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Abstract: Spatial information of particle size fractions (PSFs) is primary for understanding the thermal
state of permafrost in the Qinghai-Tibet Plateau (QTP) in response to climate change. However, the
limitation of field observations and the tremendous spatial heterogeneity hamper the digital mapping
of PSF. This study integrated log-ratio transformation approaches, variable searching methods, and
machine learning techniques to map the surficial soil PSF distribution of two typical permafrost
regions. Results showed that the Boruta technique identified different covariates but retained those
covariates of vegetation and land surface temperature in both regions. Variable selection techniques
effectively decreased the data redundancy and improved model performance. In addition, the spatial
distribution of soil PSFs generated by four log-ratio models presented similar patterns. Isometric
log-ratio random forest (ILR-RF) outperformed the other models in both regions (i.e., R2 ranged
between 0.36 to 0.56, RMSE ranged between 0.02 and 0.10). Compared with three legacy datasets,
our prediction better captured the spatial pattern of PSFs with higher accuracy. Although this study
largely improved the accuracy of spatial distribution of soil PSFs, further endeavors should also be
made to improve model accuracy and interpretability for a better understanding of the interaction
and processes between environmental predictors and soil PSFs at permafrost regions.

Keywords: soil texture; log-ratio transformation; machine learning; variable selection

1. Introduction

Soil particle size fractions (PSFs), including sand, silt, and clay contents, are essen-
tial physical characteristics affecting many physical and chemical properties. They have
been commonly used as primary inputs to determine hydrothermal properties in the land
surface models to simulate hydrological, ecological, and environmental processes [1–3].
In recent decades, permafrost on the Qinghai–Tibet Plateau (QTP) has been undergoing
degradation due to recent climate change [4,5]. The permafrost degradation has exerted im-
pacts on hydrology and energy balance, carbon cycle, and engineering infrastructure [5–7].
Therefore, many concerns have been raised for understanding, assessing, and predicting
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changes in permafrost [5,6]. The current soil PSF datasets, which encompass the QTP
extent (e.g., SoilGrids250m [8], the Harmonized World Soil Database [9], and the China
Dataset of Soil Properties for Land Surface Modeling [10]), are mainly generated from the
Second National Soil Survey of China, in which the QTP samples primarily spread on the
seasonally frozen ground rather than permafrost regions. Although the latest Chinese soil
texture map [10] supplemented with several soil samples from the permafrost regions, it
was not specific to the QTP or the permafrost regions. In summary, there is significant
uncertainty in the representativeness of existing soil texture datasets for permafrost regions
under the effects of intense freezing and thawing. To accurately simulate the changes in
hydrothermal characteristics of permafrost on the plateau under the influence of climate
change, a set of soil texture data for permafrost areas is urgently needed.

The compositional nature, i.e., non-negativity, constant sum, unbiasedness prediction,
and minimum prediction error variance [11], makes soil PSFs distinctive from other soil
properties [12]. Traditional geostatistical techniques, such as ordinary kriging, are not di-
rectly applicable due to theoretical and practical problems [13,14]. Log-ratio transformation
methods, such as additive log-ratio, centered log-ratio, symmetry log-ratio, and isometric
log-ratio transformations [12,15,16] can be implemented with geostatistical methods, or
machine learning approaches in PSFs prediction to obtain promising results [1,14,17].

The digital soil mapping (DSM) framework, formalized by McBratney et al. [18], offers
a spatial model to quantitatively express the relationship between a soil property or class
and environmental variables for a given spatial location [18–20]. A considerable demand
for quantitative and spatial soil information impulses DSM to be extensively applied in
predicting multiple soil properties at various spatial scales [21–23]. Since machine learning
algorithms are not conditioned to follow any statistical assumptions, their predictions often
appear more accurate than those made by conventional models [19]. Khaledian et al. [24]
reviewed DSM cases and reported the strength and weaknesses of six commonly used
machine learning algorithms. The comparison showed that RF and Cubist were outstanding
since they not only excel at dealing with small sample size, also had better interpretability
of the resulting model.

A conflict lies in the covariate selection for digital soil mapping. On one hand, envi-
ronmental covariates are often collected comprehensively to minimize the subjectivity in
covariates collection and improve the model performance [21]. On the other, abundant
variable information can bring about data redundancy and interfere with the learning
process, affecting model performance [21,25]. Hence, covariate selection is an essential step
in DSM modeling [26]. Covariate selection generally involves two problems, i.e., minimal-
optimal and all-relevant. The former aims to search for the minimum set of predictor
variables yielding the best prediction accuracy [27,28], while the latter is focused on finding
all-relevant variables to the target property [29]. Therefore, the minimal-optimal set is of
particular interest in developing predictive models, while the all-relevant set has great
value in understanding the mechanisms underlying the soil-environment relationship [21].

In permafrost regions of QTP, most vegetation communities have a shallow root
system [30]. The soil organic carbon is mainly concentrated in the topsoil (i.e., 0–30 cm)
and declines rapidly with depth [31,32], leading to the high soil porosity and water re-
tention capability of the topsoil on the QTP [33,34]. Some commonly used datasets (e.g.,
GLDAS-Noah dataset and the China dataset of soil properties for land surface modeling)
underestimate sand content and overestimate clay content on QTP, which results in the
overestimation of soil moisture. As primary input for all kinds of land surface models,
accurate estimation of the spatial distribution of soil PSFs is an urgent need for understand-
ing the hydrothermal processes in permafrost regions under climate change. However, due
to the harsh environment and complex landscape, in situ observations at the permafrost
distributed areas are scarce [5,35], making a well-focused dataset of soil PSFs in this area
continue to be challenging work. Therefore, this study focused on the surficial layer and in-
tegrated the log-ratio transformations, covariate selection, and machine learning techniques
to generate the spatial distribution of soil PSFs in two permafrost regions.
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2. Materials and Methods
2.1. Study Area

Two typical permafrost distributed regions are selected in this study, namely Wenquan
(WQ) and Budongquan-Qingshuihe (BQ) (Figure 1). WQ (35.19◦–35.70◦N, 99.09◦–99.60◦E)
is a typical transitional area between permafrost and seasonally frozen ground in the
northeastern part of the QTP [36,37]. It covers an area of about 2572 km2, 76% of which is
covered by permafrost. The altitude varies from 3570 m to 5060 m. As a cold temperate
continental climate area, it is semi-humid and semi-arid [38]. The mean annual precipitation
is 500–600 mm, and the mean annual temperature is −3.2 ◦C. WQ is primarily a grassland
ecosystem, and the dominant vegetation types are alpine meadow and alpine steppe. The
parent materials are slope deposits and residual deposits [36].
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Figure 1. Study areas and sampling locations. (a) Identifies the location of two study area on the Qinghai–Tibet Plateau,
(b,c) present the sampling sites at Budongquan–Qingshuihe and Wenquan, respectively.

