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Abstract: An urban heat island (UHI) is a significant anthropogenic modification of urban land
surfaces, and its geospatial pattern can increase the intensity of the heatwave effects. The complex
mechanisms and interactivity of the land surface temperature in urban areas are still being examined.
The urban–rural gradient analysis serves as a unique natural opportunity to identify and mitigate
ecological worsening. Using Landsat Thematic Mapper (TM), Operational Land Imager/Thermal
Infrared Sensor (OLI/TIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS), Land
Surface Temperature (LST) data in 2000, 2010, and 2019, we examined the spatial difference in
daytime and nighttime LST trends along the urban–rural gradient in Greater Cairo, Egypt. Google
Earth Engine (GEE) and machine learning techniques were employed to conduct the spatio-temporal
analysis. The analysis results revealed that impervious surfaces (ISs) increased significantly from
564.14 km2 in 2000 to 869.35 km2 in 2019 in Greater Cairo. The size, aggregation, and complexity
of patches of ISs, green space (GS), and bare land (BL) showed a strong correlation with the mean
LST. The average urban–rural difference in mean LST was −3.59 ◦C in the daytime and 2.33 ◦C in
the nighttime. In the daytime, Greater Cairo displayed the cool island effect, but in the nighttime,
it showed the urban heat island effect. We estimated that dynamic human activities based on the
urban structure are causing the spatial difference in the LST distribution between the day and night.
The urban–rural gradient analysis indicated that this phenomenon became stronger from 2000 to
2019. Considering the drastic changes in the spatial patterns and the density of IS, GS, and BL, urban
planners are urged to take immediate steps to mitigate increasing surface UHI; otherwise, urban
dwellers might suffer from the severe effects of heatwaves.

Keywords: urban heat island; MODIS LST; GEE; machine learning; daytime and nighttime; Greater
Cairo; impervious surface

1. Introduction

Urbanization impairs the natural landscape as it produces impervious surfaces. Rapid
urbanization has become one of the most critical global issues in the 21st century [1–4].
Various socio-environmental problems, including climate change [5–7], energy systems [8],
deforestation [9], water and air quality [10], and environmental health [11], have been
attributed to large regions being urbanized too rapidly and without proper planning.

The urban heat island (UHI) phenomenon [12–15], which refers to higher temperatures
in urban areas relative to the surroundings, has been studied in many cities around the
world [15–19]. The distribution of impervious surfaces covered by cement, asphalt, and
concrete raises the land’s radiative surface temperature [20] and changes the humidity of
urban areas [21,22]. The rise in heat in urban areas has caused various social problems
such as increasing water and energy consumption [23], air pollution [24], discomfort, and
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human health issues like cardiovascular disease and psychological stress [25,26]. Hence, a
better understanding of the UHI mechanism is crucial for planning its effective mitigation
and adaptive strategies for urban sustainability [20,27–29].

We can classify UHI into two types: atmospheric urban heat islands and surface urban
heat islands [16,30]. The former considers the UHI effects in the canopy or boundary
layers [31,32], whereas the latter considers the surface difference in radiative tempera-
ture [33–36]. Generally, atmospheric urban heat islands are measured and modeled by in
situ sensors (meteorological stations or towers), radiosondes, and aircraft [31,37]. Although
the instruments provide more reliable air UHI readings, they are expensive to install [34].
As there are few global monitoring stations, air UHIs do not provide substantial measure-
ments in the context of urban planning and climate change studies [31]. Hence, surface
UHI plays a more significant role, with satellite-based surface UHI being applied for
repeatable spatio-temporal measurements at local [34,38–41], regional [20,29,42–45], and
global scales [46,47]. Surface UHI also plays an important role in thermal anisotropy [48].
The degree of surface UHI differs according to seasons, solar intensity, land cover, and
weather [12]. Furthermore, surface UHIs widely differ between day and night [12]. Due to
the sun’s radiation, daytime surface UHI is stronger than that of nighttime.

The concept of local climate zone(s) is one method for examining surface UHIs
in the urban environments [49–51]. However, urban–rural gradient analysis has been
widely used to investigate the geographical pattern of surface UHI. For instance,
Estoque et al. [12] demonstrated the surface UHI effect in three megacities in Southeast
Asia by combining urban–rural gradient analysis and spatial metrics-based analysis
using Landsat imageries. Yang et al. [52] discussed the spatio-temporal vegetation
pattern based on an urban–rural gradient in Dalian, China, using Moderate Resolution
Imaging Spectroradiometer (MODIS data). Fu et al. [53] studied the variability in
annual temperature cycles in the USA, also using MODIS data. Athukorala and
Murayama [54] discussed the spatial variation in surface urban heat islands in Accra,
Ghana, employing the urban–urban gradient and landscape-metrics-based analysis.
Thus, many scholars have demonstrated that satellite data are useful for investigating
the relationship between landscape patterns and LST [55–57].

Today, urban–rural gradient analysis and spatial configuration analysis based on
spatial metrics [58,59] provide valuable insights into the progress in UHI studies as well
as useful information on urban design and urban landscape planning [54,60]. However,
there are relatively few studies on surface UHIs, especially in rapidly growing cities in
Africa [61–64], including Cairo [65,66]. Therefore, we focused on Cairo (Egypt), one of
Africa’s important megacities in this study because it has experienced drastic urbanization
during the last two decades [67]. We examined the spatial relationship between surface
UHI and the urban–rural gradient for Greater Cairo in 2000, 2010, and 2019 using Moderate
Resolution Imaging Spectroradiometer (MODIS), land surface temperature (LST) products.
We used Landsat imageries to identify the spatio-temporal changes in land use/cover
(LUC) in Greater Cairo and to understand the relationship between LST and the LUC
categories of the study area.

