where the MODIS 1-km cloud mask identifies cloud scenes but AGRI
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misses (i.e., AGRI flags them as clear or probably clear or probably cloudy). It should be
noted that the 1-km pixel-level MODIS cloud top heights were first weighted averaged
through Equation (10) to derive the cloud top height of the collocated sample, and then the
MODIS cloud top height of each grid cell was derived by averaging all matched sample
MODIS CTH within the grid box. The weighted average cloud height approach is to better
characterize the cloud top height of those clouds that AGRI missed.

Figure 6. The MODIS CTHs of the collocated samples (of the same dataset with Figure 5) where (a) both MODIS and AGRI
flags them as cloudy, and (b) MODIS flags them as cloudy but AGRI labels them as clear or probably clear or probably cloudy,
are averaged over a 0.5◦ grid cell. Blank space means there are no matched pixels under the corresponding conditions.

By comparing Figure 6a with Figure 6b, it can be found that clouds that can be simul-
taneously detected by both MODIS and AGRI were those with higher CTH. The higher
CTH in Figure 6a was most pronounced for the southeastern part of the TP (25◦N~32◦N,
85◦E~105◦E). This is due to the unique large topography of the TP that causes significant
thermal–dynamic forcing on the atmosphere in summer over the steep southern slope
and makes this region associated with frequent convective activities in summer [66,67].
For these convective clouds with high CTH (>12 km), AGRI and MODIS can obtain good
agreement. AGRI tends to miss low CTH clouds (<5 km), which is more pronounced at
lower altitudes (<4 km) in areas located away from the center part of the TP, particularly
in the southwest TP. In addition, for the central region of the TP (29◦N~36◦N, 79◦E~97◦E)
(i.e., the main part of the TP with an altitude of ≥4 km), the clouds missed by AGRI had a
relatively lower CTH than those identified by both approaches over the same areas. This is
likely due to the lack of thermal contrast between the clouds and the surface. The cloud top
is usually colder than the surface, and will be colder with increasing cloud top height. A
good contrast between clouds and surface will benefit cloud detection. The TP is associated
with cold surfaces, so the higher the elevation, the colder. The cold background conditions
of the TP make cloud and clear scene discrimination problematic, especially for the low
CTH clouds that are relatively warmer than high CTH clouds over it.

Figure 7 presents the mean absolute error and mean bias error of AGRI cloud top
height compared with MODIS CTH separated into grid cells. Three months (June, July,
and August 2020) of collocated samples of the same dataset with Table 3 were divided into
0.5◦ grid cells. As shown in Figure 7, each grid box presents the MAE (Figure 7a) and MBE
(Figure 7b) for all the matched samples within the box.

It can be found that the MAE presented a similar pattern of CTH disagreement
distribution with MBE. In general, there were few CTH differences, especially over the
eastern part of the TP. The largest differences were due to significant underestimation by
AGRI occurring over the southern, southwestern, and northern region of the TP (Figure 7b).
The pattern of large disagreement distribution over the southern (25◦N~27◦N, 86◦E~95◦E)
and southwestern (28◦N~32◦N, 70◦E~75◦E) part of the TP was similar to the high CTH
(>12 km) cloud distribution characteristic in Figure 6a. Therefore, the clouds with high
CTH (>12 km) resulted in the large underestimations over the southern and southwestern
part of the TP by AGRI. In summer, the TP is usually considered an “air pump” due
to its higher surface temperature compared with surrounding regions [13], intensifying
atmospheric instability induced by the South Asian Monsoon. These combined effects
generate a high number of high altitude cirrus and deep convective clouds over the TP,
especially the southern part of the TP [10,20,33]. These largest CTH differences in the
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southern and southwestern part are likely due to AGRI underestimating the high cloud
top heights (CTH > 12 km) relative to MODIS as revealed by statistics shown in Figure 4.

Figure 7. A 0.5◦ grid of the (a) mean cloud top height absolute error (MAE) and (b) mean cloud top height bias error
(MBE) are presented. For each 0.5◦ grid box, the mean of all the collocated differences (AGRI-MODIS) within the box was
calculated based on the same dataset with Table 3. In (a), the deep blue value shows that AGRI and MODIS have the same
cloud top height results, while the red values represent that there are large CTH differences between these two systems; in
(b), a negative difference (blue) results when the mean AGRI cloud top height was lower than MODIS, while the deep red
values represent AGRI overestimating the cloud top height relative to MODIS (the maximum bias value was 0.564 km).
Blank space means that there were no matched pixels under the corresponding conditions.

6. Conclusions

This paper compared the FY-4A/AGRI and Terra/MODIS Collection 6 pixel-level
cloud mask and cloud top height results over the Tibetan Plateau to better understand
the cloud products’ performance and characteristics of the new generation GEO satellite
imager FY-4A/AGRI. Additionally, MODIS cloud retrievals were used as benchmarks. To
facilitate the comparison, an accurate and computationally efficient collocation algorithm
was developed. The comparison was conducted for the period of June, July, and August
2020. The comparison results showed that in general, the AGRI cloud mask over the TP is
reliable for cloudy conditions. On average, AGRI underestimates the cloud top heights. For
cloud detection, the two approaches (AGRI and MODIS) showed a fractional agreement
of 0.93 for cloudy conditions, and 0.73 for clear-sky scenes when the MODIS cloud mask
retrievals were used as a benchmark. However, there were distinct differences for “probably
clear” and “probably cloudy” scenes, mainly due to the two totally different theoretical
methodologies used by AGRI and MODIS. The agreement was generally better for cloudy
conditions than for clear scenes. Significant disagreement found in the southern part of the
TP for clear-sky conditions can be partially attributed to only a few clear pixels during the
summer monsoon season over that region. The largest disagreement for cloudy-sky scenes
occurred in some small regions located in the southern, southwestern, and northeastern
part of the TP. AGRI and MODIS can obtain good agreement for detecting clouds with
higher CTH, and AGRI tends to miss lower CTH clouds due to the lack of thermal contrast
between the clouds and the surface of the TP.

For cloud top height products, the comparison shows that the mean cloud top height
differences (AGRI-MODIS) were negative (−1.366 ± 2.235 km), suggesting that on average,
AGRI underestimates the CTH relative to MODIS. The CTH differences between AGRI and
MODIS showed an obvious trend of increasing error with height, and reached the largest
difference at approximately 12 km. In general, there were few CTH differences, especially
over the eastern part of the TP. The largest differences due to significant underestimation by
AGRI occurred over small areas located in the southern, southwestern, and northern part
of the TP. For the southern and southwestern part of the TP, the obvious CTH differences
can be partially attributed to the CTH underestimation of clouds with high CTH (>12 km).
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