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Abstract: Climate change and air pollution are emerging topics due to their possible enormous
implications for health and social perspectives. In recent years, tropospheric ozone has been recog-
nized as an important greenhouse gas and pollutant that is detrimental to human health, agriculture,
and natural ecosystems, and has shown a trend of increasing interest. Machine-learning-based
approaches have been widely applied to the estimation of tropospheric ozone concentrations, but
few studies have included tropospheric ozone profiles. This study aimed to predict the Northern
Hemisphere distribution of Lower-Stratosphere-to-Troposphere (LST) ozone at a pressure of 100 hPa
to the near surface by employing a deep learning Long Short-Term Memory (LSTM) model. We
referred to a history of all the observed parameters (meteorological data of European Centre for
Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5), satellite data, and the ozone pro-
files of the World Ozone and Ultraviolet Data Center (WOUDC)) between 2014 and 2018 for training
the predictive models. Model–measurement comparisons for the monitoring sites of WOUDC for
the period 2019–2020 show that the mean correlation coefficients (R2) in the Northern Hemisphere
at high latitude (NH), Northern Hemisphere at middle latitude (NM), and Northern Hemisphere
at low latitude (NL) are 0.928, 0.885, and 0.590, respectively, indicating reasonable performance
for the LSTM forecasting model. To improve the performance of the model, we applied the LSTM
migration models to the Civil Aircraft for the Regular Investigation of the Atmosphere Based on an
Instrument Container (CARIBIC) flights in the Northern Hemisphere from 2018 to 2019 and three
urban agglomerations (the Sichuan Basin (SCB), North China Plain (NCP), and Yangtze River Delta
region (YRD)) between 2018 and 2019. The results show that our models performed well on the
CARIBIC data set, with a high R2 equal to 0.754. The daily and monthly surface ozone concentrations
for 2018–2019 in the three urban agglomerations were estimated from meteorological and ancillary
variables. Our results suggest that the LSTM models can accurately estimate the monthly surface
ozone concentrations in the three clusters, with relatively high coefficients of 0.815–0.889, root mean
square errors (RMSEs) of 7.769–8.729 ppb, and mean absolute errors (MAEs) of 6.111–6.930 ppb.
The daily scale performance was not as high as the monthly scale performance, with the accuracy
of R2 = 0.636~0.737, RMSE = 14.543–16.916 ppb, MAE = 11.130–12.687 ppb. In general, the trained
module based on LSTM is robust and can capture the variation of the atmospheric ozone distribution.
Moreover, it also contributes to our understanding of the mechanism of air pollution, especially
increasing our comprehension of pollutant areas.
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1. Introduction

Ozone (O3) is considered to be a particularly significant trace gas in the Earth’s at-
mosphere, 90% of which is distributed in the stratosphere and 10% in the troposphere [1].
Stratospheric ozone protects the Earth’s biota from harmful UV radiation. In the tropo-
sphere, ozone is a type of greenhouse gas [2,3] and is the main air pollutant endangering
human health, agriculture, and natural ecosystems, and it also traps heat in the Earth’s
atmosphere and plays as an important role in atmospheric chemistry, impacting air qual-
ity and climate change [4,5]. Mills et al. demonstrated that a long-term ozone rate over
40 ppb may result in some loss of crops and ecosystems [6,7]. Ayres et al. and Taylan et al.
suggested that hourly ozone concentrations should not exceed 80 ppb and/or 50–60 ppb
in a maximum daily eight-hour average (MDA8) [7,8]. The World Health Organization
(WHO 2006 and 2017) recommended that the ozone level of the MDA8 should be within
100 µg/m−3 [9]. If the ozone concentration is higher than these values, it will pose a threat
to human health. Now, more than ever, incidents of tropospheric ozone pollution are
frequently reported and are thus arousing widespread concern in society [10]. Li et al. indi-
cated that the mean ozone concentration over China increased from 87.65 ± 16.74 µg/m3 in
2014 to 98.57 ± 14.86 µg/m3 in 2016 [11]. In some fast-developing regions of China, includ-
ing Beijing–Tianjin–Hebei, the Yangtze River Delta, and Pearl River Delta regions, much
effort has been made to improve the air quality. The primary pollutants (e.g., PM2.5) have
decreased as a consequence, but secondary pollutants (e.g., ozone) are on the rise [12,13].
Contrary to the increasing trend of ozone observed in China, Li et al. (2018) found that
the surface ozone in the southeastern United States has gradually decreased in the last
decade [10]. Therefore, monitoring the global distribution of vertical ozone profiles is
essential for ozone transport studies, which will further help us to understand the phys-
ical and chemical processes in the atmosphere, track stratospheric ozone depletion and
tropospheric pollution, and estimate the impact of ozone on climate [4,14].

Currently, ground-based measurement, in situ observation, and spaceborne measure-
ment are recognized as the three main methods for atmospheric ozone concentration moni-
toring. The World Ozone and Ultraviolet Data Center (WOUDC) (http://www.woudc.org,
accessed on 1 February 2021) mostly employs two kinds of instruments: Electrochemical
Concentration Cell (ECC) and Brewer Mast (BM) to supply ozone profiles from the sur-
face to the stratosphere with vertical resolution of ∼150 m and accuracy of 5% [15]. The
ozone sounding stations are mostly located in Europe and North America with a small
number in South America, Asia, and Africa. Therefore, the coverage is still sparse under
different observation quality standards. Ozone is also measured in situ by aircraft. In situ
measurements from Civil Aircraft for the Regular Investigation of the Atmosphere Based
on an Instrument Container (CARIBIC) are made using a fully automatic scientific device
that is packaged in a 1.5 ton container on an airliner to measure ozone concentrations.
Although the ground-based and in situ observations benefit from high accuracy, good
stability, and continuity, ground-based measurement is a single point observation method
and is limited by the number of observation stations [16], and these in situ measurements
are also spatially and temporally sparse in terms of the estimation of ozone concentrations.
Ozone profile observations with a consistent quality and wide area of coverage are greatly
desired. Compared with ground-based and in situ observations, spaceborne measurement,
which makes ozone observations from space, can provide continuous observation data
at large regional scales. Currently, spaceborne measurement can monitor ozone concen-
tration at a large scale due to its wide spatial coverage and high temporal resolution [17].
The sounders mounted on satellites for ozone observation are mainly thermal infrared
observations and ultraviolet observations. The sounders of thermal infrared observations
include the Atmospheric Infrared Sounder (AIRS) [18], Tropospheric Emission Spectrome-
ter (TES) [19], Infrared Atmospheric Sounding Interferometer (IASI) [20], and Cross-track
Infrared Sounder (CrIS) [4]. These thermal infrared instruments are only sensitive to
the middle and upper troposphere. The other type consists of the Ozone Monitoring
Instrument (OMI) [21], Tropospheric Monitoring Instrument (TROPOMI) [22], and Ozone
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Mapping and Profiler Suite (OMPS) [23]. Ultraviolet sensors with high precision regarding
the ozone columns are affected by the surface reflectance, absorbing dust aerosol, and other
factors, causing retrieval error; the vertical distribution information for ultraviolet on ozone
is therefore limited.