The objectives of this study were to (1) investigate urban LUC changes, (2) examine
surface UHI and the urban–rural gradient, and (3) discuss the spatial relationship between
the surface UHIs and the urban structure in Greater Cairo. Surface UHIs have been
widely studied in tropical and temperate regions [68–70]. In contrast, understanding how
urbanization is associated with the climate in the hot desert environment is still limited [71].
Both daytime and nighttime urban heat island studies in these kinds of cities are lacking.
Unlike previous Cairo studies [65,72], we focused on land surface temperatures in both
daytime and nighttime along the urban–rural gradient to deepen our understanding of
urban dynamism within a day and gather critical information regarding climate change
mitigation studies.
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2. Materials and Methods
2.1. Study Area

Cairo, the capital of Egypt, is located at 30◦060′ N and 31◦28′ E, at 74.5 m above
sea level (asl) in the Nile basin (Figure 1).Cairo has the longest history in the African
continent [73]. Greater Cairo accounts for the most significant urban agglomeration in
Africa and is eleventh in the world in this respect [72]. The study area stretches 50 × 50 km
with a 25 km buffer from the city center. The city center is the urban core based on
geographical and socio-economic significance (Figure 1).

Greater Cairo comprises three urban administrative divisions: Cairo, Giza, and Al-
Qalubiya. The number of listed inhabitants reached 20 million in 2018, which is second
only to Lagos, Nigeria, in Africa [74,75]. In Greater Cairo, there are barren desert and bare
land in the eastern region and cultivated land in the Nile Delta and the Nile River to the
west. Roads and streets in Greater Cairo are covered with asphalt, and other surfaces are
covered mostly with desert sand. According to the Koppen climate classification, Greater
Cairo, with relatively flat terrain, has a hot desert climate [75,76].

Climatologically, Greater Cairo belongs to the sub-tropical climatic region. Sandy
winds are dominant from March to May (spring) and September to November (Autumn).
December to February are the winter months, during which it is relatively humid, and
there is little rain. Summer, from July to August, is hot, dry, and rainless. The annual
rainfall in Greater Cairo is about 20 mm, and the average daily mean temperature is 19.7 ◦C
in January and 34.9 ◦C in July [73].

Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 28 
 

 

2. Materials and Methods 
2.1. Study Area 

Cairo, the capital of Egypt, is located at 30°060’ N and 31°28’ E, at 74.5 m above sea 
level (asl) in the Nile basin (Figure 1).Cairo has the longest history in the African continent 
[73]. Greater Cairo accounts for the most significant urban agglomeration in Africa and is 
eleventh in the world in this respect [72]. The study area stretches 50 × 50 km with a 25 
km buffer from the city center. The city center is the urban core based on geographical 
and socio-economic significance (Figure 1). 

Greater Cairo comprises three urban administrative divisions: Cairo, Giza, and Al-
Qalubiya. The number of listed inhabitants reached 20 million in 2018, which is second 
only to Lagos, Nigeria, in Africa [74,75]. In Greater Cairo, there are barren desert and bare 
land in the eastern region and cultivated land in the Nile Delta and the Nile River to the 
west. Roads and streets in Greater Cairo are covered with asphalt, and other surfaces are 
covered mostly with desert sand. According to the Koppen climate classification, Greater 
Cairo, with relatively flat terrain, has a hot desert climate [75,76]. 

Climatologically, Greater Cairo belongs to the sub-tropical climatic region. Sandy 
winds are dominant from March to May (spring) and September to November (Autumn). 
December to February are the winter months, during which it is relatively humid, and 
there is little rain. Summer, from July to August, is hot, dry, and rainless. The annual rain-
fall in Greater Cairo is about 20 mm, and the average daily mean temperature is 19.7 °C 
in January and 34.9 °C in July [73]. 

 

Figure 1. Location of Greater Cairo: (a) Egypt and other African countries [77]; (b) Egypt and
Greater Cairo [78]; and (c) study area with 25 km buffer from the city center in 2000, 2010, and 2019.
False-color band composites in 2000, 2010, and 2019 were downloaded from the Google Earth Engine
(GEE) platform [79].
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2.2. LUC Classification

We downloaded the atmospherically corrected pre-processed (level 2) Landsat data
from the GEE platform in 2000, 2010, and 2019 [79]. First, we demarcated the 50 × 50 km
boundary for the study area and prepared the boundary shapefile. The city center is located
in the central business district (CBD). Second, the boundary shapefile was imported on
Asset in GEE. Finally, we ran the script for Greater Cairo to download Landsat imageries
for summer (July and August). In this stage, we ran the script three times for three time
points. Using the Image Collection tool in GEE, we prepared the three final Landsat
imageries, including four images for 2000 (Landsat 5), two images for 2010 (Landsat 5),
and four images for 2019 (Landsat 8) (Appendix A Table A1) for Greater Cairo. All
downloaded images were projected onto the WGS84/UTM 36N projection system before
further processing.

The LUC maps of the study area were constructed by applying four machine learning
methods: K-nearest neighbor (KNN), artificial neural network (ANN), support vector
machine (SVM), and random forest (RF), facilitated by the R software [80]. In the LUC
classification, bands 4, 3, and 2 for Landsat 5 and bands 5, 4, and 3 for Landsat 8 were
used. The spatial resolution of the prepared LUC maps was 30 × 30 m. Four LUC types
were derived from this classification: (i) bare land (BL; associated classes: desert area
and stone land); (ii) green space (GS; associated classes: forest, cropland, grassland, and
shrub); (iii) impervious surface (IS; associated classes: all kind of impervious surface areas
including buildings, roads, and airports); and (iv) water (W; associated classes: all kinds
of water bodies, e.g., rivers, and ponds). Google Earth’s historical images were used as
reference data for accuracy assessment. Accurate results were generated by automatic
sampling in the algorithm using 400 points each year. We constructed four LUC maps for
each year based on the four LUC types.

In the next step, we ranked the classified LUC maps based on the highest overall
accuracy value and determined the LUC patterns generated by K-nearest neighbor (the
overall accuracy was over 90% each year) (Appendix A Tables A2–A4). Subsequently, we
applied the post-classification corrections as the majority filter and hybrid classification
method to avoid misclassification errors and salt and pepper noise [81–83].

2.3. MODIS Data

The MODIS sensor is onboard on the Terra satellite, which was launched by the
National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) in
December 1999 [84]. The Terra-MODIS satellite captures images for 10:30 a.m. (local solar
time) in descending mode and 10:30 p.m. in ascending mode [85]. However, the Terra-
MODIS acquisition time is a nominal time that varies with the location [86]. The swath
width of MODIS instruments is 2330 km, and they observe the entire planet every one to two
days. Swath acquisition produces outputs every 5 min. MODIS sensors include 36 spectral
bands of the electromagnetic spectrum, with visible light and infrared radiation. MODIS
instruments capture data at three spatial resolutions and various temporal resolutions (i.e.,
spatial resolutions: bands from 1 to 2, 2250 m; bands from 3 to 7, 500 m; bands from 8 to
36, 1000 m; and temporal resolutions: daily, 4 day, 8 day, 16 day, monthly, quarterly, and
annually) [87].