BQ (33.34◦~35.73◦N, 93.39◦~97.65◦E) is located in the transition from the hills in the
central to the low mountains in the eastern permafrost region [36]. The permafrost zones
transit from the large extent of continuous warm and ice-rich permafrost to the alpine and
mountainous isolated permafrost in the east [36,37]. It covers an area of about 31,270 km2.
Its altitude varies from 3770 m to 5190 m. The annual mean air temperature is −4.4 ◦C,
and the mean annual precipitation is 435 mm, with less precipitation from the east to the
west. The climatic conditions change from the semi-arid cold in the west to the semi-humid
cold regions in the east. Consequently, the primary vegetation types vary from the alpine
meadow, alpine steppe to alpine desert. BQ embodies all the soil types of the permafrost
region in the eastern Qinghai–Tibet Plateau, and mainly developed on the alluvial and
fluvial deposit and slope deposit [36,38].
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2.2. Data Sources
2.2.1. Soil Sampling

The sampling sites of the two study areas were selected with full consideration of
parent material, terrain, vegetation, human activities, and accessibility. Referring to the
Standard of Soil Profile Description (created by the Institute of Soil Science, Chinese
Academy of Sciences) and the Field Book for Describing and Sampling Soils [39], all the soil
profiles have been well documented [36]. A total of 73 sites in the WQ region were visited
for sampling from September to October in 2009 and 55 sites in the BQ region from July
to August in 2011. Samples were air-dried and then passed through a 2 mm sieve. After
averaging the samples that share the same covariate value, 59 samples and 49 samples were
left for the WQ and BQ region, respectively. Since environmental covariates have more
intense impact on the topsoil than the deep soil [40], this study focused on the soil PSFs of
surficial horizon (0–30 cm). The sand (particles 2000–50 µm), silt (particles 50–2 µm), and
clay (particles < 2 µm) contents were determined using the pipette method [41] for samples
from the WQ region and samples from BQ were analyzed by laser diffraction (LS13320,
Beckman Coulter Inc., Brea, CA, USA).

2.2.2. The Environmental Covariates

In this study, we used a total of 160 covariates to represent environmental condi-
tions (Table 1). The climatic covariates include precipitation, air temperature, and land
surface temperature (LST) over 2003–2011. The precipitation and air temperature were
obtained from the national Tibetan Plateau data center [42], and LST was obtained from the
MOD11A1 and MYD11A1 datasets of moderate resolution imaging spectrometer (MODIS)
observations. The daytime and nighttime LST were filtered according to the quality in-
dicators of MOD11A1 and MYD11A1 [43]. Hence, the LST difference was generated as
well. The maximum, minimum, and mean of seasonal and annual daytime and nighttime
LST, and its difference and mean over nine years, were calculated, as was the maximum,
minimum, and mean of seasonal and annual air temperature and precipitation. The digital
elevation model (DEM) data were derived from the WorldClim database [44], and the DEM
derivatives were computed using SAGA GIS v2. Vegetation conditions were represented
by net primary productivity (NDVI), enhanced vegetation index (EVI), and gross primary
productivity (GPP), which were derived from the MOD13A3, MYD13A3, MOD17A2H, and
MYD17A2H datasets over nine years [43]. The annual NDVI, EVI, and GPP were processed
by the maximum value composite approach. The vegetation and climate covariates in the
sampling year and the multiyear average were extracted to the sampling sites. All the
covariate layers were projected to the Albers conic equal area projection and resampled
to 1 km by the bilinear method. Besides, a land cover classification dataset, namely the
dataset of land cover in Northwest China from 1990 to 2010 [45], was used to mask out
water bodies, residential areas, pavement, bare rock, snow cover, and glaciers.

Table 1. Environmental covariates for predicting soil particle size fractions.

Category Covariate 1 Variable Abbreviation N2 Resolution

Vegetation

Enhanced vegetation index of the sampling year and the
multiyear average EVI_1/9 2 1 km

Normalized difference vegetation index of the sampling
year and the multiyear average NDVI_1/9 2 1 km

Gross primary productivity of the sampling year and the
multiyear average GPP_1/9 2 500 m
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Table 1. Cont.

Category Covariate 1 Variable Abbreviation N2 Resolution

Terrain

Aspect asp 1 1 km
general curvature curva 1 1 km

Elevation dem 1 1 km
Flow path length FPL 1 1 km

Multi-resolution Ridge Top Flatness MRRTF 1 1 km
Multi-resolution Valley Bottom Flatness MRVBF 1 1 km

Slope Slp 1 1 km
Slope height SlpHeight 1 1 km
Slope length SlpLength 1 1 km

Stream Power Index SPI 1 1 km
SAGA Wetness Index SWI 1 1 km

Terrain Ruggedness Index TRI 1 1 km
Topographic Wetness Index TWI 1 1 km
Vector Ruggedness Measure VRM 1 1 km

Land surface
temperature (LST)

Annual minimum, maximum, mean of daytime LST of the
sampling year and the multiyear average

yr_d_i_1/9,
yr_d_a_1/9,
yr_d_e_1/9

6 1 km

Annual minimum, maximum, mean of nighttime LST of
the sampling year and the multiyear average

yr_n_i_1/9,
yr_n_a_1/9,
yr_n_e_1/9

6 1 km

Annual minimum, maximum, mean of day/night LST
differential of the sampling year and the multiyear average

yr_df_i_1/9;
yr_df_a_1/9;
yr_df_e_1/9

6 1 km

Annual mean of day/night LST average of the sampling
year and the multiyear average yr_dn_e_1/9 2 1 km

