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Abstract: In unmanned aerial vehicle based urban observation and monitoring, the performance
of computer vision algorithms is inevitably limited by the low illumination and light pollution
caused degradation, therefore, the application image enhancement is a considerable prerequisite
for the performance of subsequent image processing algorithms. Therefore, we proposed a deep
learning and generative adversarial network based model for UAV low illumination image enhance-
ment, named LighterGAN. The design of LighterGAN refers to the CycleGAN model with two
improvements—attention mechanism and semantic consistency loss—having been proposed to
the original structure. Additionally, an unpaired dataset that was captured by urban UAV aerial
photography has been used to train this unsupervised learning model. Furthermore, in order to
explore the advantages of the improvements, both the performance in the illumination enhancement
task and the generalization ability improvement of LighterGAN were proven in the comparative
experiments combining subjective and objective evaluations. In the experiments with five cutting
edge image enhancement algorithms, in the test set, LighterGAN achieved the best results in both
visual perception and PIQE (perception based image quality evaluator, a MATLAB build-in function,
the lower the score, the higher the image quality) score of enhanced images, scores were 4.91 and 11.75
respectively, better than EnlightenGAN the state-of-the-art. In the enhancement of low illumination
sub-dataset Y (containing 2000 images), LighterGAN also achieved the lowest PIQE score of 12.37,
2.85 points lower than second place. Moreover, compared with the CycleGAN, the improvement
of generalization ability was also demonstrated. In the test set generated images, LighterGAN was
6.66 percent higher than CycleGAN in subjective authenticity assessment and 3.84 lower in PIQE
score, meanwhile, in the whole dataset generated images, the PIQE score of LighterGAN is 11.67,
4.86 lower than CycleGAN.

Keywords: UAV; unsupervised learning; LighterGAN; unpaired dataset; illumination enhancement;
attention mechanism; semantic consistency loss; PIQE; generalization ability

1. Introduction

With the development of unmanned aerial vehicle (UAV) technologies, more impor-
tant and complex tasks are performed by low or ultra-low altitude UAVs which embedded
powerful functions, especially in the field of urban remote sensing [1]. Meanwhile, in
the last decades, with the development of computer science and the popularization of its
applications, intelligence has become the development tendency of modern cities [2]. In
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terms of urban-wise UAV applied techniques, one of the most compelling aspects is the
computer vision. The images or videos collected by UAV in applications such as urban
observation, monitoring, object detection, 3D reconstruction, scene understanding, digital
surface model generation, etc., require various and detailed image information. Unfortu-
nately, insufficient illumination can severely degrade the recognizability and the readability
of images, meanwhile, the performance of subsequent computer vision algorithms highly
relies on the quality of collected images and effective extraction of the features contained
in the image [3]. For UAVs which performing night missions, the poor shooting environ-
ments caused image degradation will be more obvious due to the limitations of brightness,
viewing angle, etc., meanwhile, when working in low altitude and ultra-low altitude, the
unavoidable light pollution in the city will also challenge the performance of photographic
equipment carried by UAVs. Therefore, the illumination enhancement of degraded UAV
images is a critical preprocessing.

Because traditional image enhancement or correction relies on the prior knowledge of
scholars, the prior information needs to be injected into models artificially [4]. Generally,
items in urban UAV imagery are dense and complex in feature, meanwhile, uncontrollable
factors such as reflected light, shadows, uneven illumination will contribute to more
complex variables. Therefore, it is more appropriate to use a learning-based enhancement
method based on feature extraction. The convolutional neural network structure itself has
proven its ability to obtain prior information [5]. The use of neural networks to achieve
image illumination enhancement has gradually become a trend. Recently, scholars such
as Ren et al. [6], Lv et al. [7], Guo et al. [8] have started to use neural networks to enhance
low illumination images and contributed successful networks. However, these supervised
models are all trained by size-limited paired datasets, images in either low illumination sub-
dataset, or a high illumination sub-dataset that is artificially generated. Ideally, to ensure
the quality of subsequent algorithms, the items in the enhanced images should be as close to
their appearance under sufficient illumination in reality. Unfortunately, most of man-made
images may not realistic enough for good training, as distributions of real-world features
are complex and multimodal. So, in terms of the dataset, the richer the content of the
images in the dataset, the more likely it is to train a high-quality illumination enhancement
model. However, even the best low-light dataset (LOL) at present (including 500 pairs of
images, use exposure time and ISO speed to adjust the image brightness) may be difficult
to train a model that possess strong enough robustness, while avoiding the insufficient
data that results in discriminator overfitting. The strictly paired LOL dataset requires
the camera to be fixed during the collection process, and the scene cannot be moved,
therefore, paired data collection is difficult. In this article, an unsupervised illumination
enhancement GAN, named LighterGAN, is proposed referring to CycleGAN [9]. Generally,
the performance of deep learning-based models will be affected by the quality of the
dataset, therefore, the unlabeled and unpaired dataset collected by us for the urban-wise
UAV image enhancement is more advantageous, because it possesses the properties of
low time and energy consumption which benefit the collection of a significantly large
amount of data. In modeling, two mappings were trained by using two sub-datasets (low
illumination and sufficient illumination). One of the mappings will be used to achieve the
enhancement task, and the other is also indispensable, which will promote the training
of a better model. In terms of model improvement, attention mechanism and semantic
consistency loss are proposed; the former is inspired by the impressive performance of
non-local neural networks [10], and the inclusion of the latter is taking into account that
the original CycleGAN only calculates the image space when calculating the loss function
and ignores the calculation of the feature space. After proposing the above improvements,
the combination was proven experimentally and therefore determined the model structure
of LighterGAN.

The main contributions of this paper are that, in terms of illumination enhancement,
in order to demonstrate performance of LighterGAN more intuitively, we compare it with
five other algorithms (LIME [11], DUAL [12], Retinex [13], CycleGAN [9] and Enlighten-
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GAN [14]), and apply two evaluation criterion, visual subjective perception and objective
no-reference image quality assessment. In the test set experiment, our algorithm achieves
the best results in both evaluations. Subjectively, LighterGAN is 0.42 higher than state-of-
the-art EnlightenGAN which ranked the second place, meanwhile, the PIQE (perception
based image quality evaluator) [15] score was 2.73 points lower than the second place.
In the enhancement experiment of sub-dataset Y, LighterGAN also achieves the lowest
PIQE score of 12.37, 2.85 points lower than second place. In terms of model structure
improvement and generalization ability enhancement of LighterGAN, as an improved
model based on CycleGAN, the promotion of its two improvements, attention mechanism
and semantic consistency loss, has also been demonstrated by the combination of subjective
and objective evaluation. Because the two sub-datasets used for training are all collected in
reality, the authenticity of the generated image can be used as a criterion for evaluating the
generalization ability of the model. After using the two mappings to generate test images,
LighterGAN is 10 percent higher than CycleGAN in subjective authenticity assessment
and 3.84 lower in PIQE score. Moreover, after using the two mappings to generate images
for the whole dataset, PIQE score of LighterGAN is 11.67, 4.86 lower than CycleGAN. As
the improved model is proven to be able to generate images with higher authenticity and
higher quality, the benefits of improvements can be demonstrated.

