
remote sensing  

Article

Fusion of Multispectral Aerial Imagery and Vegetation Indices
for Machine Learning-Based Ground Classification

Yanchao Zhang 1,2,*, Wen Yang 1, Ying Sun 2, Christine Chang 2 , Jiya Yu 1 and Wenbo Zhang 1

����������
�������

Citation: Zhang, Y.; Yang, W.; Sun, Y.;

Chang, C.; Yu, J.; Zhang, W. Fusion of

Multispectral Aerial Imagery and

Vegetation Indices for Machine

Learning-Based Ground Classification.

Remote Sens. 2021, 13, 1411. https://

doi.org/10.3390/rs13081411

Academic Editor: Giuseppe Modica

Received: 9 March 2021

Accepted: 31 March 2021

Published: 7 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Machinery Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China;
201920502009@mails.zstu.edu.cn (W.Y.); 202030605314@mails.zstu.edu.cn (J.Y.);
202020602086@mails.zstu.edu.cn (W.Z.)

2 School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, NY 14850, USA;
ys776@cornell.edu (Y.S.); cyc54@cornell.edu (C.C.)

* Correspondence: yczhang@zstu.edu.cn; Tel.: +86-86-571-86462181

Abstract: Unmanned Aerial Vehicles (UAVs) are emerging and promising platforms for carrying
different types of cameras for remote sensing. The application of multispectral vegetation indices
for ground cover classification has been widely adopted and has proved its reliability. However, the
fusion of spectral bands and vegetation indices for machine learning-based land surface investigation
has hardly been studied. In this paper, we studied the fusion of spectral bands information from
UAV multispectral images and derived vegetation indices for almond plantation classification using
several machine learning methods. We acquired multispectral images over an almond plantation
using a UAV. First, a multispectral orthoimage was generated from the acquired multispectral
images using SfM (Structure from Motion) photogrammetry methods. Eleven types of vegetation
indexes were proposed based on the multispectral orthoimage. Then, 593 data points that contained
multispectral bands and vegetation indexes were randomly collected and prepared for this study.
After comparing six machine learning algorithms (Support Vector Machine, K-Nearest Neighbor,
Linear Discrimination Analysis, Decision Tree, Random Forest, and Gradient Boosting), we selected
three (SVM, KNN, and LDA) to study the fusion of multi-spectral bands information and derived
vegetation index for classification. With the vegetation indexes increased, the model classification
accuracy of all three selected machine learning methods gradually increased, then dropped. Our
results revealed that that: (1) spectral information from multispectral images can be used for machine
learning-based ground classification, and among all methods, SVM had the best performance; (2)
combination of multispectral bands and vegetation indexes can improve the classification accuracy
comparing to only spectral bands among all three selected methods; (3) among all VIs, NDEGE,
NDVIG, and NDVGE had consistent performance in improving classification accuracies, and others
may reduce the accuracy. Machine learning methods (SVM, KNN, and LDA) can be used for
classifying almond plantation using multispectral orthoimages, and fusion of multispectral bands
with vegetation indexes can improve machine learning-based classification accuracy if the vegetation
indexes are properly selected.

Keywords: multispectral; vegetation indexes; information fusion; UAV; plantation classification;
machine learning

1. Introduction

In recent years, Unmanned Aerial Vehicles (UAVs) have rapidly gained popularity as
a remote sensing platform that can provide higher spatial and temporal resolution images
relative to traditional media such as satellites. An increasing number of studies have
utilized UAV-based near-ground remote sensing [1–4], taking advantage of their flexibility,
ease of use, and ability to measure at lower altitudes in comparison with airborne sensors.
The civil applications of UAV for high-resolution image acquisition have emerged as an
attractive option for agriculture [5–7] and environmental monitoring [8,9]. Hence, they
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were widely used in recent studies involving quantitative remote sensing applications due
to their versatility. For example, different groups used hyperspectral for ground object
classification and biochemical analysis [10–13], monitored ground plant diseases in an
orchard or plant vegetation by using miniature thermal cameras [14–16], and used narrow-
band multispectral imagery for crop water stress monitoring [17,18]. Integrating different
data types to meet the diverse need of ground surveying is becoming a new research focus.

