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Abstract: Recently, deep learning has developed rapidly, while it has also been quite successfully
applied in the field of hyperspectral classification. Generally, training the parameters of a deep neural
network to the best is the core step of a deep learning-based method, which usually requires a large
number of labeled samples. However, in remote sensing analysis tasks, we only have limited labeled
data because of the high cost of their collection. Therefore, in this paper, we propose a deep metric
learning with online hard mining (DMLOHM) method for hyperspectral classification, which can
maximize the inter-class distance and minimize the intra-class distance, utilizing a convolutional
neural network (CNN) as an embedded network. First of all, we utilized the triplet network to learn
better representations of raw data so that raw data were capable of having their dimensionality
reduced. Afterward, an online hard mining method was used to mine the most valuable information
from the limited hyperspectral data. To verify the performance of the proposed DMLOHM, we
utilized three well-known hyperspectral datasets: Salinas Scene, Pavia University, and HyRANK for
verification. Compared with CNN and DMLTN, the experimental results showed that the proposed
method improved the classification accuracy from 0.13% to 4.03% with 85 labeled samples per class.

Keywords: hyperspectral classification; deep metric learning; online hard mining

1. Introduction

With the exponential development of hyperspectral remote sensing imaging technol-
ogy, hyperspectral imaging spectrometers can capture high spatial resolution images with
hundreds of narrow spectral bands. Meanwhile, hyperspectral remote sensing images have
abundant spectral and structural information for the analysis and detection of features. As
a result, hyperspectral images have been utilized for a wide variety of applications, such
as precision agriculture [1], environmental monitoring [2], and mineral exploration [3,4].
Among these applications, one of the most attractive fields in the research of hyperspectral
images is hyperspectral classification.

There have a lot of different hyperspectral classification algorithms being proposed.
Depending on whether a priori knowledge is used or not, the popular hyperspectral
classification algorithms comprise an unsupervised and supervised classification [5]. Un-
supervised learning, in the absence of a given prior knowledge, automatically classifies
or clusters the input data to find the model and law of the data. The more representative
unsupervised algorithms are principal component analysis [6], locally linear embedding [7],
and independent component analysis [8], which utilize the selected prominent features to
reduce the dimensionality of original data. However, the classification accuracy of unsuper-
vised algorithms is not as high as that of supervised classification algorithms. Supervised
approaches utilize a group of training samples to classify input data for each category, such
as maximum likelihood methods, support vector machine [9], sparse/spatial nonnegative
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matrix underapproximation [10], neural networks [11], and kernel-based methods [12–14].
For instance, Li et al. [15] proposed a generalized framework for composite kernel to
flexibly balance spatial, spectral information, and computational efficiency. Although
hyperspectral classification is widely studied, there are still two problems: (1) hundreds
of narrow spectral bands leading to the “curse of dimensionality”, and (2) limited labeled
samples for training.

To further handle the Hughes phenomenon [16] (when the number of training samples
is limited, the performance of classification decreases as the feature dimension increases),
researchers have extensively studied deep learning-based methods. The feature dimension
refers to the number of features in the feature space. Deep learning is a hierarchical
structure of deep neural networks, usually more than three layers deep. The hierarchical
structure attempts to extract the deep features of the input data on a hierarchical basis.
Deep learning is a rapidly developing research field that has shown usefulness in many
research fields, such as computer vision and pattern recognition [17,18]. In the field of
hyperspectral classification, there have been proposed many deep models. Yuan et al. [19]
proposed a stacked auto-encoder (SAE) model for hyperspectral classification, where SAE
was employed to obtain valuable advanced features. Since then, an increasing number
of deep learning models have been proposed, such as deep belief network [20], recurrent
neural network (RNN) [21], and convolutional neural network (CNN) [22–24]. Although
methods based on deep learning have made great strides in dimensional reduction of the
hyperspectral image, they all need numerous labeled samples to train many parameters,
which is known in deep learning as the small sample set classification problem. Many
strategies have been used to better tackle such problems. For instance, Li et al. [25] proved
that by constructing pixel-pair samples, the number of training samples will increase
significantly. More recently, a multi-grained network has been proposed as a hyperspectral
classification method based on deep learning, with the aim of classifying hyperspectral data
on a small scale [26]. Wu et al. [27] proposed a semi-supervised deep learning framework
whereby large amounts of unlabeled data, with their pseudo labels, were used to pretrain a
deep convolutional recurrent neural network, and then refine the network with the limited
labeled data available.