2. Related Works
2.1. Limitations of Size-Limited Paired Dataset in Urban-Wise Image Illumination Enhancement

In terms of implementation details of LigherGAN, a low illumination UAV image will
be mapped to the feature space by the CNN based encoder and become feature maps, this
process could be described as either feature extraction or down-sampling. Whereafter, in
the up-sampling, the feature maps will be translated into illumination enhanced image by
the decoder, items in the generated image will be characterized by sufficient illumination.
In order to enhance an image under the premise of ensuring authenticity, theoretically, the
larger the number of images in a dataset, the greater the probability of implementation.
However, the image semantic feature information provided by the artificially generated
paired dataset is not sufficient. In the urban-wise low illumination images, many scenes
include interference light, affecting image readability, which is caused by tamps, orange
light reflected by water and building surface, etc. but these scenes will not appear under the
case of sufficient illumination environment. By using fixed-parameters, enhanced images
will also result in the neural network mapping being inflexible and unable to cope with the
diversified application environments where the illumination varies with the environment
—even the images in an artificially generated paired dataset can be created simply by using
the brightness linear adjustment algorithms. On the other hand, the GAN based model
needs enough data to support the convergence in training [16]. In the case of training
when only a small amount of data is available, it is difficult to achieve a satisfactory Nash
equilibrium [17], and it is easy to fall into model collapse, in which case images generated
by the model are not easily recognized by the discriminator, like meaningless noise or even
things do not exist in reality. As such, for our study, an unpaired dataset is used. In the
design of the model, we consider that when image illumination has enhanced, items in the
image is expected to show some necessary sufficient illumination related characteristics,
e.g., road and surface of the water will not reflect the light of a streetlamp significantly,
resulting in the feature distributions changing. However, the transformation of these
features is based on the model being trained on a more reasonable dataset, therefore, our
unlabeled and unpaired dataset is more advantageous.

2.2. Image Quality Assessment (NR-IQA)

IQA (image quality assessment), the necessary evaluation for image enhancement
algorithms, is divided into subjective assessment and objective assessment. The former
evaluates image quality from subjective visual perception, while the latter uses mathe-
matical models to give quantitative values with the goal of making objective judgments
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consistent with the subjective perception of visual perception. Subjective evaluation will
inevitably be affected by display equipment, lighting conditions, visual ability and emotion
of observers, etc., and it is difficult to handle a large number of tasks. Therefore, automatic
and accurate prediction of the objective quality evaluation is necessary. IQA can be divided
into 3 types according to the amount of information provided by the original reference
image: FR-IQA (full reference-IQA), RR-IQA (reduced reference-IQA) and NR-IQA (no
reference-IQA). FR-IQA has both the original image and the enhanced image, the core of
which is to compare the information amount or feature similarity. The information pos-
sessed by NR-IQA is only the enhanced image itself without any other reference. RR-IQA,
the type of method between FR-IQA and NR-IQA, possesses partial features extracted from
the original image [18].

For FR-IQA, the most authoritative algorithms are PSNR (peak signal to noise ratio)
and SSIM (structural similarity index) [19], both of which are based on the premise that
there is a mapping relationship between the original and enhanced images. In this article,
unsupervised learning and unpaired dataset are used, which means that each enhanced
image does not have a unique correct solution. Therefore, PSNR and SSIM are not suitable
for evaluating the quality of images enhanced by the LighterGAN.

Because people are fully capable of judging the quality of a specific image without any
reference, NR-IQA with the same preset conditions is more practical in the evaluation of
the performance of LighterGAN. In this article, perception based image quality evaluator
(PIQE), a representative evaluation method, is applied. As a built-in function in the image
processing toolbox of MATLAB, the quality evaluation ability and impartiality of PIQE
have been proven, and it has been widely used in the evaluation tasks of images generated
by deep learning model, especially in generative adversarial networks, such as [20–22]
et al. For urban-wise UAV applications, high authenticity and avoidance of distortion and
degradation are required by the subsequent intelligence image algorithms. Meanwhile, in
each patch of urban UAV aerial photography captured image, items are greatly complex
and various. Therefore, as a block-wise algorithm which uses the method of dividing
the image into non-overlapping blocks for subsequent calculations, the PIQE is obviously
appropriate. More specifically, there are three masks in PIQE, the activityMask can detect
compression artifacts and noise in the input image and estimate the spatial quality, the
noticeableArtifactsMask focuses on the blocking artifacts and sudden distortions in the
activityMask, the noiseMask can locate and estimate the blocks contain Gaussian noise. In
addition, the PIQE image quality level is based on the LIVE Image Quality Assessment
Database Release 2 [23]. For an enhancement algorithm based on convolutional autoen-
coder, the performance of LighterGAN highly relies on the quality of image reconstruction,
meanwhile the model generalization ability can also be evaluated by the quality of the
generated image [24]. Considering comprehensively, in this article the PIQE score is used
in image enhancement quality objective assessment and the quantitative evaluation of
model generalization ability.

3. Materials and Methods
3.1. Generative Adversarial Network

Generally, there are two types of deep learning models in terms of tasks: the generative
model and the discriminative model [25]. The discriminative model allowed a machine to
learn the decision function or conditional probability distribution to output the prediction
results. The generative model allowed the machine to learn the joint probability density
function and made the conditional probability distribution as the output; GAN is the
combination of two models. In 2014, the generative adversarial network was designed by
Goodfellow, which allowed researchers to mix the spurious images with the genuine by
using unsupervised learning [26]. In GAN, the generator learns feature distributions of
real images to make the generated images more realistic to deceive the discriminator. The
discriminator has to become more intelligent to discriminate the authenticity between both



Remote Sens. 2021, 13, 1371 5 of 20

types of images with model training. After reaching the Nash equilibrium, the generated
images achieve high quality and are hard to be identified.

In recent years, with the development of the GAN family, more effective GAN such
as WGAN [27], DCGAN [28], and CycleGAN have been designed to improve the perfor-
mance in the fields of dataset augmentation, image enhancement, image denoising, image
classification, super-resolution, semantic segmentation, etc. [29]. Among these applications,
image translation is the most eye-catching one in recent years, as GAN has shown its
advantages in the feature transformation field. Initial image translation started with a
CGAN-based supervised image translation model, the Pix2Pix, which was proposed by
Isola [30]. ‘Supervised’ means it uses a paired dataset for training, where each image has a
mapping with a certain image in another subset, shown in Figure 1a. It uses an end-to-end
architecture based on GAN, where the input is the original image x, and the output is the
translated image T(x). The original images and the translated images are combined to train
the discriminator. Paired datasets are costly in certain cases and have to be well-labeled;
therefore, more and more unsupervised image translation models have been proposed
recently [31], the most classic one is the CycleGAN. CycleGAN uses an unpaired dataset
for training and has a cycle consistency loss to replace the previous reconstruction loss in
the achievement of image translation. In this article, the principle of image illumination
enhancement of LigherGAN is also based on image translation, the enhancement will be
achieved by translating images with low illumination features into sufficient illumination
features after LigherGAN has been well-trained by the unpaired dataset, shown in Figure
1b.