Vegetation indices have long been used in remote sensing [19–21] because they are
simple, intuitionistic, and effective ways to model the ground cover reflectance. However,
in drone-based remote sensing, although sensor and ground resolution are improved,
vegetation indices alone cannot provide sufficient accuracy for classification [22]. Instead,
new methods are needed to fully exploit the information contained within reflectance. The
majority of vegetation indices were designed to enhance the difference among different
land covers. For example, the normalized difference vegetation index (NDVI), the most
commonly-used vegetation index in remote sensing for monitoring plant growth status,
calculates the ratio of the differences and sum of the near-infrared (NIR) and red bands
to represent the nonlinear structural relations between different bands. Green NDVI uses
the green channel to replace red in the NDVI formula, and also represents the nonlinear
relations between all multispectral channels. While many studies used machine learn-
ing methods to build models based on spectral bands for ground classification [23], the
nonlinear information contained in vegetation indexes has barely been fused into ground
classification models. However, the unstructured information contained within vegetation
indices may help with improving classification accuracy.

Shadow is a significant factor in remote sensing. [24] took shadow reflective features
into consideration during image segmentation and extracted shadows according to the
statistical characteristics of the images. The authors used a set threshold to detect shade,
which decreased its practicability. [25] studied the relationship between field-measured
stem volume and tree crown area and tree shadow area. Shadow influences the reflectance
of soil and may lead to miscalculation of some parameter retrievals, like soil organic carbon
and textures [26], as well as soil moisture [27]. Moreover, shadows may lead to errors in
other ground plant measurements, like tree size, crown height [28]. Therefore, a rapid and
accurate shadow classification is needed for almost all remote sensing platforms, including
satellite, aircraft, and UAVs.

Machine learning is widely adopted in remote sensing for ground classification, texture
segmentation. Selecting features for model training input is as important as selections of
samples and methods. Inclusion of a greater number of features improves the ability of the
model to differentiate among species and categories. Consequently, a key goal is to find
as many spatial features as possible, then use redundancy reduction or feature selection
methods like Principal Component Analysis (PCA), Uninformative variables elimination
(UVE), Independent Component Analysis (ICA), and lastly select different classifiers using
methods such as Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Linear
Discriminant Analysis (LDA) to build a statistical model for fast classification applications.
Feature selection is often regarded as a process that obtains a subset from the original
features set based on certain selection criteria. Usually, the dimensions of the features are
reduced. Before feature selection is performed, vectors that contain normalized feature
variables need to be built.

In this study, a UAV mounted with a five-band multispectral camera was used to
measure an almond plantation. After the orthoimage was acquired, we first tested the
classification of three surface types (tree, shadow, and soil) using different machine learning
methods, namely SVM, LDA, KNN, Random forest, Decision Trees, Gradient Boost, to
determine which method obtained the best performance. Secondly, we developed a
fusion pipeline incorporating both spectral bands and normalized vegetation indices into
the machine learning process. Thirdly, we assessed the impact of fusing spectral bands
and vegetation indexes on the performance of the machine learning models. Lastly, we
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comprehensively compared the results trained with vegetation indexes and determined
the proper selection protocol for classification.

2. Materials and Methods
2.1. Study Area

The experiment site (36◦34′42.67′′N,119◦26′14.01′′W) is located at Reedley, CA, USA.
The terrain of the experimental area is generally flat, with elevation ranging from 340 to
350 feet. A total of 20 acres of almond plantation were used for experiment. Row spacing
of 2 rows was about 5.14 m, and column spacing was about 9.3 m.

2.2. Data Collection and Image Selection

A DJI M100 quadrotor drone was equipped with a RedEdge-M (MicaSense Inc., Wash-
ington, DC, USA) multispectral camera, and GPS (ublox AG, Swiss), and Downwelling
Light Sensors (MicaSense Inc, Washington, DC, USA) for this research. The drone was pow-
ered by a 5700-mAh LiPo battery, which provides an average flight duration of ~30 min.
The RedEdge-M acquires images with 1280 × 960 pixels resolution at five spectral bands
including blue (475 nm), green (560 nm), red (668 nm), red edge (717 nm), and near-infrared
(840 nm). The focal length of the lens was 5.4 mm and images were stored as 16-bit TIFF
RAW format.