Recently, satellite data-based, ground-based, and in situ measurements have provided
a new way to monitor atmospheric ozone. Ghoneim et al. proposed a new deep-learning-
based ozone model that comprehensively considered the correlation between pollution
and weather [24]. Based on the meteorological factors and air pollutants affecting ozone,
Feng et al. applied the machine learning method to predict the surface ozone in Hangzhou,
China, and the results demonstrated that the dewpoint and NO2 were primary factors
in surface ozone formation [25]. Zhan et al. developed a random forest model to predict
MDA8 ozone concentrations across China, and the ozone dataset is valuable for related
epidemiological analyses in ozone pollution [26]. At present, tropospheric ozone mainly
comes from the downward transport of stratospheric ozone and from photochemical
reactions in the troposphere [27]. It is assumed that tropospheric ozone is affected by
meteorological conditions (temperature, water vapor, cloud, solar radiation, and potential
vorticity) [28,29], NOx, and volatile organic compounds (VOCs), making tropospheric
ozone concentration difficult to estimate. Machine learning has been utilized in many areas
to solve complex problems due to its advantages in terms of selecting and using a great
many factors that affect the predictions of the dependent variable.

Machine learning methods have been put to use to predict surface ozone concen-
trations [30–32], but most are for the region where the training data are located and not
migrated to other untrained regions [33,34]. In this study, LSTM is applied to estimate the
vertical distribution of the tropospheric ozone profile from 100 hPa to the surface. First, the
models are trained, based on different latitudes with satellite radiances of ozone absorption
bands, the apparent reflectance, and other pertinent variables related to meteorological con-
ditions; second, the trained models are applied to predict the daily Lower-Stratosphere-to-
Troposphere (LST) ozone profile concentrations with a spatial resolution of 25 km × 25 km,
with the inputs of ERA5 reanalysis data (i.e., temperature, water vapor, potential vorticity,
and wind) and satellite data. The structure of this paper follows. Section 2 describes the
input data of the model and the data used to verify the model. Section 3 introduces the
LSTM model in detail, and Section 4 presents the validation and comparison of tropo-
spheric ozone profile estimates of CARIBIC (Civil Aircraft for the Regular Investigation of
the Atmosphere Based on an Instrument Container) flight data and three regions of China.
Section 5 concludes this work.

2. Data

The datasets used in this study include LST ozone data (WOUDC ozonesonde dataset,
CARIBIC data, and near-surface ozone data of typical urban agglomerations in China),
satellite data from AIRS and OMI, and meteorological data that coincide with the ozone
data in time and space.

2.1. LST Ozone Datasets
2.1.1. WOUDC Datasets

Ozonesonde data used in the study were obtained from WOUDC (Figure 1). The ECC
and BM types for the ozonesondes are widely used at present. Stubi et al. demonstrated that
there was no significant difference between ECC and BM of radiosonde at 90% confidence
level [35]. Logan et al. [36] compared the radiosonde and the Measurements of Ozone
and Water Vapor by In-Service Airbus Aircraft (MOZAIC) data in Frankfurt and Munich
from 1999 to 2008, and showed that the average ozone deviation in the lower troposphere
(681~580 hPa) was 0.9 ± 2.8 ppb, and the deviation was 1.7 ± 3.8 ppb at 501–430 hPa. In
general, the ozone profiles data of WOUDC were sufficiently accurate, and could be used
as the reference for satellite and other observation methods (WOUDC, 2007). In this study,
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20 sounding stations were selected across the Northern Hemisphere from 2014 to 2020 (as
shown in Table A1).

Figure 1. Locations of the worldwide ozonesonde launch stations of the World Ozone and Ultraviolet
Data Center (WOUDC) (medium green dots) from 2014 to 2020.

2.1.2. CARIBIC Flights Data

CARIBIC is a scientific project that studies and monitors the important chemical and
physical processes of trace gases and other components in the Earth’s atmosphere with a
1 s time resolution. The Northern Hemisphere data from CARIBIC synthesized in 2 min
intervals from January 2014 to December 2020 were chosen in this study. The container of
CARIBIC is operated monthly on flights from Germany to the Americas, Asia, and Africa.
Only in a few flights is the Southern Hemisphere is probed. Flight data ranging from 2014
to 2019 were collected in different locations within a narrow spectrum of altitudes. Each
flight covers a wide range of areas, such as tropical middle tropospheric air or middle
and high latitudes upper tropospheric air and lower tropospheric air [37]. In the tropics,
the plane flies in the free troposphere, whereas in the extratropics, this altitude range
corresponds to the tropopause region, and the aircraft frequently encounters stratospheric
air masses. The container on the flight includes the equipment for in situ measurements of
greenhouse gases (carbon dioxide, nitrogen oxides, and methane) including ozone, water
vapor, carbon monoxide, dust particles, and many more. Air sampling is carried out at
cruise altitude, and more than 99% of the samples are collected at a typical pressure altitude
of 230 ± 60 hPa. Comparisons with a laboratory standard showed that ozone measured
with a UV photometer at a time resolution of 4 s can achieve a precision of 0.3 ppb and a
total uncertainty of ~1.5% [38]. Figure 2 shows the selected CARIBIC flights data from 2014
to 2019.