Figure 1. Examples of different dataset types, (a) paired dataset; (b) unpaired dataset.

3.2. Unpaired Dataset

As above-mentioned, in the illumination enhancement task, especially when re-
searchers want to collect images in reality instead of adjusting brightness through al-
gorithms, paired data is hard to collect [32]. So, in this paper, unpaired dataset is ap-
plied, two UAV imagery sub-datasets are collected, sufficient illumination sub-dataset

X = {xi}
2954

i = 1
and low illumination sub-dataset Y = {yj}

2000
j = 1

. It is worth noting

that there is no labeling information in both sub-datasets. Objects found in images included
nearly everything in common urban areas, such as buildings, plants, streets, people, cars,
grass, water, etc. The images in the dataset are collected by ultra-low altitude (flight altitude
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is 0–100 m) or low altitude (flight altitude is 100–500 m) UAV, the spectral range of the
sensor is between 450 and 650 nm, and the radiometric depth is 8-bits, meanwhile, the
dataset also contains images collected from websites [33–35].

Considering the authenticity of the enhanced image, ideally, the neural network may
have sufficient comprehensive ability concerning what the objects in the image should
be like in the reality and, using intelligible information to perform the illumination en-
hancement with image translation. Furthermore, the underlying relationship between
two kinds of scenes (low illumination and sufficient illumination) has to be found out
carefully. In LighterGAN, a wiser discriminator is needed to judge the authenticity of
the enhanced image, as well as a more cunning generator to make an enhanced image
as realistic as possible. Hence, details of an image have to give the neural networks as
much information as possible. Aiming to guarantee the diversity of dataset content, the
multiformity of scene depth in the collecting of dataset is considered. There are three image
types, close shot, medium shot, and panoramic shot. Furthermore, for the low illumination
images collecting, various exposure time has set from 0 to 2 s, to make sure that the image
semantics are identifiable.

In the design of both sub-datasets, because the quantity of images in our dataset is
significantly larger than other illumination enhancement datasets, traditional data aug-
mentation methods such as image reversal and image stretch are not applied. This also
guarantees the authenticity of the enhancement to a certain extent.

3.3. Normalizations

To prevent the influence of affine transformation, geometric transformation, and also
speed up the gradient descent, normalization methods have to be used. There are two
common normalizations, instance normalization and batch normalization. Each image
has several channels in a convolution layer of a convolutional neural network (CNN),
batch normalization refers to the same channel for each of feature maps to perform the
normalization operation together. Instance normalization means that a single channel of a
single image is individually subjected to achieve normalization operation.

Batch normalization is suitable for discriminative models, such as image classifica-
tion [36] because it focuses on normalizing each batch to ensure the consistency of the data
distribution. The result of the discriminant model depends on the overall distribution of
the data; however, batch normalization is not suitable for all applications for two reasons:

• It is sensitive to the batch-size. Because mean and variance are calculated on one batch,
if the batch size is too small, the calculated mean and variance will not be enough to
represent the entire data distribution.

• The statistics involved in the calculation of the normalization output of a particular
sample will be affected by other samples in the batch.

Instance normalization is suitable for generative models, particularly image translation
which will be used in our image enhancement algorithm [37]. Because the results of image
generation mainly depend on an image instance, normalizing the entire batch is not
suitable for image translation tasks. Using instance normalization in image translation
could not only accelerate model convergence but also maintain independence between
each image instance.

µnc(x) =
1

HW

H

∑
h = 1

W

∑
w = 1

xnchw (1)

σnc(x)2 =
1

HW

H

∑
h = 1

W

∑
w = 1

(xnchw − µnc(x))2 (2)

ynchw =
xnchw − µnc(x)√

σnc(x)2 + ε
(3)
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where x is the sample image, n is the number of samples, c represents the channel, h is
height, w is weight, µnc is the means of x in one channel, σnc(x)2 is the variance of a certain
channel, ε is a constant added to increase training stability, and ynchw is the normalization
result. For the reasons above, instance normalization was used in the 2nd, 3rd, and 4th
convolutional layers in the discriminator, the 1st and 2nd deconvolutional layers in the
decoder, and also used in the residual block.

3.4. Network Structure

After the creation of the generative adversarial network, the original structure has
been modified by many scholars and used to implement their own applications. Generally,
when the GAN structure reaches a reasonable dynamic equilibrium, a stricter discrimi-
nator will compel the generator to provide generated images close to the real, making it
difficult for the discriminator to make a judgment. The image enhancement is the basis
of subsequent algorithms, and the authenticity of the enhanced image will also directly
affect the performance of subsequent image processing algorithms. So, the advantages of
better-performing generators and discriminators are obvious.

Generally, the factors that need to be referenced in the initialization of a neural network
structure are:

• Size of the dataset;
• Type of data;
• Quality of data;
• The function of the neural network;
• Strength of computing resources;
• Existing network structure with reasonable or excellent performance that could be

modified for aiming application;

Experimentally, the performance of the initial network structure has evaluated. When
a reasonable structure has found, it optimized manually to fine-tune the depth of channels,
transfer functions, normalization methods, etc.

3.4.1. Markovian Discriminator (PatchGAN)

Generally, a discriminator of a GAN will output a certain number (0 for fake, 1 for real)
for an image; however, features in an image depend on pixels and their neighboring area,
i.e., pixels far away have less relevance [38]. For an image enhancement model pursuing
authenticity, it has to make a certain judgment for each part of the image, so a patch-
based discriminator is applied. This discriminator takes advantage of a convolutive neural
network and can process each image block independently in the same way; therefore, each
result in the judgment matrix that is output by the discriminator is the result of performing
individual judgment of each patch—this design makes a more reasonable judgment.

In the structure of discriminator, there are 3 down-sampling convolutional layers
with the rectified linear units (ReLU) transferring a 256 × 256 × 3 input image x into a
32 × 32 × 1 feature map. For the high-frequency information, only the local patches are the
focus of the image. The instance normalization is used to map data to the range {0 ∼ 1},
which optimizes the efficiency of model training while avoiding gradient vanishing and
exploding. At the last CNN layer, a 1 × 1 convolution is used to achieve dimensionality
reduction [39], from 32 × 32 × 512 to 32 × 32 × 1, and achieve cross-channel information
interaction and nonlinearity increase. An attention model is added at the 2nd and 3rd
convolutional layers.

3.4.2. Autoencoder

To perform feature extraction of an image and efficient illumination enhancement
mapping, hourglass-like convolutional autoencoder architecture (shown in Figure 2) is
applied. As a typical unsupervised learning model, the autoencoder contains two major
parts: an encoder and a decoder [40]. The encoder maps the input low-illuminance
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sample x to the feature space z, the decoder maps z (the abstract features) to the sufficient
illumination feature space to obtain the sample y (illumination enhanced image).

Figure 2. Illumination enhancement mapping and the structure of LighterGAN.

Convolutional neural network and deconvolutional neural network are used in the
structure of the encoder and the decoder, respectively. A CNN (convolutional neural
network) is a multilayer Hubel–Wiesel structure constructed by imitating the information
processing process of the human optic nerve system [41]. One of the advantages of CNN is
that it can avoid the complicated pre-processing of images. A CNN can also simulate the
multi-level structure of the visual signal processing system in a human brain to establish a
mapping from low-level features to high-level semantics, so as to achieve data hierarchical
feature extraction.