In this paper, a model with online hard mining based on deep metric learning (DM-
LOHM) has been proposed, which is a powerful deep embedded model for extracting
features and classifying pixel-level hyperspectral remote sensing images. The first thing to
do is to obtain embedded feature space by feeding all samples into the embedded network
separately. Secondly, a random hardest negative sampling strategy is utilized to select the
hardest triplets from the embedded feature space, which ensures that all triplets are valid.
Finally, to obtain the optimal parameters of the model, we used all the hardest triplets to
train a deep metric learning-based model. The objective of the proposed model is to project
the hyperspectral input features into Euclidian space where the mapping features have a
minimum intra-class distance and a maximum inter-class distance. The online hard mining
strategy is used to seek valid triplets (a triplet is composed of an anchor, a positive sample
of the same class as the anchor, and a negative sample of the different class as the anchor)
from mapping features while improving operational efficiency. In comparison to other
related advanced methods, our proposed methodology comprises three key contributions,
which are summarized below.

(1) A model based on deep metric learning is proposed for hyperspectral classification.
By utilizing the ability of the deep metric learning-based approach to maximize dis-
tances between classes and minimize distances within classes, one can effectively
reduce the high dimensionality of hyperspectral data while achieving a high classifi-
cation accuracy.

(2) We introduce the idea of online hard mining for deep metric learning to mine the most
discriminative triplets while improving the performance of triplet network. Triplets
obtained through an online hard mining strategy are more effective with limited
labeled data, significantly improving the classification accuracy.
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(3) The experimental results show that the proposed method is superior to other compar-
ison methods for comparing multiple hyperspectral image datasets.

The remaining sections of this paper are constructed as follows. Section 2 presents the
background of relevant research. Section 3 provides detailed information about the pro-
posed deep metric learning-based model. Section 4 presents the experimental results of the
proposed methodology using three actual hyperspectral datasets. Finally, the conclusions
are described in Section 5.

2. Related Work

In our proposed approach, convolutional neural networks are used as an embedded
network of the deep metric learning model. As a result, the fundamental structure of
convolutional neural networks is first presented here. Next, we present the research related
to deep metric learning and sample mining strategy.

2.1. Convolutional Neural Network

In recent times, CNN has achieved outstanding achievements in a wide range of
applications, notably the analysis of images by remote sensing [28–30]. Therefore, CNN [22],
which is stress-free handling of high-dimensional data, is used as an embedded network
for our proposed model on the basis of deep metric learning. As Figure 1 shows, the
fundamental structure of a CNN is constructed as a set of layers, consisting of convolutional
layer, pooling layer, and fully connected layer.
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Figure 1. Fundamental structure of convolutional neural network (CNN), which consists of a set of
layers comprising convolutional layer, pooling layer, and fully connected layer.

2.1.1. Convolutional Layer

These are particularly important in the extraction of feature. The first convolutional
layer typically obtains low-level features, while the high-level features can be extracted
from the deeper convolutional layers by combining low-level features. In a convolutional
layer, the connection between each neuron and the local patch in the feature map of the
previous layer is by means of a group of convolutional kernels. Next, the result of this
locally weighted sum passes by a nonlinearity operation, such as a hyperbolic function
(tanh) and rectified linear unit (ReLU). In a feature map, all neurons share the same
convolutional kernels. At the meantime, different feature maps commonly utilize different
convolutional kernels in the convolutional layer. Thus, the output volume generated by
the layer l is calculated as zl = ∑ wl × zl−1 + bl , where wl is the convolutional kernel of
layer l, zl−1 is the output volume of layer l − 1, and the bias matrix of the layer l is bl .

2.1.2. Pooling Layer

In general, there is a pooling layer after each convolutional layer, which is created
by the calculation of some local non-linear operations on a small spatial region R of the
feature map. Reducing the dimension of the representation and establishing invariants
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for small translations or rotations is the objective of the pooling layer [30]. A commonly
used pooling operation is the max-pooling operation that calculates the maximum of a
local patch of units into a single feature map. The pooling results of the layer l is calculated
as pl = max

i∈R
zl

i .

2.1.3. Fully Connected Layer

The last few layers of a convolutional neural network are usually fully connected
layers, which helps to better aggregate the information conveyed at lower levels and to
make final decisions.

2.2. Deep Metric Learning

Learning a self-defined distance metric that can be utilized to calculate the similarity
between two samples is the goal of metric learning. For instance, Wang et al. [31] utilized a
locality constraint to assure the local smoothness and preserve correlation between samples
for traffic congestion detection. According to Weinberger and Saul [32], an appropriate
distance metric can significantly improve the performance of many visual classification
tasks. Since Hinton et al. [20] introduced deep learning concept in 2006, more and more
deep models have been increasingly proposed. The aim of deep models is to learn valuable
semantic representations of data that can then be used to distinguish between available
classes [33–35]. However, such representations and the corresponding induction measures
are often considered to be side effects of the classification task, rather than being explicitly
investigated [36]. Therefore, Hadsell et al. [37] proposed the Siamese network variants
for distinguishing between similar pairs and dissimilar pairs of examples, in which a con-
trastive loss is utilized to train the network. As the concepts of similarity and dissimilarity
require context, Siamese networks are also sensitive to calibration. A triplet network model
was proposed by Hoffer et al. [36], aiming at learning valuable representations through
a comparison of distances. Deng et al. [38] utilized a triplet network based on metric
learning and the mean square error (MSE) loss to classify hyperspectral image data, which
significantly improves the results of limited labeled samples classification. Although triplet
network have been successfully implemented as a deep metric learning model to perform
classification tasks using only a small amount of training data [38], the triplet generation
method is not efficient, which needs to be improved. Our proposed approach, which
guarantees valid information about the features, utilizes a hard negative mining strategy
with an online method to generate triplets.