Seasonal minimum, maximum, mean of daytime LST of
the sampling year and the multiyear average

s1_d_i_1/9, . . . ,
s4_d_i_1/9;

s1_d_a_1/9, . . . ,
s4_d_a_1/9;

s1_d_e_1/9, . . . ,
s4_d_e_1/9

24 1 km

Seasonal minimum, maximum, mean of nighttime LST of
the sampling year and the multiyear average

s1_n_i_1/9, . . . ,
s4_n_i_1/9;

s1_n_a_1/9, . . . ,
s4_n_a_1/9;

s1_n_e_1/9, . . . ,
s4_n_e_1/9

24 1 km

Seasonal minimum, maximum, mean of day/night LST
differential of the sampling year and the multiyear average

s1_df_i_1/9, . . . ,
s4_df_i_1/9;

s1_df_a_1/9, . . . ,
s4_df_a_1/9;

s1_df_e_1/9, . . . ,
s4_df_e_1/9

24 1 km

Seasonal day/night LST average of the sampling year and
the multiyear average

s1_dn_e_1/9,
. . . ,s4_dn_e_1/9 8 1 km

Precipitation

Annual precipitation of the sampling year and
multiyear mean pre_1/9 2 1 km

Seasonal precipitation of the sampling year and the
multiyear average

pre_s1_1/9, . . . ,
pre_s4_1/9 8 1 km

Air temperature

Annual minimum, maximum, mean temperature of the
sampling year and the multiyear average

tmn_yr_1/9,
tmx_yr_1/9,
tmp_yr_1/9

6 1 km

Seasonal minimum, maximum, mean temperature of the
sampling year and the multiyear average

tmn_s1_1/9, . . . ,
tmn_s4_1/9;tmx_s1_1/9,

. . . ,
tmx_s4_1/9;tmp_s1_1/9,

. . . , tmp_s4_1/9

24 1 km

1 The sampling year refers to 2009 and 2011 for samples collected at WQ and BQ regions, respectively. The multiyear here refers to
2003–2011. 2 N, number of variables.
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2.2.3. Existing Datasets of Soil PSFs

Three existing PSF datasets were applied in comparison with our prediction. A China
soil characteristic dataset (CSCD) [46] was developed by the polygon linkage method
based on 8595 soil profiles and the soil map of China. The content of clay and sand was
captured by two layers with a spatial resolution of 30 arc seconds (~1 km). In this study,
the clay and sand content in the top horizon (0–30 cm) was used. A China dataset of
soil properties for land surface modeling (CDSL) [10] was developed for the application
in land surface modeling by the polygon linkage method as well. The vertical variation
of each soil property was captured by eight layers, and the soil fractions of the top four
vertical layers (i.e., 0–0.045, 0.045–0.091, 0.091–0.166, 0.166–0.289 m) were used in this
study. The SoilGrids250m dataset (SG250) was developed by ensemble machine learning
approaches with 150,000 sites spread over all continents [8]. It generated soil attributes at
seven standard depths with a spatial resolution of 250 m, and the uppermost layers (0, 5,
15, and 30 cm depths) were generalized using Equation (1) in this study.

2.3. Compositional Data and Transformation
2.3.1. Conversion of PSFs in the Surface Layer

The original soil PSFs were recorded along genetic horizons in the United States
Department of Agriculture (USDA) soil taxonomy. The PSFs from 0 to 30 cm depths were
generalized using the following:

f (x) =
n

∑
i=1

1
30

xidi (1)

where f (x) is a soil PSF (i.e., clay, silt, or sand) at the depth of 0–30 cm, xi is the soil PSF of
the ith horizon, and di is the depth of the ith horizon. The PSFs conversion of the CDSL
and SoilGrids250m datasets followed the same rule.

2.3.2. Transformation of Compositional Data

Former studies have evaluated the performance of four commonly used log-ratio
transformations. The additive log-ratio (ALR) transformation [12] was the most classic
and widely used, but arbitrarily choosing the divisor in ALR transformation may result in
problems in compositional data analysis. To solve the problems of ALR transformation,
isometric log-ratio (ILR) transformation [15] was proposed, and ILR has been evaluated
with satisfactory performance in soil PSF mapping [1,15]. Therefore, in this study, ALR and
ILR transformations were employed. The ALR transformation is defined as:

ALR(xi) = ln
xi
xD

, i = 1, 2, . . . , D (2)

The ALR back-transformed equation is defined as:

ALR(xi) =
exp ALR(xi)

∑D
i=1 exp ALR(xi)

(3)

The ILR transformation [15] is defined as:

ILR(xi) =

√
i

i + 1
ln

i
√

∏i
j=1 xj

xi+1
, i = 1, 2, . . . , D− 1 (4)

and its back-transformed equation [47] is defined as:

Y(xi) =
D

∑
j=i

ILR
(
xj
)√

j(j + 1)
−
√

i− 1
i

ILR(xi−1) (5)
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where ILR(x0) = ILR(xD) = 0 and i = 1, 2, . . . , D, which is then back-transformed to the
original soil PSFs via the following equation:

ILR(xi) =
exp Y(xi)

∑D
i=1 exp Y(xi)

(6)

where xi represents the content of the soil PSFs. ALR(xi) and ILR(xi) represent the trans-
formed values at the sampling site i. ALR(xi) and ILR(xi) represent the back-transformed
PSFs, and D represents the dimension. The ALR and ILR functions were implemented with
compositions package [48] in R 3.6.3 (R Development Core Team, 2020). The predictive
results were back-transformed to three soil PSFs (i.e., clay, silt, and sand) using alrInv and
ilrInv functions.

2.4. Covariate Selection Techniques

The Boruta method was applied to sort out all-relevant covariates for soil PSFs pre-
diction. It is a wrapper method, developed on the basis of random forest (RF) algorithm.
Therefore, similarly to RF, it can handle nonlinear as well as linear relationships [21,29]. To
identify the irrelevant variables, the shadow attributes are created, and their importance
is used to identify irrelevant variables [29,49]. Minimal-optimal features were selected to
develop parsimonious models for PSF prediction. Instead of exhaustively searching all
possible subsets of all relevant sets, which are computationally intensive and impractical,
strategic subset selection techniques suggested by Xiong et al. [21] were employed. In this
study, greedy forward (GF), greedy backward (GB), hill climbing (HC), and simulated
annealing (SA) were implemented to compose the minimal-optimal sets [50]. The greedy
algorithms, including GF, GB, and HC, search for local optima. The GF algorithm starts
evaluating subsets with only one predictor variable. Then, by adding predictor variables
one by one, GF finds its best subset. On the contrary, the GB algorithm begins with the
whole set and drops predicting variables in turn until it finds its best subset. HC algorithm
starts with a subset composed of arbitrarily selected variables. It finds a better subset
by incrementally including or eliminating one variable only when a subset has higher
predictive power. SA is a heuristic algorithm searching for global optima. It resembles the
annealing procedure in metallurgy and starts from a certain higher “temperature” (i.e.,
initial temperature) to find the optima [51,52]. As the temperature decreases at a certain
rate, the optima in the algorithm gradually stabilizes, but this may be a local optimum
rather than a global one. To find the global optima, SA introduces a random update
to a subset, making it possible to accept a worse prediction to escape local optima and
reach the global optima [50]. These four covariate selection algorithms were implemented
with Boruta [29], rpart [53], caret [54], and Fselector [55] packages in the R statistical
Programming Language.