When the classical neural network model is adopted (fully connected neural networks),
the computer needs to read the whole image as the input of the neural network model.
When the size of the image is large, its parameter scale and training computation will
become huge. It is worth noting that human cognition of the world is generally to recognize
certain parts first and then gradually recognize the whole [42]. Similarly, in the image
spatial connection, pixels within a local range are closely related to each other, while those
at a distance are weakly related. Each neuron in a neural network does not need to perceive
the global image. It only needs to perceive one certain part and the integration of the
local information can obtain global information. This is the receptive field mechanism of
convolutional neural networks.

In the autoencoder structure, ReLU (the rectified linear unit) is used as the activation
function to perform nonlinear mapping on the output of the convolutional layer [43], it
can improve the neural network’s perception of item features in sufficiently illuminated
natural light images. In this study, one encoder was trained for both types (low/sufficient
illumination) of images and decoders were trained for Mapping A and Mapping B, respec-
tively. Through this end-to-end structure, low-to- sufficient and sufficient -to-low image
illumination feature transform will be realized.

3.4.3. Encoder

The encoder is designed to generate multi-channel feature maps for a low illumination
image and increases the nonlinear relationship between pixels and regions and realizes
the extraction of image semantics. The input image is 256 × 256 × 3, and after a padding
process, the input image will be transformed to 64 × 64 × 256 by using three convolution
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layers. To ensure the integrity of the image information and increase the depth of the neural
network, 9 residual blocks are added after the convolution layers. This skip-connecting
structure solves the problem of information loss caused by the increase of network depth
and also helps to solve the problem of gradient vanishing and gradient exploding. This
structure makes our model deeper in layers while ensuring reasonable performance. Finally,
the input image was mapped to a high-dimensional space by the encoder, where the output
feature map was 64 × 64 × 256.

3.4.4. Decoder

After using the encoder to map the input low-light image to the high-dimensional
feature space, the decoder will reformat the 64 × 64 × 256 feature maps produced by the
encoder into an enhanced sufficient illumination image. This up-sampling operation is
completed by the deconvolution layer. In the operation, each point in the feature map
(low resolution, high-level descriptions) will be used to reconstruct a region in the output
image—it can be described as translation. Two deconvolution layers are designed to fix the
output size (256 × 256 × 3). An attention module is used before the first deconvolution
layer to make key semantic translation more prominent. Instance normalization is also
used to improve translation results.

3.4.5. Attention Mechanism

In LighterGAN, the input for mapping is an image whose information is abstract and
complex; therefore, a suitable mechanism is needed to allocate computing resources to
something more important. There are 4 types of attention mechanisms: item-wise soft
attention, item-wise hard attention, location-wise soft attention, and location-wise hard
attention [44]. Item-wise attention focuses on list input (e.g., NLP (natural language process-
ing)), whereas the location-wise attention is designed for feature map input. Location-wise
attention is designed by mimicking human visual system characteristics (scan image glob-
ally to obtain the target area that needs to be focused, and then invest more attention in this
area to obtain more details), Similarly, location-wise soft attention transforms the entire
feature map so that the part of interest can be highlighted. Compared with the location-
wise hard attention (non-differentiable), which discretely selects a sub-region from the
input feature map as the final feature, the location-wise soft attention (differentiable) [45]
can calculate the gradient through the neural network and learn the weight of attention
through forward and backward propagation, which is more suitable for our requirements.

The weight of the feature map has been re-adjusted, and the important part became
more prominent by letting the deep neural network learn the areas that need attention
in the picture via network training. This design of the attention mechanism is inspired
by the non-local neural network [10]. The attention mechanism is implemented by an
additional neural network connected to the original neural network. The entire model is
still end-to-end so the attention module can be trained simultaneously with the original
model. The principle formula is shown as:

yi =
1

C(x) ∑
∀j

f
(
xi, xj

)
g
(
xj
)

(4)

where i is the index of an output position (in space, time, or spacetime) whose response is
computed and j is the index that enumerates all possible positions. x is the input signal
(image, sequence, video; often their features) and y is the output signal of the same size
as x. A pairwise function f computes a scalar (representing relationship such as affinity)
between i and all of j. The unary function g computes a representation of the input signal
at the position j. The response is normalized by a factor C(x).

For the presentation of the similarity between xi and xj, the embedding Gaussian
function is used:

f
(
xi, xj

)
= eθ(xi)

T ϕ(xj) (5)
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In this formula, θ(xi) = Wθ xi and ϕ
(
xj
)
= Wϕxj are two embeddings, Wθ and Wϕ

are weight matrices that to be learned. Then the nonlocal block could be defined as:

zi = Wzyi + xi (6)

where yi is given in Formula (4), Wz is initialized as zero. Significantly, xi is used as a
residual connection, to keep information transmission. In this paper, the attention block is
shown in Figure 3. In the block, to achieve the attentional behavior, first, 3 feature maps
copies were created, f , g, and h (shape of their tensors are shown in Figure 3), f and g
reduced the number of channels to one-eighth of the original to reduce the computation
cost, then f multiplied the g transpose, then the SoftMax operation is used to generate the
output attention map. Then, the map is multiplied with h. In the end, the input feature
map is added to generate the attention block output, which obtained the shape as same as
the input.

Figure 3. Attention module.

In order to better explore the improvement of attention mechanism module on en-
hanced image visual perception and no-reference image quality assessment, a comparative
experiment is designed in Section 4.

3.5. Model Outline

In the outline of LighterGAN, with the purpose of extracting particular characteristics
in both unpaired sub-datasets and to know how these characteristics could be used to
enhance the brightness of urban-wise low illumination images while ensuring authenticity.
Two major mappings inside two circular structures are designed, shown in Figures 4 and 5:
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Figure 4. Discriminators and loss: (a) DA, discriminator between x and B(y); (b) DB, discriminator
between y and A(x).

Figure 5. Logic outlines of two cycles with mappings and loss: (a) sufficient illumination cycle and
loss; (b) low illumination cycle and loss.

• Mapping A: sufficient illumination→low illumination;
• Mapping B: low illumination→sufficient illumination;
• Sufficient illumination cycle: x → A(x)→ B(A(x)) = x̂ ≈ x ;
• Low illumination cycle: y→ B(y)→ A(B(y)) = ŷ ≈ y .

x comes from sufficient illumination sub-dataset X and y comes from low illumina-
tion sub-dataset Y, A(x) and B(y) are the translated low/sufficient illumination image
produced by the Mapping A and Mapping B, both are used in the training of sufficient
illumination image discriminator DA and low illumination image discriminator DB. Then,
A(x) and B(y) are used in the Mapping B and Mapping A, respectively, the image gen-
erated in this step could be described as x̂ = B(A(x)) and ŷ = A(B(y)), which is then
produced by the decoder for the calculation of cycle-consistency loss.