Figure 2. The flight paths of the Civil Aircraft for the Regular Investigation of the Atmosphere Based
on an Instrument Container (CARIBIC) used for ozone analyses from January 2014 to 2019.
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2.1.3. Near-Surface Ozone Data

China’s continuous observation of near ozone concentrations began in 2005 [39].
The hourly data of near-surface ozone concentrations online in real time are reported by
China Environmental Monitoring Center (CNEMC, http://www.cnemc.cn, accessed on
1 February 2021), but it is still not possible to obtain the historical ozone data from the
network publicly. There may be errors and suspect values in the data of CNEMC. Therefore,
the quality control test was carried out through a quality assurance program. Near-surface
ozone data (1000 hPa is regarded as the surface pressure) in three typical areas (Figure 3) of
China were selected for validating the accuracy and generalizability of the model, which
are of great concern to the public, including the Sichuan Basin (SCB), North China Plain
(NCP), and Yangtze River Delta region (YRD). Hourly (13:00–14:00) in situ surface ozone
observations at monitoring stations (139, 240, and 331 uniformly distributed surface ozone
monitoring stations in SCB, NCP, and YRD, respectively) acquired by the China National
Environmental Monitoring Center (CNEMC) of three typical areas from January 2017 to
December 2019 were collected.

Figure 3. Spatial distributions of surface ozone monitoring stations in China and three typical areas,
including the Sichuan Basin (SCB), North China Plain (NCP), and Yangtze River Delta region (YRD).

2.2. Satellite Data

Satellite data were taken from AIRS and OMI onboard the Aqua and Aura, respectively.
The AIRS sounder onboard of NASA’s Aqua platform provided us with the capability to
retrieve daily ozone data over land, ocean, and polar regions during the day and night. This
study used the Aqua L2 product—AIRS Cloud-Cleared Radiances (CCRs) [40]. The CCRs
employed the cloud-clearing method that removed the cloud from an infrared cloudy field
of view and derived the cloud-cleared radiances, with a spatial resolution of 50 km. The
parameters in the Aqua L2 product are the radiance of seven channels near the absorption
band of 9.6 µm, together with geographic information related to the solar azimuth angle,
solar zenith angle, satellite zenith, and azimuth angle. OMI is an ozone monitor on the
Aura satellite with a spectral range of 0.27–0.5 µm. In this study, the apparent reflectance
(ρ) was calculated using 15 channels in the spectral radiance band of 310–340 nm (ozone
absorption band) and the average solar spectral irradiance was provided by OMI:

ρ =
πLD2

ESUN · cos θ
(1)

where ρ is the apparent reflectance, π is 3.1415, L is the spectral radiance of the satellite
sensor entering the top of the atmosphere, D is the distance between the Sun and the Earth,

http://www.cnemc.cn
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ESUN is the average solar spectral irradiance at the top of the atmosphere, and θ is the solar
zenith angle. The spectral radiance and irradiance of OMI were taken from the Aura L1B
product, with a spatial resolution of 13 km × 24 km. Both L and ESUN were provided by
OMI. According to the temporal and spatial information of ozone data, coincident satellite
data were extracted.

2.3. Meteorological Data

The meteorological data were taken from ERA5 reanalysis data. ERA5 is the fifth-
generation climate reanalysis dataset of the European Centre for Medium-Range Weather
Forecasts (ECMWF) [41,42], with a spatial resolution of 25 km and a 1 h resolution. Ten
meteorological factors with 27 pressure levels in 1000–100 hPa, i.e., the divergence (d, unit:
s−1), fraction of cloud cover (CC), potential vorticity (PV, unit: K m2 kg−1 s−1), relative
vorticity (VO, unit: Pa s−1), temperature (T, unit: K), specific humidity (q, unit: kg/kg),
vertical velocity (w, unit: Pa s−1), eastward component of wind (U, unit: m s−1), northward
component of wind (V, unit: m s−1), and relative humidity (r, unit: %) at a 0. 25◦ × 0.25◦

resolution were used in this study. In addition, the input data also include the time (year,
month, day, and hour) and geographic location information (geo, including latitude and
longitude). We extracted the matching ERA5 meteorological data based on the time and
space information of LST ozone data.

2.4. Dataset Used and Processing

Table 1 presents detailed information about the selected datasets. Because the datasets
used in the study have different spatial and temporal resolutions, all data sets were
uniformly resampled to the same spatial size (0.25◦ × 0.25◦) using the bilinear interpolation
method and the same time interval. The meteorological variables selected (d, CC, PV, VO,
T, q, w, U/V, and r), the radiance of seven channels near the ozone absorption band from
AIRS CCRs, the apparent reflectance of 15 channels from OMI and time, and geographic
location information were matched to the daily LST ozone concentrations for each station.
All the datasets used were uniformly resampled to the same vertical grid based on the
ERA5 pressure.

Table 1. Datasets selected for the study. LST: Lower-Stratosphere-to-Troposphere; CNEMC: China National Environmental
Monitoring Center.

Dataset Variable Unit Temporal Resolution Spatial Resolution Data Source

LST ozone datasets
LST ozone profile ppb Daily In situ WOUDC
LST ozone profile ppb Daily In situ CARIBIC

Near-surface ozone µg/m3 Hourly Ground based CNEMC

Satellite Data

Radiances of seven channels
near the ozone absorption

bands

milliwatts/
m2/cm−1 Daily 50 km × 50 km AIRS/Aqua

Apparent reflectance of 15
channels _ Daily 13 km × 24 km OMI/Aura

Meteorological

Divergence (d) s−1

Hourly 0.25◦ ERA5

Fraction of cloud cover (CC) _
Potential vorticity (PV) K m2 kg−1 s−1

Relative vorticity (VO) Pa s−1

Temperature (T) K
Specific humidity (q) kg/kg
Vertical velocity (w) Pa s−1

Eastward component of wind
(U) m s−1

Northward component of
wind (V) m s−1

Relative humidity (r) %
Pressure(P) hPa
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3. Methods
3.1. Variable Analysis

LST ozone is affected by many factors. The strong solar radiation and long duration of
sunshine are generally assumed to lead to the photochemical generation of ozone [43]. In
addition to the these factors, the pressure (P) closely related to the atmospheric circulation
and synoptic-scale meteorological pattern is also recognized as a main driving force for
the ozone concentration over the Northern Hemisphere [44]. The U/V-component of wind
(U/V) is widely used to capture the influence of wind on air pollutants over a certain period
of time. The ozone concentration also relies on temperature. As depicted in many studies,
a high ozone concentration correlates with high temperature [45]. Relative humidity (RH)
affects heterogeneous reactions of ozone and particles [46,47]. Potential vorticity (PV)
reflects the stratospheric tropospheric exchange, and the main reason for the cause of this is
the change of tropopause. The vertical velocity (W) at different pressure levels can provide
information on the ability of low-pressure systems to transport air masses vertically by
convection [48]. Relative vorticity (VO) is a measure of the rotation of horizontal air around
a vertical axis relative to a fixed point on the Earth’s surface.