The experiment was carried out in mid-October. Multispectral images were collected
at the height of 200 meters above the ground level. A high side and forward overlap
rate of 80% was adopted to assure high map quality. Multispectral images were stitched
together using Structure from Motion (SfM) functions in Photoscan software (Agisoft LLC,
St. Petersburg, Russia) to generate an orthoimage map (Figure 1). Within the map, a region
of interest was selected for analysis (Figure 1, red highlight) which contained even tree
distribution and omitted signal interference from nearby road and bare soil patches.
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2.3. Selection of Spectra

As classification is based on spectral features, it is crucial to properly collect multiple
spectral information in different areas to form training data sets. Sampling was performed
as follows: The region of interest was split into three categories: almond tree, sunlit soil,
and shade-covered soil. Circular points, consisting of a 4-pixel radius, were randomly
sampled within the region of interest. The points were sampled such that the whole circle
fit within a single category. The feature vector of each point was calculated as the mean
value of reflectance within the circle. The whole process is as the Figure 2 shows.
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Using Equation (1), we can calculate the actual distance of the captured object in an
image, x, as:

x = h
p
f

(1)

where f represents the focal length of 5.4 mm, p represents the pixel size of 0.00375 mm2,
and h represents the height above target of 200 m. Thus, the actual distance corresponding
to each pixel is 0.139 m, and the actual radius of the sampling circle is about 0.554 m.

The points’ spot selection is very important in forming the dataset. If the collected
areas are mostly the central area of trees, shadows, and ground, the difference between
them can be ignored. However, for random selection of sample points adopted to represent
the species better, it is important to collect some edge data to increase sample points’
diversity. The sampling point size was designed with 4 × 4 pixels, which can represent
the different reflectance of the species. The sampling circles where the tree is located were
randomly selected. Each circle sampling area consisted of 4 × 4 band reflections. Inspired
by the idea of averaging, the overall band reflection of it can be represented by the band
reflection mean value. At the same time, the influence of noise can be avoided. Then, we
labeled these 593 sample data tags as ’tree.’ In the same way, we sampled the reflectance of
the ground and shadows.
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As shown in Table 1, we randomly extracted 400 data as a training set, 80 data as a
validation set, and 113 data as the test set. Figure 3 is an orthoimage representing about
1/4 of the entire study area, enlarged to demonstrate how the sampling was performed.

Table 1. Data distribution of the dataset.

Data Set Num

Training set 400
Validation Set 80

Test Set 113
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2.4. Performance Evalution

A variety of machine learning methods were employed here, including SVM, KNN,
LDA, to investigate all possible models for classification fully. Some machine learning
algorithms, like random forest and genetic algorithm, which have been used in a lot of
machine learning researches, were not discussed in the fusion section. This was because
these methods may have inconsistent results every time the training process was done.
From this angle, they were not suitable for the goals to cross evaluate different machine
learning methods. It is desirable to use methods that are consistent in performance to
explore the feasibility of fusing vegetation indexes into a classification model.

To evaluate the model performance, we compared the output array with the test array.
It was easy to tell how it performed by seeing that the output array from the predictive
function was almost the same as the test array. In order to see the generalization of the
model, the trained models were not only tested on the test set data but also applied to
map the classification result of the entire research area. The trained model was used for
pixel-wise classification, and the classification results are displayed in different colors. This
was done to demonstrate the performance of the model. To visualize the classification
result may not show too many details like the confuse matrix or outliers due to lack of
ground truth data.
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2.5. Vegetation Index

In this study, 11 VIs were used to improve classification accuracy. As the most
prevailing VI, the sample radio (SR) is around 1, and SR is usually used for soil and
vegetation segmentation since bare soils generally were near 1 and the number of green
vegetation increased in a pixel (picture element), the SR increased. In other words, SR may
contribute to the classification of the ground and the tree.