MODIS LST products obtain LST at high temporal (daily) and low spatial resolutions
(1 × 1 km), gridded at intervals of sinusoidal projection. This study used Terra-MODIS
LST version 6 product data to investigate the surface UHI in Greater Cairo [88]. Terra-
MODIS LST data were downloaded from the GEE platform [89] for three time points to
characterize LST along the urban–rural gradient. In this stage, we used ee.reducer to
extract each pixel’s mean temperature values in 2000, 2010, and 2019, available on the GEE
platform. The temperature value was obtained from the MOD11_L2 product [88]. MODIS
bands 31 and 32 and six quality indicator layers provided land surface temperatures for
both daytime and nighttime. Bit flags were used to manage the quality control parameters,
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i.e., mandatory quality assessment flags, data quality flags, emissivity quality flags, and
LST error flags [88].

Greater Cairo summer was defined as the period from July to August. We used the
same Cairo boundary shapefile to download MODIS data. Subsequently, all downloaded
MODIS data were projected onto the WGS84/UTM 36N projection system. We used ArcGIS
MODIS Python Toolbox to pre-process the data [90].

2.4. MODIS LST and Density of IS, GS, and BL

The LUC density is apparent in the cross-sectional analysis of the urban–rural gradient
of a typical surface UHI profile. Based on the summer daytime/nighttime mean LST, we
created a surface UHI intensity profiling for this study. First, kilometer 0, the city center,
was allocated (Figure 1c). Second, raster daytime and nighttime LST maps were created
by snapping together polygon grids. These polygon grids were 1 × 1 km, the same as in
previous studies [16]. The densities of IS, GS, and BL were defined as the percentage of the
total area within a 1× 1 km grid, which is equal to the MODIS LST data’s spatial resolution.
Finally, the relationship between the mean LST and the urban intensity measured on each
grid was examined using bivariate correlation analysis and scatter plot diagrams. We
excluded the water category in this stage.

2.5. Trend in the Daytime and Nighttime Surface UHI Intensity

We examined the mean LST difference (∆ mean LST) along the urban–rural gradient
between the daytime and nighttime. All 1 km polygon grids in the same direction were
targets of analysis. Four polygons of the surrounding city center (hereafter referred to as
the central grid area = 4 km2) were defined as Urban–Rural Zone 1 (URZ1) ((Appendix A
Figure A1). The 25 buffer areas were delineated as urban–rural zones (URZs), e.g., URZ1,
URZ2, . . . , URZ25.

Zones derived the daytime and nighttime mean LST and densities of IS, GS, and BL in
each URZ at 1 km intervals. The daytime/nighttime change in mean LST between URZ1
(the zone with the highest urban intensity each year) and other URZs (i.e., URZ2, URZ3, ...,
URZ25) were defined by the surface UHI intensity. The same procedure was applied for
the three time points.

We focused on the URZ with a high IS density as urban zones and URZs with <15% IS
density as rural zones [16,91]. The trend in the daytime and nighttime surface UHI intensity
was calculated using Equation (1). All the extracted values were plotted along the urban–
rural gradient. Scatter plot diagrams were drawn to delineate statistical relationships.

Surface UHI intensity = URZ1 − URZn (1)

where URZ1 is the central grid of the urban–rural gradient and n refers to the number of
urban–rural zones (i.e., URZ2, URZ3, URZ4, . . . . . . , URZ25).

2.6. Population Density Data

WorldPop is a database for estimating the world’s population [92,93]. It provides
various types of the gridded population data sets [94]. Numerous researchers have
used this population data [95–98], including United Nations Development Programme
(UNDP), World Health Organization (WHO), The World Bank, and the World Wildlife Fund
(WWF) [99]. The large population or high population density (PD) of a city contributes
to settlement expansion and vertical development of high-rise residential apartments. In-
directly, the PD has become one of the critical factors of urban heat island formation. In
this study, 2000, 2010, and 2019 WorldPop data (at a 30 arc-second approximately 1 × 1 km
resolution) were used to explore the relationship between mean LST and PD in both the
daytime and the nighttime in Greater Cairo using scatter plots diagrams and linear regres-
sion. We used a 1 km polygon grid, produced in Section 2.4, to extract raster WorldPop
PD values.
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2.7. Landscape Configuration Analysis

Based on the landscape configuration analysis, we examined how IS, GS, and BL
influenced the variability in the LST in Greater Cairo. The grid size used in Section 2.5
was insufficient for this configuration analysis due to the total patch’s possible effect being
allocated to 1 km grids. Moreover, instead of identifying a single patch’s optimum size,
we found the best configuration of patches in closer proximity. Considering previous
studies [12,54,100] and the reasons mentioned above, we applied a relatively large grid size.
We used a 5 × 5 km fishnet to divide the whole study area into 100 sub-parts. Based on
other studies [12,54], 25 sub-parts were selected using a random sampling technique. The
selected sub-parts represented 25% of the total population. The LUC map in each study
area was clipped with fixed 25 polygon grids for further analysis. We determined three
class-level spatial matrices: mean patch area (AREA_MN), largest patch index (LPI), and
aggregation index (AI) (Table 1). These spatial metrics have been widely used in previous
UHI studies [12,101]. The 8-cell neighbor rule was applied to calculate the three metrics.
To analyze the impact of landscape configuration on LST, the generated metric values were
compared with the mean LST of the LUC classes of each sub-part.

Table 1. Class-level metrics used in this study [102].

Spatial Metrics Formula Description Units

Mean patch area (AREA_MN) AREA_MN (ha) =∑n
j = 1 xij

ni
The spatial pattern and heterogeneity of the area. ha

Largest Patch Index (LPI) LPI =
max(a ij)

A × (100) LPI ability to detect the advantages of the LUC. 0–100

Aggregation Index (AI) AI (%) =
(

gii
max→gii

)
×(100)

The calculation of class-level aggregation in
the area. percentage

Where ni = number of patches of land use/cover (LUC) class i; n = number of patches; j = total of the specific patch type; xij = patch
metrics value of patch ij; A = total area of LUC; aij = total pixels of patch area ij; gii = number of joins between pixels of class type; and
max→ gii = maximum number of joins between pixels of class type.