According to the previous research on the influence factors of LST ozone, we use the
random forest [49] method to analyze the importance of the factors affecting LST ozone.
Recently, the variable importance measures yielded by random forests have also been
suggested for the selection of relevant predictor variables in the analysis of microarray
data and other applications. The “mean decrease accuracy” method of random forest [50]
was applied in this study. The method determines the variable importance by directly
measuring the influence of each feature on the prediction accuracy of the model. The basic
idea of the method is to add a random noise to a certain eigenvalue, and then observe the
degree to which the accuracy of the prediction is reduced. For the unimportant features, this
method has little influence on the prediction accuracy of the model, but for the important
features, it will greatly reduce the prediction accuracy of the model. The data used were
meteorological data, satellite data, latitude, longitude, and time matched with WOUDC
LST ozone data from 2014 to 2020. The LST ozone data were from WOUDC, taken from
2014 to 2020. The specific steps follow to determine the benchmark value of prediction
accuracy in the training model:

(1) Add a random noise to the variable X (temperature, humidity, and so on), and the
prediction accuracy of the model was recalculated. If the prediction accuracy of the
model is greatly reduced after adding the noise, then it is of high importance.

(2) Repeat for all variables to calculate the variable importance.

Because of the obvious difference of ozone with latitude and season, in this study we
divided the Northern Hemisphere into three regions according to latitude for characteristic
importance analysis: Northern Hemisphere at low latitude (0–30◦N, NL), Northern Hemi-
sphere at middle latitude (30◦N–60◦N, NM), and Northern Hemisphere at high latitude
(60◦N–90◦N, NH). The results showing the variable importance of input parameters are
shown in Figure 4. In the three different regions, the meteorological variables collectively
account for more than 50% of the overall relative importance. Temperature, specific humid-
ity, relative humidity, divergence, vertical velocity, vorticity, and the U/V-component of
wind are the predominant variables. The high importance of meteorology for tropospheric
ozone has also been found in several studies [20,51]. Following the meteorological factors,
UV and TIR serve as the main factors for predicting the Lower-Stratosphere-to-Troposphere
ozone values. Although variables importance results show that time (year, month, day,
and hour) and geographic information (latitude and longitude) are not the most important
factors affecting LST ozone concentrations, geographical and seasonal changes are still
indispensable factors affecting LST ozone concentrations [52].
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Figure 4. Variable importance plot predicting the LST ozone profile concentrations for (a) the Northern Hemisphere at high
latitude (NH), (b) Northern Hemisphere at medium latitude (NM), and (c) Northern Hemisphere at low latitude (NL).

3.2. LSTM Model

LSTM optimizes the problems of gradient vanishing and gradient explosion in Recur-
rent Neural Networks (RNNs), and is an effectively optimized network with the ability
to memorize the sequence of data and to deal with sequential pattern recognition prob-
lems [53]. The basic unit for a common LSTM is a memory cell composed of three gates: an
input gate, an output gate, and a forget gate. An adaptive “forgetting gate” enables the
LSTM network to learn automatically and judge whether to store memory information.
The cell state carries all the previous state information and the cell state will be adaptively
adjusted with the new states by discarding the old information or adding information.
Figure 5 shows the LSTM neurons, which include the input gate it, forgetting gate ft, unit
Ct, output gate Ot, and output response ht. The input gate and forgetting gate control the
inflow and outflow of information. The output gate controls the amount of information
from the unit to the output ht. Supposing W is the weight vector of a gate and b is the bias
value, then the gate can be expressed as Equation (2):

g(x) = s(Wx + b) (2)

it = σ(Wi · [ht − 1, xt] + bi) (3)

ft = σ(W f · [ht − 1, xt] + b f ) (4)

Ot = σ(Wo · [ht − 1, xt] + bo) (5)

where σ is the activation function, and bi, bf, and bo are it, ft, and Ot bias values, respectively.
Figure 5 is the structure of our model used to predict the LST ozone. In a series of
experiments, three layer types were applied to predict LST ozone: the input layer with
LSTM, hidden layers (the first two hidden layer were LSTM, the third hidden layer was
the dense layer), and the output layer with the dense layer. The input layer of the module
accepted three kinds of datasets: meteorological variables, satellite radiances/apparent
reflectance parameters, and spatial temporal information. Because of the different samples
in different regions of the Northern Hemisphere, the number of neurons in each layer was
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typically set manually, and the best composition was problem-specific. The numbers of the
input layer’s neurons at NH, NM, and NL were 40, 60, and 40, respectively. The numbers
of neurons in hidden layers of NH, NM, and NL were 20–10–10, 20–10–10, and 30–15–15,
respectively. The output is the LST ozone profile concentrations.

Figure 5. Architecture of Long Short-Term Memory (LSTM) models used in the study.

In order to improve the training accuracy and speed up the convergence of the module,
the z-score standardization method was used to transform the input data, with the mean
value of 0 and the standard deviation of 1. The z-score function [54] is given as follows:

z =
x− µ

σ
(6)

where x is the input data, µ and σ are the mean value and standard deviation value of x,
respectively. The model adopted the default activation function Tanh in the input layer.
The Tanh is a smoother zero-centered function whose range lies from −1 to 1. The hidden
layers used the activation function ReLU, which was able to speed up the learning con-
vergence [55]. The activation functions Tanh and ReLU are given in Formulas (7) and (8),
respectively. The learning rate, as an important hyperparameter in deep learning, de-
termined whether the objective function converged to a local minimum and the speed
at which it converges to the minimum. A proper learning rate can make the objective
function converge to a local minimum in a reasonable time. In this study, we employed
the LearningRateScheduler [56] function, which can automatically adjust the learning rate
according to the number of epochs. At the beginning of training, a high learning rate
was used to increase the convergence and training speed; we then gradually reduced the
learning rate to reduce the overfitting and improve the training accuracy. The learning
rate was reduced to 0.5 of the original in every 100 epochs. When training the model, we
used the RMSprop [57] optimizer with a batch size of 72 to minimize the cost function. The
output layer that adopted the dense layer produced the LST ozone profiles.