In the NDVI, the difference between the near-infrared and red reflectances is divided
by their sum. Data from vegetated areas will yield positive values for the NDVI due to
high near-infrared and low red or visible reflectances. As the amount of green vegetation
cover increases in pixels, NDVI increases in value up to nearly 1. In contrast, bare soil and
rocks generally show similar reflectance in the near-infrared and red or visible, generating
positive but lower NDVI values close to 0. The red or visible reflectance of clouds, shadows
are larger than their near-infrared reflectance, so scenes containing these materials produce
negative NDVIs.

As shown in Table 2, all 11 types of VIs used in this study are listed. Before the data
was used in further process, it needs to be normalized to the same scale. Their mutual
relevances were studied, as Figure 4 shows. The closer the correlation coefficient was to
1 or −1, the more positively or negatively relevant they were and the darker the color
got. The negative correlation and positive correlation were both taken into consideration.
Dat and NDVI showed a high correlation R2 = 1. SR and NDVRG were also the same. In
general, their relevance was not very high. Nearly three-quarters of the vegetation index
had a correlation coefficient below 0.5. We also hoped that the vegetation index correlation
coefficient was lower so that different vegetation indices can play different roles.

Table 2. Vegetation indices used in this study, ρ is the reflectance of band i.

Index Formula Reference

Greenness Index (GR) ρgreen
ρred

Le Maire et al.
(2004) [29]

Simple ratio (SR) ρNIR
ρgreen

Le Maire et al.
(2004) [29]

Simple ratio Pigment specific SR B1
(SRB)

ρNIR
ρred

Blackburn
(1998) [30]

Datt2 (Dat) ρNIR
ρedge

Datt
(1999) [31]

NDVI ρNIR−ρred
ρNIR+ρred

Tucker
(1979) [32]

Green NDVI (NDVIG) ρNIR−ρgreen
ρNIR+ρgreen

Gitelson and
Merzlyak (1997) [33]

Red-edge index (NDRE) ρNIR−ρedge
ρNIR+ρedge

Barnes et al.
(2000) [34]

Red-edgeGreen NDVI (NDEGE) ρedge−ρgreen
ρedge+ρgreen

Buschmann and
Nagel (1993) [35]

Red-edge NDVI (NDVGE) ρedge−ρred
ρedge+ρred

Ortiz et al.
(2013) [36]

Anthocyanin reflectance index 2
(ARI2) NIR ∗

[
1

ρgreen
− 1

ρedge

] Gitelson et al.
(2002) [37]

EVI 2.5 ∗
[

ρNIR−ρred
ρNIR+1∗ρred−1∗ρblue+1

] Huete et al.
(2002) [38]
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2.6. Supervised Learning Methods

Different supervised learning methods were implemented using the open-source
Python Scikit-Learn toolkit. Support vector machine (SVM) and Kernel SVM are supervised
machine learning classification algorithms. SVMs were introduced initially in the 1960s
and were later refined in the 1990s. After 20 years of development, they are becoming
extremely popular, owing to their ability to achieve outstanding results.

The training set contains five features, so it is very important to choose the appropriate
kernel function. Various kernel functions were implemented, such as linear, nonlinear,
polynomial, Gaussian kernel, Radial basis function (RBF), sigmoid. The trained model was
used to predict all the raw data directly, and finally adopt linear as SVM kernel. The linear
kernel function can effectively distinguish between trees and tree shadows, while other
kernel functions work poorly.

K-NN is a type of instance-based learning, or lazy learning, where the function is only
approximated locally, and all computation is deferred until classification. A peculiarity of
the K-NN algorithm is that it is sensitive to the local structure of the data. The best choice
of k depends upon the data; generally, larger values of k reduces the effect of the noise
on the classification, but make boundaries between classes less distinct. The special case
where the type is predicted to be the class of the closest training sample is called the nearest
neighbor algorithm. We will set k to 1.

Linear Discriminant Analysis (LDA) is most commonly used as a dimensionality
reduction technique in the pre-processing step for pattern-classification and machine
learning applications. It has been used as a linear classifier to project a feature space (an
n-dimensional dataset sample) onto a smaller subspace k while maintaining the biggest
class-discriminatory direction.