2.5. Development and Assessment of Predictive Models

On the basis of exhaustive and selected covariate sets, two log-ratio transformations
(i.e., ALR and ILR) were combined with random forest (RF) and Cubist, consisting of
four models (i.e., ALR-RF, ILR-RF, ALR-Cubist, and ILR-Cubist) for soil PSFs prediction
(Figure 2). RF is currently the most widely used machine learning approach in Digital
Soil Mapping (DSM) [19,24]. It is an ensemble learning algorithm that improves its accu-
racy and robustness by combining the predictions of a random population of regression
trees [17,21,56]. At each split, it randomly selects predictor variables to grow trees, while
on the tree level, it randomly selects samples from the training set [56]. Cubist has recently
increased in popularity in DSM [18]. Cubist is a rule-based regression technique that builds
multivariate linear regression models at the terminus of a tree [57]. At the terminal node
of a given tree, the final model shows a collection of machine learning regression models
for calculating predicted values [24]. RF and Cubist were implemented with randomFor-
est [58] and Cubist [59] packages in the R environment. The prediction of transformed and
back-transformed soil PSFs was assessed by the 10-fold cross-validation and evaluated
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using the coefficient of determination (R2), Root Mean Square Error (RMSE), and bias. Bias
was calculated as the observed mean minus the predicted mean. The others were calculated
as follows:

R2 =
∑n

i=1(xi
′ − xi)

2

(xi − xi)
2 (7)

RMSE =

√
1
n

n

∑
i=1

(
xi − x′i

)2 (8)

where xi represents the observed PSF, xi
′ is the simulated PSF, xi is the mean of xi, and n

represents the sample size. R2 and RMSE are used to measure the data dispersion and
reflect the difference between the predictions and the observations. Bias can be used to
detect the over fitting of the predictive models.

Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 22 
 

 

builds multivariate linear regression models at the terminus of a tree [57]. At the terminal 
node of a given tree, the final model shows a collection of machine learning regression 
models for calculating predicted values [24]. RF and Cubist were implemented with 
randomForest [58] and Cubist [59] packages in the R environment. The prediction of 
transformed and back-transformed soil PSFs was assessed by the 10-fold cross-validation 
and evaluated using the coefficient of determination (R2), Root Mean Square Error 
(RMSE), and bias. Bias was calculated as the observed mean minus the predicted mean. 
The others were calculated as follows: = ∑ ( − )( − )  (7)

= 1 ( − ′)  (8)

where xi represents the observed PSF, xi’ is the simulated PSF,  is the mean of xi, and n 
represents the sample size. R2 and RMSE are used to measure the data dispersion and 
reflect the difference between the predictions and the observations. Bias can be used to 
detect the over fitting of the predictive models. 

 
Figure 2. Flowchart of the methodology used in this study. 

3. Results 
3.1. Descriptive Statistics of Observations 

Surface soil textures across the BQ region are mainly sandy loam, loam, and silt loam, 
with a few samples of loamy sand (Figure 3). While across the WQ region dominant 
surface soil textures are loamy sand and sandy loam, and a few samples of sand and sandy 
clay loam are less dominant (Figure 3). Table 2 provides descriptive statistics for both 
regions; the average clay content (8.8%) at the BQ region is much less than silt (42.0%) and 
sand (49.2%), and sand is the most variable fraction (SD = 14.9%). Meanwhile, in the WQ 
region, sand content (76.5%) is much higher than that of clay (14.0%) and silt (9.5%), with 
the most significant variation (SD = 8.7%). The sand content of WQ was much higher, and 
the soil texture is coarser than that of BQ. 

Figure 2. Flowchart of the methodology used in this study.

3. Results
3.1. Descriptive Statistics of Observations

Surface soil textures across the BQ region are mainly sandy loam, loam, and silt loam,
with a few samples of loamy sand (Figure 3). While across the WQ region dominant surface
soil textures are loamy sand and sandy loam, and a few samples of sand and sandy clay
loam are less dominant (Figure 3). Table 2 provides descriptive statistics for both regions;
the average clay content (8.8%) at the BQ region is much less than silt (42.0%) and sand
(49.2%), and sand is the most variable fraction (SD = 14.9%). Meanwhile, in the WQ region,
sand content (76.5%) is much higher than that of clay (14.0%) and silt (9.5%), with the most
significant variation (SD = 8.7%). The sand content of WQ was much higher, and the soil
texture is coarser than that of BQ.
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Table 2. Descriptive statistics of soil particle size fractions (PSF) of observations.

Region N PSF Mean
(%)

SD
(%) 1

Min
(%) 1

Max
(%) 1

Range
(%) Skew Kurtosis

BQ 49
Clay 8.8 2.9 4.7 17.8 13.1 0.9 1.3
Silt 42.0 13.1 14.6 60.4 45.8 −0.6 −0.9

Sand 49.2 14.9 28.9 79.5 50.6 0.5 −1.0

WQ 59
Clay 14.0 5.7 3.8 28.8 25.1 0.5 −0.3
Silt 9.5 3.4 3.5 18.9 15.4 0.5 −0.1

Sand 76.5 8.7 53.7 90.8 37.2 −0.5 −0.3
1 SD stands for standard deviation, Min stands for the minimum, and Max stands for the maximum.

3.2. Covariate Sets
3.2.1. All-Relevant Variable Set

In the BQ region, the Boruta technique retained a series of vegetation, LST (land
surface temperature), and precipitation covariates, composing the all-relevant (AR) set
of clayalr (Figure S1). The s2_dn_e_1 (the diurnal LST in summer of the sampling year)
was the most relevant covariate to explain the clayalr variation. The AR set of siltalr was
composed of a series of vegetation, terrain, LST, and precipitation covariates, in which
the NDVI_9 was the most relevant covariate. In terms of the ILR-transformed fractions,
the AR set for clayilr prediction composed of vegetation, terrain, LST, and precipitation
covariates (Figure S1). Slope (Slp) was the most relevant covariate. Whereas for siltilr,
the s2_dn_e_1 was the most relevant covariate. None of the topographic covariates was
relevant to ILR-transformed fractions. Moreover, the air temperature was not relevant to
neither of the transformed PSFs in this region.

In the WQ region, vegetation and LST covariates were retained in AR sets to infer the
variance of ALR- and ILR- transformed PSFs (Figure S2). The GPP_1 and s4_n_i_9 showed
the most robust relevance to clayalr and siltalr, respectively. The s4_df_e_1 and GPP_1 were
the most relevant covariates of clayilr and siltilr, respectively (Figure S2).