3. Results
3.1. LUC Changes and Magnitude and Trends of LST

The classified LUC maps in 2000, 2010, and 2019 show that Greater Cairo has un-
dergone rapid urbanization over the 19-year period (Figure 2). From 2000 to 2010, the
IS area increased from 564.14 to 698.65 km2; and from 2010 to 2019, the IS area increased
by 171 km2, with a total gain of 305.21 km2 (Table 2). The increase in the IS area in the
2010–2019 period was faster than in the 2000–2009 period. The GS and BL areas showed a
decrease, i.e., a total net loss of 71.83 km2 and 229.19 km2 from 2000 to 2019, respectively.
Overall, the IS area has greatly enlarged by rapid urbanization in Greater Cairo.

Table 2. Area change in the LUC in the study area.

2000 2010 2019

Land Class Area (km2) % Area (km2) % Area (km2) %

Impervious
surface 564.14 22.57 698.65 27.95 869.35 34.77

Greenspace 699.31 27.97 639.52 25.58 627.48 25.1
Bare land 1192.12 47.68 1121.56 44.86 962.93 38.52
Water 44.43 1.78 40.27 1.61 40.24 1.61

Figure 3 shows the density of IS, GS, and BL with a 1 × 1 km grid size. Figure 4 shows
the mean LST of Greater Cairo in the daytime/nighttime in 2000, 2010, and 2019. The mean
LST in the daytime was 42.67, 41.87, and 42.97 ◦C in 2000, 2010, and 2019, respectively.
The mean LST in the nighttime was 24.94, 26.67, and 27.22 ◦C in 2000, 2010, and 2019,
respectively. The mean LST difference (∆ mean LST) between the daytime and nighttime
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was 17.73 ◦C in 2000, 15.20 ◦C in 2010, and 15.75 ◦C in 2019 (Figure 4). The ∆ mean LST
was small in the central region and large in the surrounding area in the three time points.

3.2. Mean LST vs. Density of IS, GS, and BL

Figure 5 indicates the derived mean LST of four LUC types: IS, GS, BL, and W (water).
In the daytime, BL had the highest mean LST in the three time points. The mean LST
difference (daytime—nighttime) of IS was 15.23, 15.63, and 14.59 ◦C, while that of BL was
21.58, 18.45, 18.99 ◦C in 2000, 2010, and 2019, respectively. In the nighttime, the mean
LST of the four LUC types was lower compared with the daytime mean LST. Though GS
showed the lowest mean LST among the four types at the three time points, the difference
in the four types was not as large in the nighttime. This means that the impacts of IS and
BL on the LST increase were less influential at night.

3.3. Magnitude and Trend of the Surface UHI Intensity in the Daytime and Nighttime

The highest density of IS was in URZ1 over time (>96.39% in 2000, >97.98% in 2010,
and >99.21% in 2019) (urban zone), whereas the boundaries between the urban and rural
zones with <15% density of IS were in URZ19 in 2000, URZ23 in 2010, and URZ25 in 2019
(Figures 6 and 7). The urban–rural gradient analysis showed an almost similar trend in
the three periods. The composition ratio of the IS in 1–6 km zones decreased, while the
composition ratio of the IS in 7–25 km zones increased from 2000 to 2019. In the daytime,
the central grid area (URZ1) had the lowest mean LST (Figure 6a). Then, the mean LST
gradually rose with an increase in distance. However, the mean LST tended to drop slowly
from 6 to 9 km, and after 10 km, it began to rise again. Along the same line, the IS density
and BL density revealed a consistent pattern with mean LST. GS density showed an inverse
relationship with mean LST. The statistical analysis based on the 25 URZs indicated positive
correlations between the mean LST and the IS density in the daytime. The GS density
showed a high negative correlation, and the BL density had a high positive correlation
with the mean LST (ρ < 0.001) in the daytime (Figure 6b).
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Figure 4. Land surface temperature (LST) maps of Greater Cairo and its environs derived from Moderate Resolution
Imaging Spectroradiometer (MODIS) LST data (2000, 2010, and 2019); (a) daytime mean LST in 2000; (b) nighttime mean
LST in 2000; (c) daytime and nighttime mean LST difference in 2000; (d) daytime mean LST in 2010; (e) nighttime mean LST
in 2010; (f) daytime and nighttime mean LST difference in 2010; (g) daytime mean LST in 2019; (h) nighttime mean LST in
2019; and (i) daytime and nighttime mean LST difference in 2019. The temperatures are the mean clear-sky LST values
observed during July and August.
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Figure 7 shows the urban–rural gradient pattern in the nighttime. In 2000, 2010, and
2019, the mean LST increased gradually between URZ1 and URZ7 (i.e., approximately
8 km), and then, the 2000 mean LST decreased rapidly after URZ7, whereas the 2010 and
2019 decreases were more gradual (Figure 7a). After URZ13, the mean LST gradually
increased until URZ25 at the three time points. We conclude that the area of surface UHIs
in the nighttime enlarged spatially over time. Overall, the correlation analysis indicated
a high positive correlation between the mean LST and the density of IS in the nighttime.
Conversely, the density of GS and the density of BL had a high negative correlation with
the mean LST in the nighttime (ρ < 0.001) (Figure 7b). Notably, the correlations of mean
LST with IS density in the nighttime were higher than in the daytime in the three periods.