Tanh(x) =
ex − e−x

ex + e−x (7)

f (x) = max(0, x) =

{
0 x ≤ 0
x x > 0

(8)

In order to reflect the performance of the model, in this paper, we used the correlation
coefficient (R2), mean root mean square error (RMSE), and mean absolute error (MAE) to
evaluate the performance of the model. The implementation of the model was based on
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Keras, which is a high-level neural network application programming interface written in
Python.

R2 =
∑ (yi − y)2(yi

∗ − y∗)2

n
∑

i=1
(yi − y)2 n

∑
i=1

(yi
∗ − y∗)2

(9)

RMSE =

√
1
n

n

∑
i=1

(yi − yi∗)2 (10)

MAE =
1
n

n

∑
i=1
|yi − yi∗| (11)

where yi is the predicted value, y is the average value of predicted values, y∗i is the
observation value, and y∗ is the average value of observation values.

4. Results

In this section, Section 4.1 describes the trained models at NH, NM, and NL, and
the trained models are applied to the same data source (WOUDC) at different times. In
order to further prove the generalizability of the model, the trained models were applied
to different data sources (CARIBIC and CNEMC), as shown in Section 4.2.

4.1. Model Training

In this section, the LST ozone data of the trained model taken from WOUDC are
presented. The module was trained, validated, and tested in three different regions using
a history of all observed parameters (ERA5, satellite data, and WOUDC ozone profiles)
from 2014 to 2020—the data from 2014 to December 2017 were used for training (80% of
total data), the data from January 2018 to December 2018 were used for validation (10% of
total data), and the data from January 2019 to December 2020 were used as the test set (10%
of total data). The reason why WOUDC datasets were divided into three parts is that the
training sets were used to train the LSTM modules, the validation sets were used to adjust
hyperparameters during training, and the testing sets were used to objectively evaluate the
performance of the model.

Table 2 shows statistical results of training, validation, and test from ozone concentra-
tions in all pressures. As shown in Table 2, the number of samples is smaller than that of
corresponding profiles multiplied by 27 due to missing values in some pressures. However,
to analyze the overall performance of the model, we compute the R2, root mean square
error (RMSE) and the mean average error (MAE) in NH, NM, and NL by using ozone
concentrations in all pressures. The results illustrate that the R2 values of the training set
in NH, NM, and NL were 0.978, 0.905, and 0.695, respectively, and the R2 values of the
validation sets in NH, NM, and NL were 0.936, 0883, and 0.612, respectively. The R2 of
the training model was highest in NH, but the RMSE and MAE of the training model in
NL were low, at 20.640 and 13.085 ppb, respectively. The RMSE of the training model
in NH and NM was 86.921 and 68.042 ppb, and the MAE was 34.847 and 31.013 ppb,
respectively. In total, 1909, 7780, and 1933 test samples were collected from NH, NM, and
NL respectively. The model in NH performed well, with a high R2 equal to 0.905, RMSE of
94.222 ppb, and MAE of 36.348 ppb. The mean R2, RMSE, and MAE in NM and NL were
0.885 and 0.590, 71.110 ppb and 20.153 ppb, 29.079 and 13.322, respectively. The training
models performed differently in the three regions, mainly due to significant variations in
climate conditions.
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Table 2. Training, validation, and testing results in the Northern Hemisphere. RMSE: root mean square error; MAE: mean
average error.

NH NM NL

Training Validation Testing Training Validation Testing Training Validation Testing

Number of samples 15,000 1878 1909 62,130 7766 7780 15,458 1932 1933

Number of profiles 571 72 75 2378 298 312 570 75 79
R2 0.978 0.936 0.928 0.905 0.883 0.885 0.695 0.612 0.590

RMSE
(ppb) 86.921 94.377 94.222 68.042 68.806 71.110 20.640 19.825 20.153

MAE
(ppb) 34.874 37.062 36.348 31.013 26.863 29.079 13.085 11.643 13.322

Figure 6 shows the testing samples of mean RMSE, R2, and Relative Error (RD)
stratification of LST ozone for the test sets ranging from 2019 to 2020 in different latitudes
(NH, NM, and NL). RD can be expressed by Formula (12):

RD =
abs(yi − yi

∗)

yi
∗ (12)

Figure 6. RMSE, R2, and relative error stratification of tropospheric ozone on test sets in the Northern
Hemisphere.

The RMSE in NH and NM increased with the increase of altitude, to a maximum of
100 hPa. While the RMSE in NL showed little change with the altitude, and the RMSE in
each pressure was less than 50 ppb. Particularly, the maximum R2 of each layer in NH was
250 hPa, which was greater than 0.7. The R2 of each layer in NL was almost in the range
of 0.3–0.6. The R2 values of each layer in NM were almost in the range of 0.36–0.85, and
the maximum R2 happened in 225 hPa. The RD stratification values of each layer on the
test sets were larger at 850–1000 hPa in the three different latitudes. The mean RD of all
pressures from 100 to 1000 hPa in NH, NM, and NL were 0.217, 0.23, and 0.278, respectively.

Figure 7 shows the mean of vertical concentrations of LST ozone on the test sets at
eight WOUDC stations since 2019. We can see that the predicted LST ozone profiles are
consistent with the observations, while the predicted values are generally lower than the
observations. Figure 8 shows the RMSE, R2, and relative error of WOUDC stations, since
2019 was at different pressures. The RMSE of these stations in NH and NM increased with
altitude, while the RMSE of Hong Kong in NL showed little change at different pressures. It
is seen from Figure 8 that the correlations between the prediction results and observations
above 400 hPa at most stations in NH and NL regions are greater than that of 400 hPa. This
is because the influencing factors of tropospheric ozone are different in different pressure
layers. The LST ozone concentrations may be affected by meteorological factors above
400 hPa in a large extent, and below 400 hPa due to photochemical reactions, a precursor,
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which make ozone changes more complex; the ozone precursors are not trained in the
model. This is also the reason why the results of the model in the middle and lower
troposphere are generally worse than those in the middle and upper troposphere. The R2 of
Hong Kong in NL changes little at different pressures, with a R2 = 0.2~0.4. The performance
of Hong Kong stations is different with the stations in NH and NM; this may be due to
the tropospheric ozone in Hong Kong being affected by the increase in photochemical
production, and the increase in transboundary transport [58].