In our task, Mapping B will be used to achieve illumination enhancement, discrimina-
tor DA will judge the authenticity. However, it is worth emphasizing that, as a part of the
circular structure, the prerequisite for the excellent performance of Mapping B is that each
part of the entire structure is well-performing, and it cannot be separated from the overall
structure. Therefore, in the training phase, careful training was conducted on Mapping
A and discriminator DB. In the experimental section, in order to prove the generalization
ability of the LighterGAN, Mapping A will be used to generate low illumination images
for visual subjective evaluation and the evaluation of NR-IQA.

3.6. Adversarial Loss

The role of the discriminator DA was to make judgement between the sufficient
illumination image B(y) enhanced by Mapping B and the real sufficient illumination images
in sub-dataset X, discriminator DB aims to make judgement between the low illumination
image A(x) which is generated by Mapping A and the real low illumination images in
sub-dataset Y, the adversarial loss which content discriminator can be described as:
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LossDA(DA, B) = Ex∼pdata(x) [‖ DA(x)−Mones ‖2] +Ey∼pdata(y) [‖ DA(B(y))−Mzeros ‖2] (7)

LossDB(DB, A) = Ey∼pdata(y) [‖ DB(y)−Mones ‖2] +Ex∼pdata(x) [‖ DB(A(x))−Mzeros ‖2] (8)

LossDsum(A, B, DA, DB) =
(

LossDA(DA, B) + LossDB(DB, A)
)
/2 (9)

where the data distributions are denoted as x ∼ pdata(x) and y ∼ pdata(y). In the
training of the neural networks, to distinguish real one from generated one, the discrim-
inator is expected to approach infinitely close to Mones when recognizing a real image,
and to approach infinitely close to Mzeros when recognizing a generated image. Further-
more, a more stringent discriminator also benefits from the performance of the generator
(to produce the enhanced images realistically).

In the loss function, the L2 distance between the discriminator output and the
32 × 32 × 1 matrix Mones was calculated (each value in the matrix is 1) for the real image,
while also calculating the L2 distance between the 32 × 32 × 1 matrix Mzeros for translated
images. The total loss function of the discriminator is represented by the addition of the
loss functions above. It is expected that the value of the loss function will continually
minimize and converge to a reasonable value approaching 0 by the end of the training.

3.7. Cycle-Consistency Loss

First, the original cycle-consistency loss is calculated referencing to the CycleGAN.
Two types of cycle (sufficient illumination and Low illumination) generated images
x̂ = B(A(x)) and ŷ = A(B(y)), which are used to calculate the L1 distance between two
kinds of real images. In the sufficient illumination cycle, the Losscycx(X, B(A(x))) is calcu-
lated, while Losscycy(Y, A(B(y))) in a low illumination cycle. Then, the cycle-consistency
loss Losscyc(A, B) could be described as the addition of the two losses above.

Losscycx(X, B(A(x))) = Ex∼pdata(x) [‖ B(A(x)− X ‖1] (10)

Losscycy(Y, A(B(y))) = Ey∼pdata(y) [‖ A(B(y)−Y ‖1] (11)

Losscyc(A, B) = Losscycx(X, B(A(x))) + Losscycy(Y, A(B(y))) (12)

3.8. Semantic Consistency Loss and Model Overall Loss

In LighterGAN, it has to achieve semantic consistency in the enhancement process,
which means translating images while ensuring that the scenes in the enhanced images
still maintain their original characteristics in reality (e.g., a car in a low illumination image
will not be wished to be translated into a boat in the sufficient illumination). Therefore,
in LighterGAN, we propose semantic consistency loss Lossc(A, B). As known, a CNN
can extract image semantics and this work has been achieved by the down-sampling
convolutional layers in the encoder. So, the L2 distance between two kinds of encoder
results Losscx(X, B(A(x))) was calculated for x and x̂, Losscy(Y, A(B(y))) for y and ŷ,
then, semantic-consistency loss Lossc(A, B) could be described as the addition of the two
losses above.

Losscx(X, B(A(x))) = Ex∼pdata(x) [‖ E(B(A(x))− E(X) ‖2] (13)

Losscy(Y, A(B(y))) = Ey∼pdata(y) [‖ E(A(B(y))− E(Y) ‖2] (14)

Lossc(A, B) = Losscx(X, B(A(x))) + Losscy(Y, A(B(y))
)

(15)

In order to demonstrate the improvement of the illumination enhanced image quality
by adding semantic consistency loss function, as well as proving the improvement of
attention mechanism, we used no-reference image quality assessment (NR-IQA) to compare
the images before and after adding semantic consistency loss in the comparative experiment
in Section 4.
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In the training of the generator, the loss function Losscd(A, B) is also added to de-
termine whether the images were realistic enough. With this purpose, DB(A(x)) and
DA(B(y)) are used to calculate the L2 distance with matrix Mones respectively, this loss
could be described as follows:

Losscd(A, B) = Ex∼pdata(x) [‖ DB(A(x))−Mones ‖2] +Ey∼pdata(y) [‖ DA(B(y))−Mones ‖2] (16)

Then, LossGsum(A, B, DA, DB), the overall loss of this model, could be expressed as the
addition of three losses motioned above.

LossGsum(A, B, DA, DB) = LossDsum(A, B, DA, DB) + Lossc(A, B) + Losscd(A, B) (17)

3.9. Training Details

In the training strategy and environment, the most significant part has to be the
selection of optimization methods and the learning rate. An excessively low rate will
consume a large amount of time and an excessively high learning rate would lead to high
fluctuation in the convergence curve, even for nonconvergence [46]. We applied adaptive
moment estimation by using AdamOptimizer [47], with an initial learning rate set to
λ = 0.0002 and the exponential decay rate for the 1st moment estimation set to 0.5. The
model was built and trained by using TensorFlow v1.8 [48], the training equipment was
a single-core GeForce RTX2080ti with 11 Gb of graphics memory, the environment was
ubuntu 16.04 with Intel Xeon E5-2678 v3. The number of epochs was set as 140.

4. Experiments
4.1. Visual Subjective Evaluation and NR-IQA

As mentioned in Section 2, the enhancement of low illumination UAV aerial photogra-
phy captured image should not only focus on the enhancement performance, but also on
image authenticity and quality. In this comparative experiment, to evaluate the quality of
images which were enhancement by different enhancement algorithms, 44 images were
randomly selected from the test set, and then, a combination of subjective and objective
evaluation was used. In terms of subjective evaluation, statistical analysis of the human
visual perception evaluation was used. In terms of objective evaluation, because traditional
methods such as PSNR and SSIM were not suitable for the evaluation of LighterGAN, the
score of perception based image quality evaluator was used as an objective evaluation
standard. In both evaluation methods, the performance of LighterGAN was compared with
LIME, DUAL, Retinex, the CycleGAN (trained by same dataset as LighterGAN) and the
EnlightenGAN. LIME and DUAL are two traditional computer vision methods that have
performed well recently, the former is based on the illumination map, the latter is based
on exposure correction. Retinex is an instructive classic method and the EnlightenGAN is
a cutting-edge GAN based deep learning illumination enhancement method. CycleGAN
is the reference model, moreover, in image enhancement performance and generalization
capabilities estimation, CycleGAN can be used to reflect the benefits of the improvements
which are proposed in this article.