Figure 8 shows the actual situation of surface UHI intensity in the daytime and
nighttime in greater Cairo. We use negative values of daytime (based on Equation (1)) as
positive values (Figure 8a) and positive values in the nighttime (based on Equation (1)) as
negative values (Figure 8b) along the urban–rural gradient because, in the daytime, the
urban zones in Greater Cairo (central grid area) experienced an urban cool island effect; in
contrast, in the nighttime, urban heat islands were recognized, and the influence became
stronger over time. The analysis revealed that the change in mean LST between URZ1 to
URZ25 gradually increased with distance in the daytime, whereas the change in mean LST
between them gradually decreased in the nighttime. The difference in daytime surface
UHI intensity (between the urban zone and rural zone) was 3.45 ◦C in 2000, 3.87 ◦C in
2010, and 3.46 ◦C in 2019 (Figure 8a). The nighttime surface UHI intensity was –3.07 ◦C in
2000, −2.10 ◦C in 2010, and −1.84 ◦C in 2019 (Figure 8b). In the daytime, we observed a
correlation between the change in mean LST and the change in density of IS (positive), the
change in density of GS (negative), and the change in density of BL (positive) (Figure 8a).
In the nighttime, we observed a strong relationship between the changes in mean LST and
density of IS (positive), the change in density of GS (negative), and the change in density of
BL (negative) (ρ < 0.001; Figure 8b).
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3.4. Population Desnisty vs. LST

Figure 9 shows the PD maps of Greater Cairo in 2000, 2010, and 2019. The PD increased
between 2000 and 2019, mainly in the center, east, and north of the study area due to rapid
urban expansion and economic development. The results revealed that the population
of Greater Cairo was shifting from the city core outward. The relationship between the
mean LST and PD was not well-correlated in the daytime (coefficient of determination
(R2) = –0.0033 in 2000, R2 = –0.0002 in 2010, and R2 = 0.0177 in 2019). However, a positive
correlation between mean LST and PD was indicated in the nighttime (R2 = 0.2418 in
2000, R2 = 0.1643 in 2010, and R2 = 0.1681 in 2019). All the data analyses were statistically
significant (ρ < 0.001). We estimated that energy use in the nighttime would cause the
warming of the densely habited regions and industries.
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3.5. Spatial-Metrics-Based Analysis vs. LST

The LUC types had a possible nexus with LST (Table 3), and all the results were
statistically significant (p = 0.000). In the daytime, the three indices of AREA_MN,
LPI, and AI were positively correlated with the mean LST for BL, but they were not as
strongly correlated with IS in the three periods. Conversely, the results showed the opposite
condition with IS in the nighttime from 2000 to 2019.
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Table 3. Correlation results (r values) between three spatial metrics and mean LST.

Daytime

2000 2010 2019

IS GS BL IS GS BL IS GS BL

AREA_MN 0.0198 −0.4022 0.3813 0.0169 −0.3621 0.525 0.0200 −0.5001 0.5209
LPI 0.0454 −0.5238 0.6233 0.2001 −0.5123 0.3494 0.0334 −0.5448 0.6054
AI 0.0479 −0.0989 0.6036 0.0202 −0.0897 0.5989 0.004 −0.4047 0.4503

Nighttime

AREA_MN 0.2624 −0.4489 0.0004 0.1745 −0.4007 0.0006 0.199 −0.5873 0.0087
LPI 0.5077 −0.6199 0.0081 0.5700 −0.6038 0.0097 0.4332 −0.6563 0.0318
AI 0.3210 −0.2237 0.1708 0.2536 −0.296 0.1953 0.3584 −0.3781 0.1403

Note: IS = Impervious surface; GS = Green space; BL = Bare land; AREA_MN = Mean Patch Area; LPI = Largest Patch Index; and
AI = Aggregation Index.

All three indices showed negative relationships with mean LST for GS both in the
daytime and nighttime (Table 3). In the daytime, the values of AI of GS indicated more
fragmentation in 2000 than in 2010, and it became less fragmented by 2019, which is proof
of the negative impact of a strong aggregation with the mean LST. However, GS’s AI results
of the nighttime showed less fragmentation of GS from 2000 to 2019 (r = −0.2237 in 2000,
r = −0.296 in 2010, and r = −0.3781 in 2019) compared with the daytime.

The increase in LPI values of IS in both the daytime and the nighttime shows that mean
patches of IS were less fragmented in 2010 than in 2000, and they became more fragmented
by 2019. Our findings also indicated that large IS patches promoted a significant heat
effect, whereas smaller IS patches generated a lower surface UHI effect. The LPI results in
the daytime showed that the mean patches of BL were more fragmented in 2010 than in
2000. It became less fragmented by 2019, indicating the strong positive impacts of large
patches with the mean LST. Conversely, these values indicated a low positive influence in
the nighttime.

4. Discussion
4.1. Rapid Urbanization and Its Impact on Greater Cairo

Previous studies showed that rapid urbanization increased informal settlements and
environmental degradation in developing countries [103,104]. According to the World Ur-
banization Prospects Report, Greater Cairo’s population is projected to rise from 5.7 million
in 1970 to 14.7 million in 2025 [105]. In 1969, the President of Egypt proposed a master plan
for establishing new towns on the fringes of the Cairo desert area [72]. As a result of this
project, Greater Cairo has undergone scattered urban expansion. It is estimated that many
surrounding desert areas will change to built-up environments in the not-too-distant future,
primarily in the eastern side of Greater Cairo. Our results showed that Greater Cairo had
experienced rapid urbanization in the 19-year period. Similar results reported by Mohamed
and Worku [106] for Addis Ababa and its surrounding environment in Africa (built-up
areas increased 3.7% in 2005, 5.7% in 2011, and 7% in 2015, whereas natural environment
and agricultural lands were in continuous decline. Siddiqui et al. [107] found that the
urban growth rate increased (4.6% in 1993 to 26% in 2013) in Uttar Pradesh of the Indian
metropolitan, showing scattered and infilling urban expansion. Han and Jia [108] found
that urban areas grew by 590 km2 from 1995 to 2015, with a 4% annual growth rate, while
agricultural areas declined to 397 km2 by 2015 in Foshan, China. The urban development
policies for Greater Cairo will enable the use of desert areas for urban sustainability through
the advances in industrial zones and the transportation system with balanced control of
urban expansion [109].

Greater Cairo’s urbanization has transformed the natural landscape to IS areas, includ-
ing buildings, roads, and other human-made surface materials, enhancing the surface UHI
effect. Surface features such as buildings, roads, and other IS areas can absorb more solar
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radiation than natural surface areas [12]. Due to daytime solar radiation, these IS areas
absorb more solar energy, but the absorbed solar energy is released during the night. As a
result, the surface UHI effect over city areas is more pronounced than in the surrounding
natural areas during the nighttime because, at night, there is no solar energy. Still, the
urban core area of Greater Cairo shows an urban heat island effect (Figures 4 and 8), and
the green spaces, which help to reduce urban heat at nighttime, of city area is relatively
small compared with the surrounding area (Figure 8). The outcome of the study analysis
revealed the significant influence of urbanization on the spatial intensity of the surface
UHI effect.