In this study, the common covariate categories selected in both study areas were
vegetation and LST. The AR sets contained terrain and precipitation covariates in the BQ
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region but not in the WQ region. The difference of all-relevant covariate sets probably
indicated the difference in the formation of soil PSFs in two study areas.

3.2.2. Minimal-Optimal Variable Set

In both study areas, the GB (greedy backward) sets were composed of similar covari-
ates as AR sets to predict ALR- and ILR-transformed fractions. For the clayalr in the BQ
region, HC excluded annual and winter LST on the basis of the AR set, SA (simulated an-
nealing) further excluded vegetation covariates, and GF (greedy forward) merely retained
three summer LST covariates. In terms of siltalr, HC (hill climbing) excluded terrain covari-
ates, SA further excluded spring LST, and GF merely retained a vegetation covariate, two
spring LSTs, and a precipitation covariate. For the prediction of clayilr, HC excluded annual
LST, SA excluded summer LST, winter LST, and precipitation, and GF merely retained a
topographical covariate and a winter LST. Meanwhile, for siltilr modeling, compared with
the AR set, the SA technique excluded vegetation covariates, HC further excluded annual
LST, and GF merely retained a vegetation covariate and a summer covariate (Table S1).

In the WQ region, based on the AR set of clayalr, HC excluded annual LST, SA excluded
vegetation covariates, and autumn LST, while GF retained a winter LST covariate and
an annual LST covariate. For the siltalr prediction, SA excluded autumn LST, HC further
excluded vegetation covariates and annual LST, while GF retained an annual LST and
two winter covariates. In terms of ILR-transformed fractions, HC excluded spring and
annual LST for clayilr prediction, SA further excluded summer LST, and GF retained two
biotic covariates, and one spring LST covariate. For the siltilr, HC excluded spring, autumn,
and annual LST covariates, SA excluded spring, summer, annual LST covariates, and GF
excluded vegetation and spring LST covariates (Table S1).

3.3. Assessment of Model Performance

According to the 10-fold cross-validation of the two ALR-transformed PSFs in the BQ
region (Table S2), the RF (random forest) predictions based on AR (all-relevant variable)
sets were better than the AV (exhaustive covariate) sets, and the best prediction of the two
ALR-transformed PSFs were both based on the HC (hill climbing) sets. Meanwhile, for
the predictions by Cubist, the AR sets performed better than AV sets for the prediction of
siltilr and worse for the prediction of clayilr. As for the predictions with minimal-optimal
variable sets, SA (simulated annealing) set had the best prediction on clayalr, and GB
(greedy backward) set had the best prediction on siltalr. Both of them were better than
the prediction based on AV and AR sets. As for the back-transformed PSFs, the ALR-RF
model performed better than ALR-Cubist. According to the predictions by ILR-RF, the
AR sets performed better than the AV sets. Among the minimal-optimal variable sets,
SA and HC sets performed best on the prediction of clayilr and siltilr, respectively. As for
the predictions by Cubist, AR set performed better than AV set on clayilr and worse on
siltilr. Among the minimal-optimal variable sets, SA sets had the best predictions of both
components. The ILR-RF model exhibited superior prediction compared to all the other
predictions in the BQ region.

In the WQ region, AR sets outperformed AV sets by ALR-RF. Among the minimal-
optimal variable sets, SA and HC sets had the best prediction on clayalr and siltalr, re-
spectively, which were better than AR sets. As for the predictions by ALR-Cubist, AV
sets outperformed AR sets. GB and HC sets had the best prediction on clayalr and siltalr,
respectively, which were better than AV sets. According to the back-transformed PSFs,
ALR-Cubist outperformed ALR-RF. According to the prediction of transformed PSFs by
ILR-RF, AR sets performed better than AV sets. Among the minimal-optimal variable sets,
GB and GF sets had the best prediction on clayilr and siltilr, respectively, better than AR
sets. When using ILR-Cubist, AR sets performed better than AV set. Among the minimal-
optimal sets, GF and SA sets had the best prediction on clayilr and siltilr, respectively, better
than the AR sets, and outperformed all the other predicted soil PSFs in the WQ region
(Table S2).
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The model assessment on back-transformed PSFs was presented in Table 3. In terms of
RMSE, RF (random forest) performed better than Cubist, and ILR transformation performed
better than ALR in general. The prediction by ILR-RF was best in both study areas. For
the prediction of clayilr at the BQ region, SA retained vegetation (i.e., evi_1, evi_9, ndvi_1,
and gpp_9), terrain (i.e., SWI and VRM), and LST (i.e., yr_n_i_9) covariates. In terms
of the siltilr prediction, HC retained terrain (i.e., s1_d_a_1, s2_df_a_9, s2_df_a_1 and
s3_d_a_9) and climatic (i.e., pre_s1_9) factors. The SA and HC set covered all categories of
covariates contained in AR sets of ILR-transformed PSFs. In the WQ region, GB retained
vegetation (i.e., evi_1, evi_9, ndvi_1 and gpp_9) and LST (i.e., s1_d_i_9, s1_n_i_9, s2_d_e_1,
s2_df_e_1 and s4_df_e_9) covariates for clayilr prediction. Furthermore, GF only retained
LST covariates (i.e., s2_df_a_1, s3_df_i_9, s4_d_e_9, s4_n_e_1, s4_n_i_9 and yr_n_i_9) for
siltilr modeling. The GB and GF sets contained all types of all-relevant covariates as well.

Table 3. Best performance by the combination of log-ratio transformation, covariate selection, and
machine learning approach in predicting soil particle size fractions.

Region PSF Trans 1
Random Forest Cubist

R2 RMSE Bias R2 RMSE Bias

BQ

clay
ALR

0.462 0.023 0.001 0.468 0.025 −0.002
silt 0.474 0.093 −0.005 0.449 0.102 0.014

sand 0.512 0.104 0.004 0.446 0.114 −0.011

clay
ILR

0.495 0.021 0.000 0.467 0.026 0.002
silt 0.561 0.086 0.001 0.456 0.097 0.004

sand 0.564 0.100 −0.001 0.386 0.115 −0.007

WQ

clay
ALR

0.405 0.047 −0.003 0.457 0.044 0.000
silt 0.315 0.029 −0.003 0.382 0.030 0.000

sand 0.385 0.070 0.006 0.436 0.068 0.000

clay
ILR

0.500 0.043 −0.004 0.467 0.044 −0.004
silt 0.358 0.029 −0.002 0.435 0.029 −0.003

sand 0.458 0.067 0.005 0.454 0.069 0.007
1 Trans represents for the two log-ratio transformations, i.e., additive log-ratio (ALR) and isometric log-ratio (ILR)
transformation.