In detail, CycleGAN was trained on the same dataset. We trained the model and gen-
erated the images by using the sequential and simultaneous adoption of improvements. In
reproductions of LIME, DUAL, Retinex and EnlightenGAN, the default settings suggested
by the authors were used. In order to observe the performance of image enhancement
more intuitively, partial comparison experiment results are shown in Figure 6.
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Figure 6. Illumination enhanced images display: (a) original urban-wise low illumination images; (b) images enhanced by
DUAL; (c) images enhanced by LIME; (d) images enhanced by Retinex; (e) images enhanced by EnlightenGAN; (f) images
enhanced by CycleGAN; (g) images enhanced by LighterGAN.

In the statistical analysis of the human subjective evaluation, 135 participants ranked
the results of 6 different image enhancement algorithms in a total of 44 ranking questions
based on brightness and authenticity, furthermore, we scored the different algorithms in
each question by weighting the ranks, as shown in the following formula:

Score =
∑6

i = 1 Wi ∗ Numi

N
, N = 135 (18)

Here i was the ranking, Wi was the weight corresponding to the ranks,
Wi ∈ {1, 2, 3, 4, 5, 6}, Numi was the number of persons who given this rank, N was
the number of participants. For 44 randomly selected urban-wise low illumination images,
scores of each enhancement algorithms in 44 ranking question were calculated according to
the criterion that the higher the rank, the greater the weight. With this method, the average
score of each algorithm in visual subjective evaluation were calculated, the results were
shown in Table 1.

Table 1. Average score of 6 different enhancement algorithms.

Algorithm LighterGAN EnlightenGANCycleGAN Retinex LIME DUAL

Score 4.91 4.49 4.09 2.46 2.51 2.55

In the NR-IQA evaluation, to demonstrate quantitative comparisons of mentioned
enhancement algorithms, the PIQE was used to score the 44 test images, the results were
shown in Table 2.
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Table 2. Average perception based image quality evaluator (PIQE) scores of 44 test images in 6
different enhancement algorithms.

Algorithm LighterGAN EnlightenGAN CycleGAN Retinex LIME DUAL

PIQE 11.75 14.48 15.83 16.80 17.60 17.03

In this evaluation, it is worth emphasizing that, the lower the PIQE score, the better
the image quality. It could be found that among the mentioned algorithms, the rank of
PIQE scores and the rank of visual evaluation results were almost the same, especially in
the ranking of the three algorithms with lower scores (LighterGAN, EnlightenGAN and
CycleGAN). In the test set images comparative experiments, LighterGAN has achieved the
best results in visual perception subjective judgment and NR-IQA objective quantitative
judgment, furthermore, the results could illustrate that PIQE could objectively evaluate the
performance of the illumination enhancement algorithms.

4.2. NR-IQA Evaluation of Sub-Dataset Y

Because LighterGAN used unsupervised learning and an unpaired dataset, mean-
while, it could be found from the test images that the model did not show the phenomenon
of model collapse and overfitting, there were no unique correct results for the enhance-
ments in the low illumination sub-dataset Y, moreover, the result of each low illumination
image in the sub-dataset was in an unknown state before being enhanced. Therefore,
in order to evaluate the performance of image enhancement more comprehensively and
objectively, we have further expanded the scale of the number of images and designed a
comparative experiment for all images of the sub-dataset Y for this purpose.

In Section 4.1, the objectivity of PIQE to the quantitative evaluation of the enhancement
algorithm has been proven through the test set images subjective and objective comparison
experiments results. Therefore, PIQE was also used to evaluate the improvement benefit
from the attention mechanism in illumination enhancement. In this comparative experi-
ment, LighterGAN without attention mechanism was trained and joined the quantitative
evaluation.

From the PIQE evaluation of all 2000 images in the sub-dataset Y, it could be found
that the average PIQE score of LighterGAN was 12.37, it still achieved the best result, the
following two were still EnlightenGAN and CycleGAN. Comparing with the comparative
experimental results using the test set, it could be found that three deep learning based
algorithms (LighterGAN, EnlightenGAN and CycleGAN) still achieved better results, and
the rank of these three algorithms were also consistent with the previous experiment. More-
over, from the results, it was worth to highlight that the attention mechanism has indeed
achieved an improvement in image quality, in Table 3, compared with the LighterGAN
without attention, the average PIQE score of LighterGAN has been reduced by 0.44, and
the improvements brought by semantic consistency loss was also show by the difference
between the scores of LighterGAN without attention and CycleGAN in the table.

Table 3. Average PIQE scores of sub-dataset Y enhancement.

Algorithm LighterGAN LighterGAN
without Attention EnlightenGAN CycleGAN Retinex LIME DUAL

PIQE 12.37 12.81 15.22 17.37 18.10 19.41 19.30

4.3. Comparison of Generalization Ability with CycleGAN

As the predictive ability of a model for unknown data, generalization ability was
an important criterion for evaluating deep learning models. Therefore, as an improved
CycleGAN model, the rationality of the improved strategies in LighterGAN should be
evaluated by using generalization ability. Because LighterGAN used an unpaired dataset,
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in the model training, the enhanced image was not provided with the only correct image.
On the contrary, the model needed to provide a conjectural result after fully learning
the features in the two sub-datasets which were collected from real scenarios (sufficient
illumination subset X and low illumination subset Y). Therefore, in terms of the visual
subjective evaluation, the authenticity of the enhanced image could be used as the standard,
in addition, in terms of objective evaluation, PIQE was also used as NR-IQA method.

In the generalization ability contrast experiment, 99 images (including 55 sufficient
illumination images and 44 low illumination images) in the test set were used. The same as
the operation of CycleGAN, Mapping A and Mapping B in the cycle structure of Lighter-
GAN were used to generate images respectively. In order to observe the performance of
image enhancement more intuitively, partial comparison experiment results are shown
in Figure 7. In the visual subjective evaluation, the average probability of the images
generated by the two models being selected as the more authentic one was calculated and
recorded separately. In the objective evaluation, PIQE was used to calculate the scores of
the two models in 99 test set images and all images in the unpaired dataset (contained
sub-dataset X and sub-dataset Y) and list them in Table 4.

Figure 7. Generated images display, (a,d) original images; (b,e) images generated by Mapping A in CycleGAN; (c,f) images
generated by Mapping A in LighterGAN.

Table 4. Evaluation results between LighterGAN and CycleGAN.

LighterGAN CycleGAN

Average selected probability 53.33 46.67
PIQE (test set) 11.99 15.83

PIQE (whole dataset) 11.67 16.35

In the experimental results, LighterGAN was 6.66 percentage points higher than
CycleGAN in subjective evaluation. In the objective evaluation, the PIQE scores of test set
images and full dataset images were 3.81 and 4.68 less than CycleGAN respectively.

5. Discussions

As an improvement to the original CycleGAN structure, the performance of the
attention mechanism in improving the quality of illumination-enhanced images has been
quantified from the experimental results using PIQE scores. In order to further explain the
reasons for the decrease in PIQE scores in Table 4, representative images were selected and
listed in Figure 8.
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Figure 8. Attention processes and results: (a) the original images; (b) without attention mechanism;
(c) with attention mechanism.