4.2. Surface UHI Nexus with LUC Classes and PD

In Greater Cairo, studying surface UHI in both daytime and nighttime is critical
because the city is located in a hot desert region, and a large portion of the area is covered
by desert sand (Figure 2). Another important factor is its LUC composition: the northern
part of Greater Cairo is covered by green areas (Figure 2). Our findings revealed that the
surface UHI gradually increased from the central grid (URZ1) in the daytime and gradually
decreased in the nighttime. There was a significant difference between LUC categories in
the daytime (Figure 8). Conversely, there was no substantial difference between them in the
nighttime (Figure 5). The surface UHI effect in the nighttime did not fully correspond with
LUC categories (Figures 4 and 5), indicating that another mechanism works to produce
the nighttime surface UHI effect. Therefore, it is crucial to examine why these phenomena
happen in Greater Cairo.

First, the urban cool island effect was prominent in the daytime CBD. The decline
in IS density and increase in GS density in the central area promoted the cooling effect
in the daytime (Figure 6). Cairo’s government announced a provisioning service in the
urban green areas such as green roofs and urban agriculture at the rooftop [110], green
corridors, urban parks, green pedestrian, green parking for buses and taxis, as well as
urban planning mainly in the urban core area and its environs [111]. These projects have
promoted the urban cool island effect in the daytime. Building shading also affects LST
more significantly than tree shading because there are more high-rise buildings in the city
core area than trees and many buildings have a light roof, producing a positive effect on
the energy balance. The suburban area showed high-temperature values in the daytime
because IS density gradually increased with distance. New urban development projects
have been constructed on desert sand without proper green space planning.

Second, the LUC categories did not substantially promote the surface UHI effect
during the nighttime. As mentioned above, due to the daytime solar radiation, such IS
areas absorb more solar energy, but in the nighttime, the absorbed solar energy is released.
Another factor is anthropogenic activities. Our result revealed a positive correlation
between PD and mean LST during the nighttime (Figure 9), indicating that anthropogenic
heat released from industry, traffic, and air conditioners from apartments has promoted the
surface UHI effect in the nighttime. Light-color paints, urban materials, and cool building
materials would help to decrease the temperature. Urban water is also one solution to
adopt to mitigate the surface UHI phenomenon in the nighttime [112]. Home gardens
should also be promoted during landscape and urban planning to minimize the surface
UHI effect during the nighttime.

4.3. Trend in Surface UHI Intensity along the Urban–Rural Gradient

Based on MODIS surface temperature data, the surface UHI effect was identified in
the study area (Figure 4). Along with the urban–rural gradient pattern, the lowest LST
appeared in the CBD. In contrast, the highest LST appeared 17 to 25 km away from the
city center, with a difference in surface UHI intensity between urban zone and rural zone
−3.45 ◦C in 2000, −3.87 ◦C in 2010, and −3.45 ◦C in 2019 in the daytime (Figure 6). Unlike
previous studies in Africa [54,113], the CBD in Greater Cairo experienced the urban cool
island phenomena in the daytime. Conversely, the surrounding rural zones experienced a
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relative rise in the surface temperature compared with the CBD. Several studies around
the world have reported the same phenomenon. For instance, Rasul et al. (2015) [114]
examined the daytime urban cool island effect in Erbil, Iraqi Kurdistan, using Landsat 8
data. They reported that the urban cool island intensity in the CBD differed from 3.5 to
4.6 ◦C in comparison with a 10 km buffer zone around the city. Haashemi et al. (2016) [115]
explored the seasonal changes in the urban heat island in the semi-arid city of Tehran, Iran,
using MODIS and Landsat 8 data. Their findings indicated that surface urban cool islands
remained in the daytime (the maximal urban–rural contrast was −4 Kelvin in March). The
maximal nighttime value of the urban–rural difference was 3.9 Kelvin in May. Lazzarini
et al. (2015) [71] examined urban climate modification (urban heat island study) in eight
hot and semi-arid cities in the world, including Abu Dhabi in the United Arab Emirates;
Kuwait City in Kuwait; Riyadh in Saudi Arabia; Doha in Qatar; Las Vegas and Phoenix in
the U.S.; Biskra, Algeria; and Bikaner, Rajasthan. They revealed that six cities, Abu Dhabi,
Kuwait, Las Vegas, Phoenix, Biskra, and Bikaner, showed the cool UHI effect in the central
area during the daytime.

The magnitude of the surface UHI intensity changed considerably with LUC types
(Figures 5–7). However, we found that the LST values of daytime and nighttime were
dependent not only on LUC composition but also on different environmental factors such
as significant air masses, dust, humidity, and solar radiation when the MODIS thermal
band imageries were taken. In the daytime, the zones 8 to 10 km away from the central grid
had the lowest drop in the mean LST because these zones had an abundance of the natural
environment (e.g., MAZHAR botanical garden area, a large portion of the Nile River, and
the JazĪrat Warrāq al H̨ad̨ar area) compared with the surrounding areas. The Nile River
and expansive green spaces were the sources of cool air in this zone. It is important to
note that the urban cool island effect was dominant in the central grid area in the daytime.
According to the density analysis, this area was almost covered with IS (96.39% in 2000,
97.98% in 2010, and 99.21% in 2019) (Figures 6 and 7). This means that the IS′s effect
temperature rise was less than that of BL. Furthermore, the central areas consisted of mixed
land use of IS and GS with the river environment. The zones stretching from 3 to 7 km did
not show a significant cooling island effect along the urban–rural gradient.

In the nighttime, the density of IS was the critical factor in the increase in the urban
heat effect in the CBD (Figure 7). Thermal energy absorbed in the daytime is released at
nighttime, contributing to the rise in surface UHI [12,116]. In contrast, we observed that
the highest mean LST dropped in areas 12 to 16 km away from the city center because
green-related land use was dominant in these zones (Figure 7), e.g., cropland and different
kinds of desert vegetation such as low canopy trees, shrubs, herbs, and water-based plants
(cactus). The daytime and nighttime and urban–rural anomalies were related to the LUC
composition. In the nighttime, the impervious surface enhanced surface UHI intensity,
combined with the effect of anthropogenic activities.