Figure 7. The mean vertical distribution of LST ozone on the test sets at WOUDC stations since 2019 for (a) NH, (b) NM,
and (c) NL.

4.2. Model Evaluation

In order to improve the model’s accuracy, we migrated the trained model to different
regions and verified it with ozone data from different data sources. Different data sources
have invisible characteristic information such as region and special climate. The larger
the information gap between data sources, the greater the difference of these invisible
characteristics, and the greater the difference of ozone distribution. In this case, applying
models that were pretrained on other data sources may lead to the inapplicability of feature
information. Therefore, the model needed to be migrated in order to learn some implicit
features of the new data. In this section, we present the fine-tuning of the LSTM models
presented in Section 4.1.
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Figure 8. RMSE, R2, and RD stratification of tropospheric ozone on the test sets at WOUDC stations since 2019 for (a) NH,
(b) NM, and (c) NL.

4.2.1. Applied to CARIBIC

The CARIBIC flights data, with typical pressure of 230 ± 60 hPa, were matched with
the pressure of ERA5. Most of the matched data were distributed at 200, 225, 250, and
300 hPa. The CARIBIC flights data chosen, ranging from January 2014 to February 2019 in
NH, NM, and NL, were divided into a pretraining part (2014–2017) and a fine-tuning part
(January 2018–February 2019), respectively. Table A2 shows the prediction performance
of the migration models on CARIBIC flight data from January 2018 to February 2019
under different hidden frozen layers [59] in NH, NM, and NL. To freeze a layer means
that it excludes the layer from the training process. The process of the transfer training is
performed by using the weight parameters of trained models in Section 4.1, and keeping
the weight parameters of the frozen layer unchanged to train the migration model. This
was done to observe the predictive performance of the model with different frozen hidden
layers ((0), (1), (1,2), and (1,2,3)). We can see that the transfer model of NH and NM with
the hidden frozen layers (1,2) achieved a higher R2 (0.774 and 0.443, respectively), and
a lower RMSE (77.410 and 109.334 ppb, respectively) and MAE (92.978 and 72.932 ppb,
respectively). The transfer model of NL with the different hidden frozen layers did not
change greatly, with an R2 = 0.359, RMSE = 17.972 ppb and MAE = 17.061 ppb, respectively,
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in hidden frozen layers (1). The R2, RMSE, and MAE in Table A2 were calculated by using
the ozone concentrations from all pressures in the pretraining part.

Figure 9 displays the comparison results of the CARIBIC flight data that ranged from
January 2018 to February 2019 with a pressure 200–300 hPa derived from LSTM and aircraft
measurements. The N in Figure 9 represents the number of samples used to evaluate the
tropospheric ozone estimation performance. The R2, RMSE, and MAE in Figure 9 were
calculated by using the LST ozone profiles at each pressure in NH, NM, and NL of the
fine-tuning part. Overall, the LST ozone derived from the migration model agrees well with
the CARIBIC measurements; the model presents good results in the Northern Hemisphere,
with a high R2 = 754. The performance of the models in NH and NM were overall better
(e.g., R2 ≈ 0.770) than in NL (with an R2 = 0.359). The factors affecting tropospheric ozone
in NL are complex. This may be due to the redistribution of ozone concentration caused by
the thermal and dynamic forcing of atmospheric circulation in NL.

Figure 9. Scatter plots of LST ozone predictions versus ozone observations of CARIBIC flights in
Northern Hemisphere from January 2018 to February 2019. The blue line indicates the results of
CARIBIC at low latitude (NL), the red line indicates the results of CARIBIC at middle latitude (NM),
the green line indicates the results of CARIBIC at low latitude (NL), and the black line indicates the
results of CARIBIC in the Northern Hemisphere.

4.2.2. Applied to CNEMC

This part focuses on evaluating the predictability of the trained models in three urban
agglomerations of China. For this purpose, the prediction of surface ozone of three typical
areas (Figure 3) was validated using the data provided by CNEMC. Hourly (13:00–14:00) in
situ surface ozone observations at monitoring stations of three typical areas from January
2017 to December 2019 were collected and then averaged to obtain daily mean ozone
measurements. The matched CNEMC data of three urban agglomerations from January
2017 to December 2019 were divided into a pretraining part (2017) and a fine-tuning part
(2018–2019), respectively. The transfer model used in SCB was trained based the model in
NL, with the hidden frozen layers (1,2) performing better, and the best results can be seen
in Figure 10a. The transfer model used in NCP was trained based on the model in NM,
with the hidden frozen layers (1,2) showing better achievement, and the best results can be
seen in Figure 10b. The transfer model used in YRD was trained based on the model in NL,
with the hidden frozen layers (1,2,3) performing better, and the best results can be seen in
Figure 10c.
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Figure 10. Scatter plots of surface ozone retrievals versus ozone observations in (a) SCB, (b) NCP, and (c) YRD.