In terms of prediction performance, as a GAN based image translation model, authen-
ticity and quality of the image after translation is benefits from the predictive ability of the
model. For LighterGAN, the predictive ability can be reflected in the objective evaluation
score of the image and visual intuitive experience. From the perspective of PIQE, shown in
Table 3, the score of LighterGAN decreased by 0.44 benefit from the attention mechanism.
Although the gap of score was not significant, it has improved the visual performance of
image quality indeed, especially in the edge area near the scene. In examples in Figure 8, it
could be found that after adding attention mechanism, the puzzling ripple phenomenon
which should not exist in reality was alleviated to a large extent, therefore, the authenticity
of enhanced image could be considered as being improved.

Compared with the attention mechanism which has little effect on PIQE scores, it could
be seen from Table 3 that LighterGAN (without attention) is 4.56 lower than CycleGAN
after adding semantic-consistency loss, which could be objectively identified as the most
critical factor to improve image quality. Therefore, the loss calculation in the feature space
is more beneficial to improve the quality of the LighterGAN generated image and the
generalization ability of the model.

In the urban-wise UAV low illumination images, there are many interferences caused
by lamps and reflected light from water or road surface which are affecting the image
readability. From the results of the visual perception, it could be observed that LighterGAN
can more effectively alleviate the influence of the light which reduces the readability of the
image, this advantage could improve the potential of the image in subsequent processing.
In terms of generalization ability, the advantage of LighterGAN was proved by both
subjective evaluation and objective evaluation, which can be considered as an improvement
brought by the combination of attention mechanism and semantic consistency loss.

In terms of disadvantages, LighterGAN could currently only process UAV images
with limited resolution and due to the limitation of processing efficiency, the images
cannot be processed real-timely. With the rapid development of image sensors carried by
UAVs, real-time image enhancement technology for ultra-high resolution images will be
a challenge. In the future, we plan to further optimize the network to achieve real-time
image processing with higher resolution and to try to use the circular structure to achieve
data augmentation.

6. Conclusions

Images captured by UAV aerial photography can be used by various computer vision
algorithms to accomplish intelligent and complex urban observation or monitoring tasks,
the premise of their performance is the satisfaction of image readability. In this article, we
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proposed LighterGAN, an image illumination enhancement method based on generative
adversarial network, which could be used to relieve the frequently encountered image
degeneration (the insufficient illumination and light pollution). Compared with five classic
or deep learning based image enhancement algorithms, LighterGAN was found to have
the best performance for visual perception and PIQE score. In the comparative experiment
using the test set and the sub-dataset Y, the illumination enhancement performance of
LighterGAN has exceeded the state-of-the-art EnlightenGAN and CycleGAN in both
subjective and objective evaluations. Moreover, in the performance evaluation of structural
improvements, the combination of authenticity subjective evaluation and objective PIQE
assessments also demonstrates the enhanced generalization ability of LighterGAN over
CycleGAN by using the images generated by two mappings.

Author Contributions: Conceptualization, J.W. and Y.H.; methodology, J.W. and Y.H.; software,
J.W. and Y.Y.; formal analysis, Y.C.; writing—original draft preparation, Y.C. and Y.H.; writing—
review and editing, Y.C. and Y.H. All authors have read and agreed to the published version of the
manuscript.

Funding: This work is supported by Shenzhen International Collaborative Research Project under
Grant GJHZ20180929151604875. (Corresponding author: Yuxing Han). This research is also funded
by a grant from the National Natural Science Foundation of Guangdong Province, China (No.
2018B030306026) and has been financially supported by the National Key Research and Development
Program of China (No. 2018YFC1508200).

Acknowledgments: The authors would like to thank the editors and the reviewers for their valuable
suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Noor, N.M.; Abdullah, A.; Hashim, M. Remote sensing UAV/drones and its applications for urban areas: A review. In Proceedings

of the IOP Conference Series: Earth and Environmental Science, 9th IGRSM International Conference and Exhibition on Geospatial
& Remote Sensing (IGRSM), Kuala Lumpur, Malaysia, 24–25 April 2018.

2. Silva, B.N.; Khan, M.; Han, K. Towards sustainable smart cities: A review of trends, architectures, components, and open
challenges in smart cities. Sustain. Cities Soc. 2018, 38, 697–713. [CrossRef]

3. Wang, W.; Wei, C.; Yang, W.; Liu, J. GLADNet: Low-Light Enhancement Network with Global Awareness. In Proceedings of the
Automatic Face & Gesture Recognition (FG) & 2018 13th IEEE International Conference, Xi’an, China, 15–19 May 2018.

4. Yang, H.; Chen, P.; Huang, C.; Zhuang, Y.; Shiau, Y. Low complexity underwater image enhancement based on dark channel
prior. In Proceedings of the 2011 Second International Conference on Innovations in Bio-Inspired Computing and Applications
(IBICA), Shenzhen, China, 16–18 December 2011; pp. 17–20.

5. Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Deep Image Prior. arXiv 2017, arXiv:1711.10925v3. [CrossRef]
6. Ren, W.; Liu, S.; Ma, L.; Xu, Q.; Xu, X.; Cao, X.; Du, J.; Yang, M.H. Low-light image enhancement via a deep hybrid network. IEEE

Trans. Image Process. 2019, 28, 4364–4375.
7. Lv, F.; Lu, F. Attention-guided low-light image enhancement. arXiv 2019, arXiv:1908.00682.
8. Guo, Y.; Ke, X.; Ma, J.; Zhang, J. A pipeline neural network for low-light image enhancement. IEEE Access 2019, 7,

13737–13744. [CrossRef]
9. Zhu, J.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. In

Proceedings of the International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2242–2251.
10. Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7794–7803.
11. Guo, X.J.; Li, Y.; Ling, H.B. LIME: Low-Light Image Enhancement via Illumination Map Estimation. IEEE Trans. Image Process.

2017, 26, 982–993. [CrossRef]
12. Zhang, Q.; Nie, Y.; Zheng, W.-S. Dual illumination estimation for robust exposure correction. Comput. Graph. Forum 2019, 38,

243–252. [CrossRef]
13. Parthasarathy, S.; Sankaran, P. An automated multi Scale Retinex with Color Restoration for image enhancement. In Proceedings

of the 2012 National Conference on Communications (NCC), Kharagpur, India, 3–5 February 2012; pp. 1–5.
14. Jiang, Y.; Gong, X.; Liu, D.; Cheng, Y.; Fang, C.; Shen, X.; Yang, J.; Zhou, P.; Wang, Z. Enlightengan: Deep light enhancement

without paired supervision. arXiv 2019, arXiv:1906.06972.
15. Perception Based Image Quality Evaluator (PIQE) No-Reference Image Quality Score. Available online: https://www.mathworks.

com/help/images/ref/piqe.html (accessed on 25 July 2020).

http://doi.org/10.1016/j.scs.2018.01.053
http://doi.org/10.1007/s11263-020-01303-4
http://doi.org/10.1109/ACCESS.2019.2891957
http://doi.org/10.1109/TIP.2016.2639450
http://doi.org/10.1111/cgf.13833
https://www.mathworks.com/help/images/ref/piqe.html
https://www.mathworks.com/help/images/ref/piqe.html