Though most surface UHI intensity studies have used IS and GS as explanatory
variables [56,117,118], a few studies have focused on spatial urban–rural gradient
patterns [72]. The variation in the change in mean LST along the urban–rural gradient
provides a clue for future urban design and urban thermal mitigation strategies. In our
study, the change in surface UHI intensity was examined through surface temperature
variations (the change in mean LST) along the urban–rural gradient, i.e., between the
density of IS, GS, and BL and between urban–rural zones in the daytime and nighttime
at three time points (Figure 8). We compared the results of surface UHI intensities
over time. We examined the overall increase and decrease in the surface UHI intensity
in the daytime and nighttime in the study area (Figure 8). Along the urban–rural
gradient, the rise in surface UHI intensity from 2000 to 2019 based on the urban zone
(the highest density of IS) and the rural zone (the lowest density of IS < 15%) was
–3.41 ◦C lower in the daytime and was 2.1 ◦C higher in the nighttime. Notably, the
surface UHI intensity fluctuated (either increasing or decreasing) at critical thresholds
along the urban–rural gradient.
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To the best of our knowledge, no previous studies identified the critical threshold
of surface UHI intensity for LST change along the urban–rural gradient. However, most
studies proved that the surface UHI effect is most critical in summer [34]. We determined
the threshold value of using URZs to clearly explain the mean LST variations in the urban
and rural zones in the daytime and nighttime. The urban design is less aggregated in urban
settings, an increase in irregular vegetation areas, coupled with small and medium water
areas, would be a practical approach to mitigate the surface UHI effect. There is an urgent
need for designing a sustainable urban landscape to avoid the risk of strong surface UHI
and heatwaves.

4.4. Landscape Configuration on Surface UHI Formation

The AREA_MN, LPI, and AI indices were significantly correlated with mean LST.
AREA_MN, LPI, and AI of IS did not substantially influence the daytime LST variation
(Table 3). Conversely, the three above-mentioned metrics of IS showed a considerable
positive influence on the nighttime LST variation in Greater Cairo, indicating that urban
planners must pay attention to the IS category because it promotes the surface UHI effect
in the nighttime. However, except for AI, AREA_MN and LPI of GS did not produce large
differences in daytime and nighttime (Table 3).

Our findings are similar to those of other studies. For instance, Zhou et al. (2011) [23]
revealed a strong correlation of mean patch size and mean shape index with mean LST
for IS (positive) and for GS (negative) at the Gwynns Fall watershed in the USA. Li et al.
(2012) [119] reported a negative correlation between mean patch size, mean shape index of
patches of GS, and mean LST in Beijing, China. Among the three spatial metrics of IS and
GS, mean LST showed significant correlations, positive for IS and negative for GS, in both
daytime and nighttime in the study area (Table 3). Large patches of GS provide cooling,
thus lowering LST more than smaller patches of GS.

Continuous and larger patches of IS provided a stronger surface UHI effect than
smaller patches of IS in both daytime and nighttime. The area experienced a stronger
surface UHI effect in the nighttime than the daytime due to continuous and large patches
of IS around the central grid area. Human activities in large patches of the IS area have
supported the increase in the nighttime temperature due to anthropogenic heat release,
the use of nighttime air conditioners, and traffic in the urban core area. Additionally,
BL’s continuous and large patches produced a strong surface UHI effect in the daytime in
Greater Cairo. In contrast, the same condition was sufficiently influential in producing the
cool island effect in the nighttime in Greater Cairo (Figures 4 and 8).

In general, fragmented green areas are less effective in mitigating the surface UHI
effect in urban areas. Therefore, we suggest increasing vegetation and ponds in urban areas,
introducing green roofs and green walls, and other such practical strategies to mitigate the
strong surface UHI effect in desert cities like Greater Cairo.

5. Conclusions

We examined the spatial change in the local climate of Greater Cairo influenced by
the surface UHI phenomenon in recent decades. MODIS LST data were used to study
the daytime and nighttime temperature distribution using the urban–rural gradient and
landscape-metrics-based analysis. The LUC classification showed that Greater Cairo had
experienced rapid urbanization since 2000. The AREA_MN, LPI, and AI of the patches of
IS (positive) and GS (negative) indicated strong correlations with mean LST at the three
time points. The central area (URZ1) in Greater Cairo has experienced the cool island
effect in the daytime but the surface UHI effect in the nighttime. The IS density and mean
LST had a week (positive) correlation in the daytime but a strong positive relationship
in the nighttime. The surface UHI formation in the nighttime did not correspond with
the LUC categories compared with the surface UHI formation in the daytime, indicating
anthropogenic activities that strengthen the surface UHI effect.
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The urban–rural gradient serves as a unique natural opportunity to identify and
mitigate environmental distortion. The urban–rural gradient analysis and landscape-
metrics-based analysis are beneficial for predicting the surface UHI surface and its nexus
with spatial-temporal LUC changes in future surface UHIs.

We discussed the importance of increasing vegetative cover to reduce IS in Greater
Cairo. Urban landscape planners must pay attention to the 1 to 11 km zones where the
mean LST is high and GS density is low. It is time to mitigate the surface UHI effect in
Greater Cairo by increasing green cover and dispersing the dense building distribution.
In this situation, it is vital to introduce green roofs and green walls, grow clustering or
irregular trees with large crowns, and construct small- and medium-sized water ponds to
cope with the rising surface UHI.
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LST Land Surface Temperature
TM Thematic Mapper
OLI/TIRS Operational Land Imager/Thermal Infrared Sensor
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IS Impervious Surface
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BL Bare Land
W Water
LUC Land Use/Cover
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UTM Universal Transverse Mercator
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NASA National Aeronautics and Space Administration
EOS Earth Observing System
URZ Urban–Rural Zone
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LPI Largest Patch Index
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Appendix A

Table A1. List of Landsat images used in this study (Level 2). TM, Thematic Matter; OLI/TIRS, Operational Land
Imager/Thermal Infrared Sensor.