Figure 10 shows the predicted and observed daily surface ozone distribution in SCB,
NCP, and YRD. There were 86,594; 124,863; and 216,120 daily samples collected from
surface ozone monitoring stations in SCB, NCP, and YRD, respectively. The daily estimated
ozone concentrations in the typical urban agglomerations of the SCB, NCP, and YRD
were consistent with surface measurements (R2 = 0.652−0.737), with overall estimation
uncertainties (i.e., an RMSE = 14.543−16.916 ppb and MAE = 11.130−12.687 ppb) from
2018 to 2019. The performances of LSTM showed slight differences for each year during
2018~2019 in the three typical urban agglomerations. As shown in Table 3, the R2 value
showed the highest value (0.706) in NCP in 2019, followed by that in 2018 (0.747), and
showed the lowest value in SCB (0.648 in 2018 and 0.670 in 2019) and YRD (0.621 in 2018
and 0.650 in 2019). Higher RMSE and MAE values were found in NCP (15.881–17.157 ppb
and 11.734–12.720 ppb) and YRD (16.207–17.764 ppb and 12.134–13.276 ppb), while the
lowest RMSE and MAE were found in SCB (14.194–14.930 ppb and 10.783–11.496 ppb).
The lowest R2 value being in SCB might be attributable to meteorological factors. The
variation of surface ozone concentration in SCB was greatly affected by the high annual
temperature, seasonal cycle, small wind speed, mostly static wind, short sunshine time,
and obvious seasonal heat island effect and meteorological conditions (such as high temper-
ature, low humidity, low wind speed, and long sunshine time) [33], which have a greater
comprehensive effect on high concentrations of ozone. We also find outliers of high surface
ozone concentrations that were underestimated by the model. The underestimation of the
predicted ozone largely depended on the number, geographical distribution, and sampling
frequency of training samples, which did not cover mainland China (except for the Hong
Kong and Taiwan sites) and the sparsity of training samples on the surface.
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Table 3. The R2 values, RMSE, and MAE during years 2018–2019 over the SCB, NCP, and YRD.

R2 RMSE MAE

SCB NCP YRD SCB NCP YRD SCB NCP YRD

2018 0.648 0.736 0.621 14.930 17.157 17.764 11.496 12.720 13.276
2019 0.670 0.747 0.650 14.194 15.881 16.207 10.783 11.734 12.134

Based on the prediction results for near-surface ozone of three urban agglomerations
presented above for the period of 2018–2019 at the daily scale, we conducted a statistical
comparison of results at the monthly scale. When considering the monthly scale, the
stations with >15% of valid daily surface ozone concentration measurements in a month
were used in the calculations. Figure 11 shows the cross-validation results for surface
ozone monthly estimates from 2018 to 2019 in China. From 2018 to 2019, each site had
at least eight months of effective monthly averages to be counted. Figure 11 shows that
the predicted values of surface ozone were highly correlated with the observations. The
accuracy in NCP was 0.889, 8.729 ppb, and 6.930 ppb for R2, RMSE, and MAE, respectively.
The monthly ozone estimations performed better than the daily estimations in SCB and
YRD regions (i.e., R2 = 0.815, MAE = 6.111 ppb and RMSE = 7.769 ppb in SCB, R2 = 0.831,
MAE = 6.276 ppb, and RMSE = 8.177 ppb in YRD). Overall, despite some differences in the
three clusters’ performance, the LSTM model showed overall good prediction accuracy for
surface ozone concentrations at the regional scale on monthly averages.

Figure 11. Validation of monthly surface ozone estimates in 2018–2019 for (a) SCB, (b) NCP, and (c) YRD. Statistical metrics
are given in each panel, along with the linear regression relation, including the correlation of determination (R2), the root
mean square error (RMSE), the mean absolute error (MAE), and the number of samples (N).

Figures 12–14 show the 0.25◦ × 0.25◦ spatial distributions of the migration models
applied above in the three typical areas and the ground-based surface ozone measurements
for 2018–2019. Figure 12 shows annual surface ozone spatial distributions across SCB for
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2018 and 2019. The model in SCB has a good performance in areas with low values of
ozone, but the areas with high ozone concentrations are underestimated. We see that the
surface ozone concentrations of eastern Sichuan and western Chongqing are higher than
other parts in Figure 12. It is obvious that the annual mean surface ozone concentrations
in 2019 for North Central Hebei, most of Shandong, and southern Shanxi are higher than
those in 2018, which are consistent with the trend of the ground-based observations in NCP
(Figure 13). The evaluation of the model in YRD performs well in areas with low ozone
values, such as Jiangxi Province and southern Zhejiang Province (Figure 14). We also can
see the surface ozone concentrations for northern YRD in 2019 are larger than those in 2018.
The performance of the model in the south of Jiangsu Province is poor, however, and the
ozone concentrations in northern YRD are higher than other parts in YRD.

Figure 12. The map of 0.25◦ × 0.25◦ annual mean surface ozone concentrations in 2018 (a) and 2019 (b) for SCB; the colored
dots represent the annual mean of concentrations of each surface ozone site from CNEMC.

Figure 13. The map of 0.25◦ × 0.25◦ annual mean surface ozone concentrations in 2018 (a) and 2019 (b) for NCP; the colored
dots represent the annual mean of concentrations of each surface ozone site from CNEMC.
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Figure 14. The map of 0.25◦ × 0.25◦ annual mean surface ozone concentrations in 2018 (a) and 2019 (b) for YRD; the colored
dots represent the annual mean of concentrations of each surface ozone site from CNEMC.

5. Discussion

In this study, we considered the meteorological and radiance factors that affect LST
ozone. Because LST ozone is also affected by a photochemical reaction, LST ozone is also
affected by NO2, HCHO, CHOCHO, and other precursors. However, at present, there
is almost no profile information for ozone precursors, so the influence of gas precursors
was not considered in this study. The models trained in this study were applied to three
typical urban agglomerations in China to predict surface ozone concentrations. It could
be seen that the prediction results were generally underestimated. This may be due
to the ozone at 1000 hPa of WOUDC stations being lower than that at 1000 hPa of the
China regions, and LST ozone not fully representative of surface ozone. Figures 12–14
show the spatial distributions of the migration models applied in SCB, NCP, and YRD
for 2018–2019. Based on the input of the model, we analyzed the influencing factors
of the high value of ozone. Figures 15–17 list the input parameters with high ozone
correlation. The surface ozone concentrations of eastern Sichuan and western Chongqing
are higher than other parts in SCB. This may be caused by high temperature and low
humidity [60]. Figure 15 shows the correlation of surface ozone concentrations with
temperature and RH in eastern Sichuan and western Chongqing from 2018 to 2019. We can
see that ozone concentrations are positively correlated with temperature and negatively
correlated with relative humidity. Moreover, the absolute values of correlation of surface
ozone concentrations with temperature and RH in 2019 are higher than those in 2018.
This also shows that high temperature and low humidity are the factors affecting ozone
concentrations. The ozone concentrations in southern of NCP are higher than other parts in
NCP. Figure 16 shows the correlation of surface ozone concentrations with temperature and
u in the southern of NCP (36◦–38◦N, 114◦–118◦E) from 2018 to 2019. We can see that ozone
concentrations are positively correlated with temperature and negatively correlated with u.
Cloud cover and low humidity are also the main factors affecting ozone concentrations in
YRD. The ozone concentrations in the northern part of YRD are higher than other parts of
YRD. Figure 17 shows the correlation of surface ozone concentrations with CC and RH in
the northern part of YRD (32◦–34◦N, 116◦–119◦E) from 2018 to 2019. We can see that ozone
concentrations are negatively correlated with CC and RH. Cloud cover and low humidity
are also the main factors affecting ozone concentrations in YRD.
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Figure 15. Correlation of surface ozone concentrations with RH (a) and temperature (b) in eastern Sichuan and western
Chongqing (28.5◦–32◦N, 103◦–120◦E) from 2018 to 2019.