Decision tree learning is a method commonly used in data mining. The goal is to
create a model that predicts the value of a target variable based on several input variables.
Random forests or random decision forests are an ensemble learning method for classifica-
tion, regression, and other tasks that operate by constructing a multitude of decision trees
at training time and outputting the class that is the mode of the types (classification) or
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mean prediction (regression) of the individual trees. Random decision forests correct for
decision trees’ habit of overfitting to their training set

The idea of gradient boosting originated in Leo Breiman’s observation that boosting
can be interpreted as an optimization algorithm on a suitable cost function. Jerome H.
Friedman subsequently developed explicit regression gradient boosting algorithms.

The model was trained firstly with the training set. To assess the performance of
machine learning models, cross validation was used. This helps to know the machine
learning model would generalize to an independent data set. K-fold cross validation is a
common type of cross validation. As shown in Figure 5, firstly, the original training data
set was partitioned into 6 equal subsets. Each subset was called a fold. Let the folds be
named as f1, f2, . . . , f6. Secondly, keep the fold fi (i = 0, . . . , 6) as validation fold and keep
all the remaining 5 folds in the cross validation training set. Lastly, we will estimate the
accuracy of the machine learning model by averaging the accuracies derived in all the
k cases of cross validation, and it is expressed by the symbol E. mean-square error can
measure the average of the squares of the errors. MSE will also be an important indicator
of the evaluation model.
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Cross validation results are shown in Table 3, MSE is the mean squared error. In the
supervised learning method, the E value of LDA was higher, and the MSE value was lower.
SVM and KNN models were acceptable. The remaining supervised learning methods had
lower E values, and MSE was not ideal. In the following research, we will focus on SVM,
KNN, and LDA. The table shows the mean square error and the average correct rate under
different supervised learning methods.

Table 3. The recognition accuracy of cross validation.

Supervised Learning Error (E) Mean Squared Error (MSE)

SVM 0.9312 0.000299
KNN 0.9187 0.000247
LDA 0.9395 0.000282

DecisionTree 0.7708 0.001122
RandomForest 0.7875 0.002656

GradientBoosting 0.8104 0.002990

2.7. VIs’ Normalization for Fusion Study

Test sets were used to predict SVM model accuracy, which was up to 93.27%, and the
model was quite good. In order to improve the accuracy of the model, the VI referenced
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above was used to expand the dimension of the training set. We regarded the original
training set as a reference object and compared it with the training set with the VI.

Because the SVM was sensitive to the data’s size, it was necessary to find a normal-
ization method to put the data in the same range. In this research, we proposed a new
formula to normalize the data. The formula (2) and (3) was as follows:

Q = {x1, x2 . . . xi} (2)

y = (2n − 1)
xi −Min(Q)

Max(Q)−Min(Q)
n : the bit depth of an image; xi : VI value (3)

This formula can extend the VI to the same order of magnitude. Then the VI and other
band set from a training data set were combined to train the model.

3. Results and Discussion
3.1. The Performance of A Single VI

As shown in Figure 6, Figure 6a shows the performance of the five-band training
model. It will be treated as a reference in the following sections. Others show model
validation results for five bands and different vegetation indices as a data set. Results
showed that VIs influenced the accuracy of the classification model, and the model based
on extended features, including Red Edge NDVI, RedEdge Green NDVI, and NDVI, was
better trained than the original multispectral data set. By comparing (e), (i), and (j), the
total correct rate of them was over the 5-band model.

In general, the recognition rate of the ground was high, while the recognition rate
of the tree was not that high. It can be seen from the results shown in the Figure 7c, tree
recognition rate could be improved by bringing in a suitable VI.

Meanwhile, it can be seen that some VIs could increase the recognition rate of shadows.
Although the recognition rate of trees and shadows increased, the degree of the increase
was not very large, and there was still a significant gap in the recognition rate.

As shown in Table 4, KNN and LDA model accuracy was obtained from the test set.
VI could improve the accuracy of the KNN model; however, VI could not enhance the
accuracy of the LDA model. Most of the VIs that could improve the SVM and KNN were
the same. NDVI, NDVGE, and NDEGE were all conducive to the improvement of SVM
and KNN model accuracy. NDVIG alone affected KNN model improvement. SRB did not
affect the accuracy of the LDA model. Other VIs reduced the accuracy of the LDA model.