Predictions based on five covariate sets were different, even using the same predic-
tion model. In general, all-relevant models had comparable performance to exhaustive
models across all four prediction methods, indicating that the AR sets contained almost
equivalent predictive power to exhaustive variables. Including the irrelevant variables
in the exhaustive models resulted in essentially similar model accuracy but dramatically
increased model complexity. Furthermore, compared with predictions on the AV or AR
set, minimal optimization techniques helped improve the model performance (Table S2),
even though the specific subset searching strategies were different in modeling methods
and study areas. The improved predictive accuracy on the basis of minimal-optimal sets
indicates that minimal optimization techniques can further decrease data redundancy on
the basis of AR set. Furthermore, redundant variable information may interfere with the
learning process, thereby reducing the prediction accuracy. Hence, covariate selection
should be prior to model fitting in soil PSFs prediction.

3.4. Spatial Distribution of the Predicted Soil PSFs

Even though ALR and ILR models were developed on the basis of different covariate
sets, they included the same categories of covariates, and the log-ratio models generated
similar spatial patterns of soil PSFs (Figures S3 and S4). Higher clay and silt content were
mainly distributed in the eastern part in the BQ region, while higher sand content was
mainly distributed in the northwestern part. Soil PSFs showed a similar distribution trend
at the WQ region, where higher clay and silt and lower sand content distributed in the
southeastern part.
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4. Discussion
4.1. Covariates Most Relevant to Soil PSF Mapping

The covariate collection relies on a priori knowledge so that the explicit covariate
exhaustive sets are often unlike [21,26]. Their selection determines the soil mapping
performance to a great extent, especially when the number of soil samples is limited, but soil
spatial heterogeneity is high [25]. The strategy of this study was to collect environmental
covariates as comprehensively as possible, and the selection of key covariates was achieved
by covariates reduction techniques.

AR (all-relevant covariate) sets were used to reveal the underlying process of soil–
environment systems of interest [21]. Although the specific covariates retained were
differential among AR sets in this study, the Boruta technique retained vegetation and LST
(land surface temperature) covariates in both BQ and WQ regions. This indicated that
vegetation and LST covariates are the key covariates to identify the spatial variance of soil
PSFs of the surface layer. LST is the crucial indicator for the distribution of permafrost [37],
and vegetation has an interactive influence on the active layer [60]. Permafrost degradation
on the QTP is in company with the shift in vegetation types and species composition [61,62],
decrease in vegetation biomass, productivity, and species abundance [60,63,64]. Under a
warming climate, degrading permafrost has profoundly and extensively affected alpine
ecology [60]. With the degradation of alpine ecosystem, the soil nutrient declined and
surface soil texture became rough [30,64].

With different search techniques, minimal-optimal sets were composed of different
covariates. It is because the covariates selected by local optimization methods (i.e., GB, GF,
and HC) depend on the initial set that the algorithm starts searching with. In general, each
data reduction technique has its advantages. For instance, the GF models are the simplest
with the least variable redundancy, while GB models retain the most variable information,
reflecting more processes [21]. However, they all have their disadvantages as well. The GF
models only reflect the major processes and often fell short in model performance. The SA
algorithm escapes the local optima by accepting some models that have been degraded
due to including or excluding additional sets of variables [52,65]. In this study, the selected
covariates in minimal-optimal sets were different for modeling ALR- and ILR-transformed
PSFs. However, they all involved all categories of relevant covariates. For example, in
the BQ region, topographic factors were relevant for ALR- and ILR-transformed PSFs.
None was retained to predict clayalr, while one topographic factor was retained to predict
siltlalr. Topographic factors were also selected for clayilr prediction while excluded for
siltilr prediction.

Former studies also emphasized the covariate selection in digital soil mapping, in-
dicating covariate selection can help improve model performance [25,26]. However, we
cannot explicitly assign a universal covariate reduction method for soil PSFs prediction
because the predictions based on selected covariates can differ in PSF transformations,
modeling techniques, and study areas. It is also the reason why we did not inverse the
prediction of transformed PSFs on the basis of the same selection strategy. We prefer to
apply and compare multiple covariate selection strategies for each transformed soil fraction
based on our results.

4.2. Prediction Models

Considering the compositional nature of soil PSFs, we applied ALR (additive log-ratio)
and ILR (isometric log-ratio) transformations before model fitting in this study. Some stud-
ies also reported application of the log-ratio transformations coupled with machine learning
approaches. For example, Wang et al. [17] implemented the ALR and ILR transformation
with the boosted regression tree (BRT), RF, and regression kriging for a river basin. The
results indicated that machine learning approaches improved the mapping performance
rather than regression kriging, and the ILR-RF model outperformed the ILR-BRT model.
However, Amirian-Chakan et al. [1] cast doubts on the necessity of using log-ratio transfor-
mations in soil PSFs prediction. They predicted transformed and untransformed PSFs by
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RF and applied the predictions to estimate available soil water capacity (AWC) and the
total amount of irrigation water (TIW). The results indicated no apparent difference in the
prediction of PSFs, AWC, and TIW. Moreover, they suggested that the log-transformations
may lead to biased estimation of PSFs, and the bias can further propagate to pedo-transfer
functions. Therefore, they believed the untransformed PSFs were still valid for predicting
AWC (or TIW). Some other studies may also support this concept, for they applied Digital
Soil Mapping (DSM) without log-ratio transformations in soil PSFs mapping but gained
fairly good accuracy [8,22]. More studies are still needed to testify to the rationality and
the feasibility of log-ratio transformation in DSM at different scales.

Former studies used the variable importance of the RF algorithm to interpret the
relation between covariates and response variables. For example, Ran et al. [5] found
seven variables, including the freezing degree-days, thawing degree-days, leaf area index,
snow cover days, elevation, soil moisture, and soil bulk density, are selected to estimate
the mean annual ground temperature. The relative importance results in Wang et al. [17]
showed that soil organic carbon, NDVI, elevation, precipitation, and temperature were the
main predictors to explain the variability of transformed PSFs in the Heihe River basin
(area = 14.67 × 105 km2). According to the study [1] at a region in southwestern Iran
(area = 4600 ha), the relative importance showed that MRVBF, NDVI, elevation, slope, and
band 3 of Landsat 8 were the significant covariates in predicting clay, silt, and sand when
using terrain attributes and optical images. While on a larger spatial scale, Akpa et al. [66]
indicated that climatic elements (precipitation and temperature), Landsat8 bands (band 2
and 3), elevation, and geology were the most influential predictors for the distribution of
clay and sand in Nigeria. Liu et al. [22] found that climatic elements (e.g., solar radiation,
wind speed, temperature seasonality, daytime LST), altitude, and regolith thickness were
the essential factors in predicting soil PSFs in China. Hengl et al. [8] illustrated that
depth, climatic elements (precipitation, precipitable Water Vapor images, daytime, and
nighttime LST), and terrain factors were the most influential covariates. For soil PSFs
prediction, vegetation condition is more influential on a regional scale than a national or
global scale. Climatic elements are more critical on a large spatial scale, such as national
and global scales.