Figure 16. Correlation of surface ozone concentrations with temperature (a) and u (b) in southern NCP (36◦–38◦N,
114◦–118◦E) from 2018 to 2019.

Figure 17. Correlation of surface ozone concentrations with CC (a) and RH (b) in northern YRD (32◦–34◦N, 116◦–119◦E)
from 2018 to 2019.

6. Conclusions

With the increase of atmospheric ozone pollution in recent years, a large number of
studies focusing on estimating tropospheric ozone have been conducted. Traditional meth-
ods also face great challenges of tropospheric ozone estimates due to large uncertainties in
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the retrieval as it is influenced by numerous factors. In order to tackle these challenges,
LSTM models are proposed to estimate lower-stratosphere-to-troposphere ozone concen-
trations from 100 hPa to the surface. In this study, three models were trained to estimate
the ozone concentrations in the Northern Hemisphere. The training models in NH, NM,
and NL perform well, giving high R2 values of 0.978, 0.905, and 0.695, respectively. The
model performance was evaluated using the data of WOUDC ranging from 2019 to 2020
in different latitudes, CARIBIC flight data from 2018 to 2019, and in situ surface ozone
observations at monitoring stations of three typical areas (SCB, NCP, and YRD) in China
from January 2018 to December 2019.

By applying the models to the validation sets of WOUDC data of 2019–2020, the results
in NH and NM were shown to perform well (R2 = 0.928 and 0.885, respectively), while the
R2 = 0.590 in NL was lower than NH and NM. However, the RMSE value of NL was smaller
than the other regions, probably because the NL region has a small range of tropospheric
ozone. Meanwhile, the LSTM models were applied to the CARIBIC flights data, with a
high precision of R2 = 0.881 and RMSE = 52.402 ppb. Finally, the models were applied to
estimate the tropospheric ozone of the three typical urban agglomerations of the SCB, NCP,
and YRD from 2018 to 2019. Our results suggest that the performance of the LSTM models
showed a good estimation of the monthly surface ozone concentrations in all the three
clusters, with a relatively high coefficient of 0.815−0.889, RMSE of 7.769−8.729 ppb, and
MAE of 6.111−6.930 ppb. The daily scale performance was not as high as the monthly scale
performance, with an accuracy of R2 = 0.636−0.737, RMSE = 14.543−16.916 ppb, MAE of=
11.130−12.687 ppb. The ozone concentrations in SCB might be affected by the high annual
temperature and relative humidity. The overall predicted surface ozone concentration of
our models was underestimated compared to the observations. The underestimation of
the predicted ozone largely depends on the number of training samples and the sampling
frequency. The distribution of the retrieval lower-stratosphere-to-troposphere ozone con-
centrations can be conducive to the study of ozone transportation and pollution in some
small- and medium-scale regions, which is of great significance for the study of long-term
ozone variation and its causes.
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Appendix A

Table A1. Information of ozonesonde stations.

Site Country Latitude (◦) Longitude (◦) Height (m) Days Dates

Alert Canada 82.49 −62.34 75 166 August 2015 to April 2020
Eureka Canada 79.98 −85.04 10 312 January 2015 to September 2020

Resolute Canada 74.7 −94.96 46 114 April 2015 to November 2018
United Kingdom Great Britain 60.14 −1.19 84 143 January 2015 to December 2016

Legionowo Poland 52.41 20.96 96 203 January 2015 to October 2019
Bilt Netherlands 52.100 5.177 4 182 January 2015 to December 2018

Uccle Belgium 50.8 4.35 100 768 January 2015 to December 2020
Hohenpeissenberg Germany 47.8 11 976 733 January 2015 to December 2020

Payerne Switzerland 46.49 6.57 491 781 January 2015 to October 2020
Vigna di Valle Italy 42.08 12.21 260 50 January 2015 to November 2015

Madrid Spain 40.47 −3.58 631 315 January 2014 to December 2020
Boulder USA 39.9491 −105.1 1743 144 January 2015 to June 2017
Tsukuba Japan 36.06 140.13 31 172 April 2015 to February 2019
Pohang Korea 36.03 129.38 6 97 January 2018 to December 2019
Taiwan China 24.9979 121.443 11 48 January 2015 to March 2019

Hong Kong China 22.31 114.17 66 294 January 2014 to September 2020
Hilo USA 19.43 −155.04 11 187 January 2015 to December 2017

San Pedro Costa Rica 9.9396 −84.0423 1240 156 January 2015 to December 2017
Sepang Airport Malaysia 2.73 101.7 17 68 January 2014 to December 2017

Singapore Singapore 1.34 103.89 36 18 January 2014 to September 2015

Table A2. Prediction performance of migration model under different frozen hidden layers of
CARIBIC in NH, NM, and NL.

Frozen Layers Region R2 RMSE (ppb) MAE (ppb)

0
NH 0.721 80.549 96.425
NM 0.727 112.301 76.264
NL 0.354 18.012 17.956

1
NH 0.741 79.256 94.821
NM 0.731 111.931 74.189
NL 0.359 17.972 17.061

1,2
NH 0.774 77.410 92.978
NM 0.773 109.334 72.932
NL 0.352 17.523 17.496

1,2,3
NH 0.769 78.736 93.648
NM 0.758 110.192 73.245
NL 0.356 17.945 17.154
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