Year Sensor Image ID Acquisition Date

2000 Landsat 5 TM

LT05_L2SP_176039_20000714_20200906_02_T1 14-07-2000
LT05_L2SP_176039_20000730_20200906_02_T1 30-07-2000
LT05_L2SP_176039_20000815_20200907_02_T1 15-08-2000
LT05_L2SP_176039_20000831_20200907_02_T1 31-08-2000

2010 Landsat 5 TM
LT05_L2SP_176039_20100710_20200823_02_T1 10-07-2010
LT05_L2SP_176039_20100710_20200823_02_T1 27-08-2010

2019 Landsat 8 OLI/TIRS

LC08_L2SP_176039_20190703_20200827_02_T1 03-07-2019
LC08_L2SP_176039_20190719_20200827_02_T1 19-07-2019
LC08_L2SP_176039_20190804_20200827_02_T1 04-08-2019
LC08_L2SP_176039_20190820_20200827_02_T1 20-08-2019

Table A2. Accuracy instructions of the classified LUC maps of 2000.

Classified Data
2000

Total User’s Accuracy (%)
IS GS BL W

KNN

IS 129 2 2 1 134 96.27
GS 5 121 3 0 129 93.80
BL 2 1 49 1 53 92.45
W 1 1 0 82 84 97.62

Total 137 125 54 84 400

Producer’s accuracy (%) 94.16 96.80 90.74 97.62

Overall accuracy (%) = 95.25

RF

IS 108 16 3 6 133 81.20
GS 8 110 4 5 127 86.61
BL 8 3 54 1 66 81.82
W 3 4 0 67 74 90.54

Total 127 133 61 79 400

Producer’s accuracy (%) 85.04 82.71 88.52 84.81

Overall accuracy (%) = 84.75

SVM

IS 112 13 3 3 131 85.50
GS 9 111 4 2 126 88.10
BL 5 2 62 2 71 87.32
W 2 4 0 66 72 91.67

Total 128 130 69 73 400

Producer’s accuracy (%) 87.50 85.38 89.86 90.41

Overall accuracy (%) = 87.75
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Table A2. Cont.

Classified Data
2000

Total User’s Accuracy (%)
IS GS BL W

ANN

IS 96 18 4 3 121 79.34
GS 11 104 1 4 120 86.67
BL 8 3 76 4 91 83.52
W 4 3 0 61 68 89.71

Total 119 128 81 72 400
Producer’s accuracy (%) 80.67 81.25 93.83 84.72

Overall accuracy (%) = 84.25
Note: KNN = K-Nearest Neighbor; RF = Random Forest; SVM = Support Vector Machine; ANN = Artificial
Neural Network; IS = Impervious surface; GS = Green space; BL = Bare land; and W = Water.

Table A3. Accuracy instructions of the classified LUC maps of 2010.

Classified Data
2010

Total User’s Accuracy (%)
IS GS BL W

KNN

IS 119 3 2 4 128 92.97
GS 3 118 3 2 126 93.65
BL 13 1 67 1 82 81.71
W 2 1 0 61 64 95.31

Total 137 123 72 68 400

Producer’s accuracy (%) 86.86 95.93 93.06 89.71

Overall accuracy (%) = 91.25

RF

IS 124 16 3 6 149 83.22
GS 9 97 3 5 114 85.09
BL 4 2 74 1 81 91.36
W 4 1 0 51 56 91.07

Total 141 116 80 63 400

Producer’s accuracy (%) 87.94 83.62 92.50 80.95

Overall accuracy (%) = 86.5

SVM

IS 114 7 5 8 134 85.07
GS 11 86 4 2 103 83.50
BL 1 5 87 3 96 90.63
W 1 3 0 63 67 94.03

Total 127 101 96 76 400

Producer’s accuracy (%) 89.76 85.15 90.63 82.89

Overall accuracy (%) = 87.5
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Table A3. Cont.

Classified Data
2010

Total User’s Accuracy (%)
IS GS BL W

ANN

IS 112 12 17 3 144 77.78
GS 7 76 6 2 91 83.52
BL 13 3 76 4 96 79.17
W 4 3 0 62 69 89.86

Total 136 94 99 71 400

Producer’s accuracy (%) 82.35 80.85 76.77 87.32

Overall accuracy (%) = 81.5
Note: KNN = K-Nearest Neighbor; RF = Random Forest; SVM = Support Vector Machine; ANN = Artificial
Neural Network; IS = Impervious surface; GS = Green space; BL = Bare land; and W = Water.

Table A4. Accuracy instructions of the classified LUC maps of 2019.

Classified Data
2019

Total User’s Accuracy (%)
IS GS BL W

KNN

IS 117 2 2 0 121 96.69
GS 4 108 5 2 119 90.76
BL 7 2 81 0 90 90.00
W 2 1 0 67 70 95.71

Total 130 113 88 69 400

Producer’s accuracy (%) 90.00 95.58 92.05 97.10

Overall accuracy (%) = 93.25

RF

IS 126 5 13 1 145 86.90
GS 3 91 6 2 102 89.22
BL 17 2 64 1 84 76.19
W 5 1 0 69 75 92.00

Total 151 99 83 73 406

Producer’s accuracy (%) 83.44 91.92 77.11 94.52

Overall accuracy (%) = 86.21

SVM

IS 107 8 17 4 136 78.68
GS 11 96 4 2 113 84.96
BL 21 5 71 3 100 71.00
W 1 3 0 47 51 92.16

Total 140 112 92 56 400

Producer’s accuracy (%) 76.43 85.71 77.17 83.93

Overall accuracy (%) = 80.25
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Table A4. Cont.

Classified Data
2019

Total User’s Accuracy (%)
IS GS BL W

ANN

IS 98 12 10 3 123 79.67
GS 3 81 3 2 89 91.01
BL 23 3 85 5 116 73.28
W 1 2 0 69 72 95.83

Total 125 98 98 79 400

Producer’s accuracy (%) 78.40 82.65 86.73 87.34

Overall accuracy (%) = 83.25

Note: KNN = K-Nearest Neighbor; RF = Random Forest; SVM = Support Vector Machine; ANN = Ar-
tificial Neural Network; IS = Impervious surface; GS = Green space; BL = Bare land; and W = Water.
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