ARI2 greatly impacted the accuracy of the SVM model, just as EVI to the KNN model.
However, the VI index had little effect on the accuracy of the LDA model. So, appropriate
VI could increase the accuracy of the SVM and KNN models, but VI had little impact on
the LDA model.
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Figure 6. Schematic diagram of classification effect under different vegetation indices. G, T, and S represent the classification
accuracy of ground, tree, and shadow, respectively, and T represents the total recognition accuracy. The image is classified
using different VI indices. (a): Reference; (b): Green_ Index; (c): SR_ Index; (d): SRB_ Index; (e): NDVI_ Index; (f): NDRE_
Index; (g): Datt_ Index; (h): NDVI_ Green_ Index; (i): NDVI_ RedEdge_ Green_ Index; (j): NDVI_ RedEge_ Index; (k):
ARl2_ Index; (l): EVI_ Index.

Table 4. The classification accuracy under different classification methods of other VIs, bold refers to
those higher than the reference.

VIs SVM KNN LDA

reference 0.9327 0.9267 0.9372
GR 0.9267 0.9267 0.9357
SR 0.9297 0.9058 0.9342

SRB 0.8983 0.8953 0.9372
NDVI 0.9372 0.9327 0.9342
NDRE 0.9282 0.9222 0.9327

Dat 0.9013 0.8938 0.9357
NDVIG 0.9312 0.9312 0.9357
NDVGE 0.9342 0.9417 0.9357
NDEGE 0.9357 0.9357 0.9282

ARI2 0.7383 0.9103 0.9342
EVI 0.9162 0.7443 0.9207
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3.2. The Performance of Two VIs

To further explore the impact of the VI, we added two different vegetation indices
to the feature space to see the classification results. The accuracy of the training model is
shown in Figure 7a: The best SVM model recognition rate was up to 94.77%. Compared
with the models with single VI added, the recognition accuracy improved a lot. The training
data set using the single VI, the model trained by the NDVI_RedEdge_Green Vegetation
index, was better. The dataset training rate of NDEGE VI and other index was relatively
high. Compared with others, the model trained with the AIR2 was not as good as the
dataset training rate of AIR2 and other indices were relatively low.

As shown in Figure 7b, the darker the blue was, the more accurate the model was.
In general, the combination of the NDEGE index and other indices stood out from other
hybrids. Research data showed that the model accuracy of NDEGE and NDVGE was
the highest in the two-VI index results. Both NDVGE and NDEGE could improve model
accuracy in the single index model. The two-VI model had a maximum accuracy of 95.67%,
and it was more accurate than the single index model

In the KNN model, four indexes could improve the accuracy of the model. Their
mutual combination training model did not necessarily improve the accuracy of the model.
For example, NDVIG and NDVI had higher precision in their training models than other
combinations. NDEGE worked well with training models with other VIs. For instance,
NDEGE and these indices, which performed well in a single model, could improve model
accuracy in the two-VI model. Both SR and SRB reduced the accuracy of the single VI
model, but one of them combined with NDEGE to train the two-VI model with higher
accuracy than the single VI model. It can be concluded that NDEGE not only benefited
the accuracy of the model, but also combined with other VIs to improve the accuracy of
the model.

As shown in Figure 7c, it can be concluded that the VI index did not improve the
accuracy of the LDA model in the two-VI model. The impact of VI on the accuracy of the
LDA model was also relatively small compared to the SVM model.
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We observed the distribution of the VI index corresponding to the high-precision
model. According to Figure 4, we can see that the correlation coefficient between these
indices was not very high.

3.3. The Performance of Multiple VIs

To explore the influence of the input number of VIs on the accuracy of the model, dif-
ferent vegetation indices were extracted to form a new feature set to train the classification
model. The result is shown in Figure 8a,c,e. The horizontal indicates the number of VIs
used in the training set, and the vertical indicates the accuracy of the model. The scatter
points in each vertical row are the models’ accuracy under the same number of VIs. The
plot was formed by the best model accuracy using different numbers of VIs.