In this study, variable importance by the parsimonious ILR-RF models at both the BQ
and WQ regions were given in Figures S5 and S6. The variable importance in RF algorithm
was given with two aspects. One is the mean decrease in accuracy and the other is the mean
decrease in Gini index when a particular predictor variable is removed [58]. The VRM
(Vector Ruggedness Measure) and s2_df_a_9 (multiyear average of maximum diurnal LST
difference in summer) were the most important covariates for clayilr and siltilr prediction
in the BQ region, respectively (Figure S5). In the WQ region, s4_df_e_9 (multiyear average
of mean diurnal LST difference in winter) and yr_n_i_9 (multiyear average of annual
minimum night LST) were the most influential covariates. Compared with the BQ region,
the winter LST seemed to have a more substantial impact on soil PSFs prediction at the
WQ region since a total of four winter LST covariates were used in the ILR-RF models. The
vegetation (i.e., EVI, NDVI, and GPP) and LST (i.e., yr_n_i_9 and s2_df_a_1/9) covariates
are the common predictors used in ILR-RF models at both regions, indicating vegetation
and LST were crucial in predicting soil PSFs of the surface layer at both study areas.

Many studies found that using machine learning methods can generate soil maps with
higher accuracy and smoother transitions compared with polygon linkage approach [22,63].
Nevertheless, Wadoux et al. [19] indicated that most studies emphasized the prediction and
accuracy of the predicted maps for applications, while few studies accounted for existing
soil knowledge in the modeling process or quantified the uncertainty of the predicted maps.
Current research still falls short in revealing the underlying mechanism and the internal
relationships between the soil properties and potential covariates [19,26]. Some studies
found that even irrelevant predictors, i.e., pseudo predictors, can generate reasonably
accurate evaluation statistics of target properties [67,68]. Behrens et al. [69,70] attributed
the reason to scale and information content and proposed the “information horizon” for the
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interpretability of spatial environmental predictors. Besides, pedogenetic knowledge is still
crucial as the key step in DSM [25,26]. However, it is hard for non-expert users to assess the
feasibility of a large number of potential covariates [26]. With this respect, Qin et al. [71]
and Peng et al. [26] suggested to acquire reference from the formalized covariate selection
knowledge in existing applications and applied those covariates into studies of their
own. For future developments, machine learning could incorporate three core elements:
Plausibility, interpretability, and explainability, which will trigger soil scientists to couple
model predictions with pedological explanation and understanding of the underlying soil
processes [19]. Expert knowledge can be incorporated into DSM, but DSM can also lead to
the discovery of knowledge [26,72]. The combination of data-driven and knowledge-based
methods can promote even more significant interactions between pedology and DSM [72].

4.3. Spatial Distribution

The predicted soil PSFs showed a similar distribution trend in both study areas. The
finer soil texture was distributed in the southeast or east, while the coarse soil texture
was distributed in the northwest. We compared the spatial distribution of soil fractions
(take sand content for example) and some of the important predictors for both regions
(Figures S7 and S8) to test if the predicted PSF distribution followed the same spatial
pattern as the corresponding important predictors. Since the predicted silt and clay had
a similar distribution pattern, though sand was opposite, we took sand fraction as a
representative. We found that in the BQ region, even though VRM had the highest variable
importance in predicting clayilr, its spatial distribution was not that similar to sand. The
most important predictor of siltilr, s2_df_a_9, had a very similar spatial distribution as the
sand fraction in the northwest part. However, it did not depict the spatial variance of the
sand fraction in the southeastern part. In contrast, some other predictors, such as EVI_1,
s1_d_a_1, and s3_d_a_9, showed more a similar spatial distribution as the sand fraction.
According to the land use type (Figure S7), coarse soil texture was usually distributed in
the alpine desert grassland, where the elevation was relatively low, and the daytime LST
(i.e., s3_d_a_9) and the LST difference (i.e., s2_df_a_9) were relatively high. The finer soil
texture was usually distributed in the alpine meadow and alpine steppe. While in the WQ
region, the s4_df_e_9 and yr_n_i_9 showed a similar spatial distribution pattern as the sand
fraction, especially in the northwest part. The coarse soil texture was mainly distributed in
the northwest WQ (Figure S8), dominated by alpine steppe and alpine desert grassland.
In the northwest WQ, the minimum LST was lower, and the LST difference was larger. It
indicated that the predicted distributions of soil PSFs were determined by the compound
impact of multiple predictors rather than solely impacted by the most influential predictor.

4.4. Comparison with Existing Maps

Former studies have offered soil texture information at multiple spatial scales [8,22,46,73–75].
However, due to the lack of field observations, the availability of these datasets in per-
mafrost areas was difficult to evaluate. The PSFs were extracted from three available
datasets (Section 2.2.3), and their descriptive statistics indicated that the silt and sand
content at BQ and WQ were comparable (Table 4). While the descriptive statistics of
observations indicated the silt content at BQ and WQ was quite different (Table 2). Hence,
the three legacy datasets failed in depicting the spatial variance of soil PSFs, especially the
higher content of sand in the WQ region.

The scatter plots (Figure 4) show that the SoilGrids250m, CSCD, and CDSL overesti-
mated the clay content and cannot capture the silt and sand variance in BQ. Besides, all
three compared datasets overestimated silt fraction and underestimated sand fraction in
WQ (Figure 5). They could not capture the variance of clay either.
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Table 4. Descriptive statistics of soil particle size fractions.