Remote Sens. 2021, 13, 1371 19 of 20

16. Zhao, S.; Liu, Z.; Lin, J.; Zhu, J.Y.; Han, S. Differentiable augmentation for data-efficient gan training. arXiv 2019, arXiv:2006.1073.
17. Kleinberg, R.; Ligett, K.; Piliouras, G.; Tardos, É. Beyond the Nash Equilibrium Barrier. In Proceedings of the Symposium on

Innovations in Computer Science (ICS), Beijing, China, 7–9 January 2011; pp. 125–140.
18. Mohammadi, P.; Ebrahimi-Moghadam, A.; Shirani, S. Subjective and objective quality assessment of image: A survey. arXiv 2014,

arXiv:1406.7799.
19. Hore, A.; Ziou, D. Image quality metrics: PSNR vs. SSIM. In Proceedings of the 20th International Conference on Pattern

Recognition (ICPR), Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369.
20. Ma, Y.; Liu, Y.; Cheng, J.; Zheng, Y.; Ghahremani, M.; Chen, H. Cycle Structure and Illumination Constrained GAN for Medical

Image Enhancement. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention, Lima, Peru, 4–8 October 2020; pp. 667–677.

21. Ganesan, P.; Xue, Z.; Singh, S.; Long, R.; Ghoraani, B.; Antani, S. Performance Evaluation of a Generative Adversarial Network
for Deblurring Mobile-phone Cervical Images. In Proceedings of the 2019 41st Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 4487–4490.

22. Pacot, M.P.B.; Marcos, N. Cloud Removal from Aerial Images Using Generative Adversarial Network with Simple Image
Enhancement. In Proceedings of the 2020 3rd International Conference on Image and Graphics Processing, Singapore, 8 February
2020; pp. 77–81.

23. LIVE Image Quality Assessment Database Release. Available online: https://live.ece.utexas.edu/research/quality (accessed on
20 January 2020).

24. Kalayeh, M.M.; Marin, T.; Brankov, J.G. Generalization evaluation of machine learning numerical observers for image quality
assessment. IEEE Trans. Nucl. Sci. 2013, 60, 1609–1618. [CrossRef]

25. Lasserre, J.A.; Bishop, C.M.; Minka, T.P. Principled Hybrids of Generative and Discriminative Models. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, New York, NY, USA, 17–22 June 2006.

26. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative ad-
versarial networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada,
8–13 December 2014.

27. Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A. Improved training of wasserstein gans. In Proceedings of the
Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5767–5777.

28. Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks.
arXiv 2015, arXiv:1511.06434.

29. Kaji, S.; Kida, S. Overview of image-to-image translation by use of deep neural networks: Denoising, super-resolution, modality
conversion, and reconstruction in medical imaging. Radiol. Phys. Technol. 2019, 12, 235–248. [CrossRef]

30. Isola, P.; Zhu, J.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. arXiv 2016,
arXiv:1611.07004.

31. Mejjati, Y.A.; Richardt, C.; Tompkin, J.; Cosker, D.; Kim, K.I. Unsupervised attention-guided image-to-image translation. In
Proceedings of the 32th Annual Conference on Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December
2018; pp. 3693–3703.

32. Harmel, R.D.; King, K.W.; Haggard, B.E.; Wren, D.G.; Sheridan, J.M. Practical guidance for discharge and water quality data
collection on small watershed. Trans. Am. Soc. Agric. Eng. 2006, 49, 937–948.

33. Unsplash. Available online: https://unsplash.com (accessed on 17 March 2020).
34. POND5. Available online: https://www.pond5.com (accessed on 25 July 2020).
35. ShutterStock. Available online: https://www.shutterstock.com/ (accessed on 20 July 2020).
36. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings

of the 32nd International Conference on Machine Learning, ICML, Lille, France, 6–11 July 2015; pp. 448–456.
37. Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Instance normalization: The missing ingredient for fast stylization. arXiv 2016,

arXiv:1607.08022.
38. Im, J.; Jensen, J.R. A change detection model based on neighborhood correlation image analysis and decision tree classification.

Remote Sens. Environ. 2005, 99, 326–340. [CrossRef]
39. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA,
24–27 June 2014.

40. Kodirov, E.; Xiang, T.; Gong, S. Semantic autoencoder for zero-shot learning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3174–3183.

41. Scherer, D.; Müller, A.; Behnke, S. Evaluation of pooling operations in convolutional architectures for object recognition.
In Proceedings of the International Conference on Artificial Neural Networks, Thessaloniki, Greece, 15–18 September 2010;
pp. 92–101.

42. Fukushima, K. Neocognitron: A hierarchical neural network capable of visual pattern recognition. Neural Netw. 1988, 1,
119–130. [CrossRef]

43. Agarap, A.F. Deep learning using rectified linear units (relu). arXiv 2018, arXiv:1803.08375.

https://live.ece.utexas.edu/research/quality
http://doi.org/10.1109/TNS.2013.2257183
http://doi.org/10.1007/s12194-019-00520-y
https://unsplash.com
https://www.pond5.com
https://www.shutterstock.com/
http://doi.org/10.1016/j.rse.2005.09.008
http://doi.org/10.1016/0893-6080(88)90014-7


Remote Sens. 2021, 13, 1371 20 of 20

44. Tan, C.; Sun, F.; Kong, T.; Fang, B.; Zhang, W. Attention-based Transfer Learning for Brain-computer Interface. In Proceedings of
the ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17
May 2019; pp. 1154–1158.

45. Shen, T.; Zhou, T.; Long, G.; Jiang, J.; Wang, S.; Zhang, C. Reinforced Self-Attention Network: A Hybrid of Hard and Soft
Attention for Sequence Modeling. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence
(IJCAI), Stockholm, Sweden, 13–19 July 2018; pp. 4345–4352.

46. Xue, W.; Hu, X.; Wei, Z.; Mei, X.; Chen, X.; Xu, Y. A fast and easy method for predicting agricultural waste compost maturity by
image-based deep learning. Bioresour. Technol. 2019, 290, 121761. [CrossRef]

47. Kingma, D.P.; Adam, B.A.J. A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
48. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. Tensorflow: A

system for large-scale machines learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation, Savannan, GA, USA, 2–4 November 2016; pp. 265–283.

http://doi.org/10.1016/j.biortech.2019.121761

	Introduction 
	Related Works 
	Limitations of Size-Limited Paired Dataset in Urban-Wise Image Illumination Enhancement 
	Image Quality Assessment (NR-IQA) 

	Materials and Methods 
	Generative Adversarial Network 
	Unpaired Dataset 
	Normalizations 
	Network Structure 
	Markovian Discriminator (PatchGAN) 
	Autoencoder 
	Encoder 
	Decoder 
	Attention Mechanism 

	Model Outline 
	Adversarial Loss 
	Cycle-Consistency Loss 
	Semantic Consistency Loss and Model Overall Loss 
	Training Details 

	Experiments 
	Visual Subjective Evaluation and NR-IQA 
	NR-IQA Evaluation of Sub-Dataset Y  
	Comparison of Generalization Ability with CycleGAN 

	Discussions 
	Conclusions 
	References