When the number of VIs was up to three or four, the highest SVM model precision
was 96.41%. Compared with the accuracy of the original five-band model, it improved by
3%. However, when using all VIs, accuracy was only 34.9%. When observing the single VI
model, one of the indices could reduce the overall accuracy. When the index was combined
with other indices to form a training set, many low-precision models were produced, which
leads to lower performance. Figure 9 illustrates the outlier points in Figure 8a,c,e.

As shown in Figure 8b,d,f, the best accuracy of the model was initially increasing and
then decreasing with the number of VIs. When the number of VIs were up to 3, KNN
model achieved the highest precision. When the number of VIs was up to 3 or 4, SVM
model achieved the highest precision.

As shown in Figure 8b,d,f, the horizontal indicates the number of VIs in the training
set, and the vertical indicates all the VIs. These three graphs show the VI distribution of
the best-trained model among all VI combinations. As it shows, VI fusion had mostly
improved the accuracy of SVM and KNN models, but did not have much effect on the LDA
trained model.

In the best SVM model, the NDEGE index appeared most frequently. In the single
vegetation index SVM model, the NDEGE index could train the best model. NDEGE and
NDVGE indices could train the best model in the two-VI SVM model. In three-VI SVM
models, NDEGE, NDVGE, and NDVIG indices had the same effect as NDEGE, NDVGE,
and NDVI indices. A combination of NDEGE, NDVGE, NDVIG, and NDVI indices could
train the optimal model. It can be concluded that the NDEGE, NDVGE, NDVIG, and NDVI
indexes were beneficial to improve the accuracy of the SVM model.

In the best KNN model, the NDVGE index appeared most frequently, In the single
vegetation index KNN model, the NDVGE index could train the best model. NDVIG and
NDVGE indices could train the best model in the two-VI SVM model. In three-VI KNN
models, a combination of Dat, NDVGE, and NDVIG indices had the same effect as NDEGE,
NDVGE, and NDVI indices, reaching an overall accuracy of 95.92%.

This study showed that a properly selected combination of Vis with original mul-
tispectral bands could improve the accuracy of the trained model, and a reasonable VI
combination could further improve it.

To better understand the relationship between VIs and machine learning models.
As Figure 9 shows, NDEGE and NDVGE were the two least occurred VIs among all
combinations. The blank in each machine learning method was due to the lowest points
and was not treated as an outlier.
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3.4. Classification Accuracy

The trained model was applied to the entire orthoimage to demonstrate its classifica-
tion accuracy. The set of original multispectral bands and added VIs were normalized as
in the training process and put into the trained machine learning model. The best two-VI
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SVM models were selected for this demonstration. The refractive indices of different classes
in the same band are highlighted.

The best two-VI SVM models used for prediction were multi-spectrals combined
with NDEGE and NDVGE. The segmentation result is shown in Figure 10. The clas-
sification effect showed it worked well, and the tree, shadow, and ground could be
effectively distinguished.
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4. Discussions

Our results showed that the fusion of multispectral bands and VIs could improve the
classification model accuracy if proper VIs were selected. In particular, three to four VIs
could reach the optimal fusion result. All the results above could be attributed to three
reasons to the best of our knowledge. First, the information in VIs could help enlarge the
difference among ground covers. As discussed above, VIs were first introduced to describe
the difference among ground covers so as to do tasks like classification, segmentation,
monitoring. They contained nonlinear correlations between spectral bands that had not
been introduced into machine learning-based remote sensing classification.

Second, different training methods were sensitive to different VIs. The selected
training methods in this research were kernel-based SVM, distance-based KNN, linear
transformation-based LDA. SVM, NDEGE, NDVIG, and NDVGE had a positive effect on
building models. To KNN, the result was almost the same, NDEGE, NDVGE, and NDVI
had a positive effect in improving model accuracy. To these two training methods, adding
VIs created an apparent improvement. SVM was designed to find the hyperplane for class
separation, so adding classes related features could improve the hyperplane performance.
Meanwhile, the KNN separated types based on distance between new samples and known
samples. KNN did not require training, but calculated distances every time, so it tended
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to be very slow when the data set was large. From this point of view, adding VIs could
increase the class distance to improve performance. One more thing was that all the VIs
mentioned above were loosely correlated with each other, as is shown in Figure 4. For
example, correlation coefficient between NDEGE and NDVIG was 0.39, NDVI and NDEGE
was 0.32, NDVI and NDVGE was 0.077, NDVGE and NDEGE was 0.65. This may have
been why the performance increased with more VIs, as Figure 8a,c shows.