Region Source 1 PSF Mean
(%)

SD
(%)2

Min
(%)2

Max
(%) 2 Skew Kurtosis

BQ

CDSL
clay 14.7 2.0 11.3 17.1 −0.14 −1.79
silt 39.6 3.5 32.7 44.7 −0.36 −1.07

sand 45.7 3.5 39.3 51.5 −0.33 −1.11

CSCD
clay 13.0 3.4 7.7 21.8 0.86 0.24
silt 41.2 8.6 28.9 53.9 0.31 −1.62

sand 45.8 10.5 24.4 61.0 −0.35 −1.09

SG250
clay 18.6 1.4 14.7 21.5 −0.09 −0.24
silt 37.2 2.1 32.7 40.9 −0.26 −0.81

sand 44.2 1.8 39.5 48.0 −0.33 −0.34

ILR-RF
clay 8.8 1.7 5.4 12.6 0.03 −0.79
silt 41.9 9.0 23.2 56.7 −0.34 −0.73

sand 49.3 9.9 32.5 67.0 0.14 −0.93

WQ

CDSL
clay 14.4 1.7 12.3 17.9 0.56 −1.24
silt 38.6 2.6 32.9 43.7 0.73 0.04

sand 47.0 2.1 39.6 51.6 −1.47 3.07

CSCD
clay 15.6 2.0 10.4 22.6 1.79 6.37
silt 39.3 7.2 30.3 52.6 0.46 −0.56

sand 45.2 7.4 28.6 54.5 −0.45 −0.44

SG250
clay 19.8 1.6 16.3 23.4 −0.01 −0.55
silt 41.5 2.3 34.8 46.3 −0.23 0.01

sand 38.7 1.9 35.5 43.4 0.47 −0.30

ILR-RF
clay 13.6 4.0 6.3 21.3 −0.03 −0.93
silt 9.3 2.0 5.3 13.1 −0.23 −0.61

sand 77.0 5.8 66.3 87.8 0.06 −0.88
1 CDSL represents for the China dataset of soil properties for land surface modeling, CSCD represents for the
China soil characteristic dataset, SG250 represents for the SoilGrids250m dataset, and ILR-RF represents for the
prediction given by this study. The same below. 2 SD stands for standard deviation, Min stands for the minimum
and Max stands for the maximum.

According to the spatial distribution of soil PSFs in this study, the clay and silt content
increased from northwest to the southeast in both BQ and WQ (Figures 6 and 7). We notice
that the CSCD and CDSL also showed a similar trend as ILR-RF prediction at BQ, while
SoilGrids250m did not (Figure 6). The spatial patterns were not that consistent with ILR-RF
at WQ (Figure 7). The assessment of the three legacy datasets showed low prediction
accuracy on soil PSFs (Table 5).

There are some reasons to explain the low predictive power of the three legacy datasets.
Firstly, observations from permafrost regions are quite deficient. The CDSL and CSCD
datasets were developed on the Chinese soil profile database, which barely included obser-
vations in the permafrost distributed region. The SoilGrids250m used this database as well.
Even though some vacant areas were filled with pseudo-points by expert knowledge [8],
the inadequate soil samples result in insufficient learning process in model fitting. Sec-
ondly, the methodology implemented in these soil datasets were different. The CDSL and
CSCD datasets used the polygon linkage approach while SoilGrids250m and our study
employed the machine learning approaches. From the perspective of the earth system
model, Dai et al. [76] have reviewed global soil properties maps and compared the maps
generated by polygon-linkage methods with those generated by DSM. They found that the
soil datasets produced by these two methods are quite different. These datasets may not be
comparable since the linkage method results in an abrupt change between the boundaries
of soil polygons, while the DSM simulated the soil properties with a continuous spatial
change. In that way, the DSM-derived datasets can provide a more realistic estimation of
soils than those derived by linkage methods. Even so, Arrouays et al. [77,78] argued that
spatial information systems for polygons and grids complement various applications of
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soil maps. Therefore, both are needed from local to global scales. Thirdly, the initial spatial
scales and spatial resolution of the datasets are different. This study was conducted at 1
km spatial resolution in two local areas. The CDSL and CSCD were developed in mainland
China with a spatial resolution of 1 km, while SoilGrids250m was developed for the global
scale with a spatial resolution of 250 m. When used at a local scale, they may not be able
to depict the detailed information precisely. Liu et al. [22] found that the SoilGrids250m
and polygon-linkage-based maps showed lower accuracy than their predictive maps of
soil PSFs in China.
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Table 5. Assessment of soil PSFs extracted from SoilGrids250m (SG250), China dataset of soil
properties for land surface modeling (CDSL), and China soil characteristic dataset (CSCD).

Dataset Region PSF R2 RMSE Bias

SG250

BQ
clay 0.028 0.102 0.098
silt 0.008 0.142 −0.048

sand 0.000 0.157 −0.051

WQ
clay 0.017 0.082 0.058
silt 0.014 0.322 0.320

sand 0.049 0.387 −0.378

CDSL

BQ
clay 0.027 0.069 0.059
silt 0.205 0.121 −0.023

sand 0.087 0.145 −0.035

WQ
clay 0.230 0.067 0.004
silt 0.117 0.293 0.291

sand 0.000 0.308 −0.295

CSCD

BQ
clay 0.001 0.062 0.042
silt 0.004 0.151 −0.007

sand 0.008 0.176 −0.035

WQ
clay 0.012 0.064 0.016
silt 0.113 0.305 0.297

sand 0.074 0.328 −0.313

5. Conclusions

Due to the lack of field observations, the datasets focused on the spatial distribution
of soil PSFs in permafrost regions of the Qinghai–Tibet Plateau are still scarce. We carried
out the mapping of soil PSFs at two typical permafrost distributed regions by integrating
two log-ratio transformation methods, five variable selection techniques, and two learning
approaches. The Boruta all-relevant technique retained vegetation and LST covariates, and
excluded air temperature in both regions. The difference in variable selection in the two
regions is that precipitation and topographic covariates were retained at BQ but excluded
at WQ. In general, the AR models had comparable accuracy with the exhaustive models,
and the parsimonious models exhibited superior prediction compared to the exhaustive
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covariates. It confirms the necessity of variable selection prior to model fitting. However,
we did not find a universal method for covariate selection. In addition, we prefer to
compare multiple variable selection techniques than recommend a specific one. The ILR-RF
model outperformed all the other models in both study areas. These results suggest that
the combination of log-ratio transformation, covariate selection, and machine learning
approaches are feasible in mapping soil PSFs in both study areas.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13071392/s1, Figures S1 and S2: Importance of the all-relevant covariates of ALR- and
ILR-transformed PSFs in the BQ and WQ regions. Figures S3 and S4: Spatial distribution of soil
particle size fractions in the BQ and WQ regions predicted by four log-ratio models. Figures S5 and
S6: Fitted variable importance plots for clayilr and siltilr by the ILR-RF model in the BQ and WQ
regions. Figures S7 and S8: Comparison between the distribution of sand and the predictors in the BQ
and WQ regions. Table S1: Selected covariates identified by Boruta, GF, GB, HC and SA techniques
in the two study areas. Table S2: Assessment on the predictions of two transformed fractions by the
exhaustive, all-relevant and parsimonious models.
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