However, LDA was different from the former two methods. LDA was based on linear
transformation, and it was designed to project at the largest separation plane. So the
performance was unlikely to change with the number increases because new information
was unlikely to have influence on LDA projection. It can be concluded that LDA was not
fit for information purposes.

Although combining spectral bands and VIs could improve the performance of the
classification model, more was not better, and some VIs had a reverse effect. As it shows,
the performance decreased when more than 4 VIs were added and dramatically dropped
when all 11 VIs were added. Additionally, it can be seen there were points significantly
lower than other points of the same column. We noticed that there were height-related
indexes, such as CHM [39]. It could be used when the images were acquired at low altitude
and the height was obvious in DSM. However, in our experiment, the altitude was 200
meters and the generated DSM had nearly no height information. Moreover, the resolution
of multispectral camera was much lower than RGB cameras used in height-related studies.
So, the DSM was flat and wasn’t taken into further studies.

Moreover, the way to normalize VIs still needs more exploration. In this study, VIs
were normalized to zero to one according to the minimum and maximum value of all
pixels. This was because some VIs could not be normalized to a particular range. For
example, SRB was the rate of NIR and Red, so it could be very big. There was hardly any
other way to normalize it to a certain value range except the proposed method in this
research. Meanwhile, this method could maximize the influence of other normalized VIs.
For example, NDVI was an index already normalized between minus one and one, but
in the normalized method used in this research, the value was normalized to the scale of
minimum and maximum value of all pixels. In this way, the VI value was considered to be
larger than it was.

5. Conclusions

This paper describes the application of a UAV-based five-band multispectral camera
for the classification of three different ground covers, trees, soil, and shadow at first. To
further utilize the nonlinear information between multispectral bands, a fusion method
was developed to see if it can improve the performance of the classification model. The clas-
sification results based on the original five bands were 0.9327 for SVM, 0.9267 for KNN, and
0.9372 for LDA. It can be concluded that mixed ground cover like shadow can be properly
distinguished. This result can be helpful in research using shadow-based measurement.

Secondly, 11 VIs were calculated and integrated with the original five bands to train
models using three supervised learning algorithms, namely SVM, KNN, and LDA. After
gradually adding VIs into feature space, it was found that three to four VIs could improve
the classification performance when using SVM and KNN, and it decreased if more were
added. VIs had little influence on LDA-based classification. It can be concluded that fusing
multispectral bands and VIs in supervised learning can improve classification performance.
Among all 11 proposed VIs, NDEGE, NDVIG, NDVGE, and NDVI positively affected
information fusion.

At present, only VIs have been used and proved effective in remote sensing for
information fusion in this research. The constructed VIs is limited due to limited bands
of multispectral camera that can be mounted on a UAV. In this research, a five-band
multispectral camera was used. In the future, with the development of spectral sensor
technology, cameras with more bands can bring more VIs. Meanwhile, only several linear
machine learning methods were cross-compared. This was to guarantee the consistency of
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the trained model. In the future, far more complicated machine learning algorithms can be
used to verify this research. At last, the classification result based on original bands was
pretty good, and information fusion can improve the accuracy. It was more desirable to
explore the effect of fusion in cases in which the classification result was bad based on the
spectral bands’ original information.
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Abbreviations
The following abbreviations are used in this manuscript:
SVM Support Vector Machine
KNN K-Nearest Neighbor
LDA Latent Dirichlet Allocation
E Error
MSE Mean Squared Error
GR Greenness Index
SR Simple Ratio
SRB Simple Ratio Pigment Specific SR B1
Dat Datt2
NDVI The Normalized Difference Vegetation Index
NDVIG Green NDVI
NDVIG Red-edge index
NDVIG Red-edge Green NDVI
NDVGE Red-edge NDVI
ARI2 Anthocyanin reflectance index 2
EVI The Enhanced Vegetation Index
DSM Digital Shape Model
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