2.3. Sampling Mining Strategy

Informative input samples, the structure of the network model, and a metric loss
function [39] together constitute the concept of deep metric learning. While the loss
function is critical for deep metric learning, the selection of informative samples is also vital
for the classification or clustering task. Sampling strategies can improve the success rate of
the network and the speed at which the network can be trained. Earlier, a sampling strategy
of a random selection of positive and negative sample pairs was adopted in the Siamese
network [40]. For face sketch synthesis, Wang et al. [41] reduced the time consumption by
utilizing an offline random sampling strategy, which shows strong scalability. However,
Simo-Serra et al. [42] pointed out that the learning process may slow down and be adversely
affected after the network has achieved a level of acceptable performance. To overcome
this issue, it is highly effective to employ more realistic training models with a better
sampling strategy, such as semi-hard negative mining and hard negative mining, while
using informative samples. Semi-hard negative mining [43] focuses on finding negative
samples in the margin. False-positive samples determined by training data correspond
to hard negative samples [39]. When the anchor is too near to the negative samples,
the variance of the gradient is high, and the signal-to-noise ratio of the gradient is low.
Thus, Manmatha et al. [44] proposed a distance-weighted sampling strategy to filter out
noisy samples.
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In summary, although we can create a good network model and architecture, the
network learning ability is still limited by the discriminatory ability of the samples that are
presented to the network. Thus, differentiated training samples of each category should be
submitted to construct the network, in order for the network to be able to learn better and
to obtain a representation of the features.

3. Deep Metric Learning with Online Hard Mining

To tackle the challenge of the Hughes phenomenon and limited labeled samples in
hyperspectral classification, we constructed a model based on deep metric learning that
embeds samples into a specific metric space in which the distance between any two samples
can be characterized. At first, all samples are individually fed into the embedded network
mentioned in Section 2.1, rather than in triplet form, to obtain embedded feature space E,
which will reduce computational consumption. Secondly, the hardest triplets are selected
from the embedded feature space by utilizing a random hardest negative sampling strategy,
which ensures that all triplets are valid. Finally, the hardest triplets are used to train a
deep metric learning-based model to obtain the optimal parameters of the model. Figure 2
shows the flowchart of our proposed method.
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3.1. Deep Metric Learning-Based Model

Three same feed-forward embedding network instances with shared parameters form
a triplet network, which is a typical model in deep metric learning. The embedding network
is represented by f (X) ∈ Rd, which embeds a sample X into a d dimensional Euclidean
space Rd. As a result, the input data form of the triplet network is

{
(Xa, Xp, Xn)

}
, where

(Xa, Xp) to have the same class labels and (Xa, Xn) have different class labels. The Xa term is
known as an anchor of a triplet. In a triplet network, it is important to calculate the distance
D(Xa, Xi)i = {p, n} between the positive sample, negative sample, and the anchor.

D(Xa, Xi) = ‖ f (Xa)− f (Xi)‖2
2, i = {p, n}, (1)

where ‖•‖2
2 represents the Euclidean distance between two samples. After calculating

the distances between the anchor, positive, and negative samples, one can calculate the
standard loss function of the triplet network [44] as

`triplet = max(0, D(Xa, Xp)− D(Xa, Xn) + m), (2)

where m is a margin, which is enforced between positive and negative pairs. Pulling the
positive samples (green dot) closer to the anchor (blue dot) while pushing the negative
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samples (red square) far away is the objective of triplet loss. The blue arrow represents
pulling in, and the red arrow represents pushing away, as shown in Figure 3.
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3.2. Deep Metric Learning for Online Hard Mining

When training the triplet network mentioned above, one must often necessarily form
triplets of anchor, positive samples, and negative samples at first, and then cast the triplet
batches into triplet network to obtain the embedded features. Specifically, assuming that C
(C is the number of generated triplets) triplets

{
(Xa, Xp, Xn)

}
are generated in the manner

described above, 3C convolutional neural network operations must be computed to obtain
the triplets consisting of C embedded features. Then, the loss of these C triplets is calculated
and finally backpropagated to the network. Generally, such a training procedure, which is
known as an offline training strategy, is not efficient [43].

Therefore, Schroff et al. [43] proposed an online method for generating triplets. It
is assumed that the C triplets

{
(Xa, Xp, Xn)

}
are generated online. First, the embedded

features of the C input samples are obtained by using a convolutional neural network,
which is computed C times. Then, these C embedded features are used to generate triplets
(up to a maximum of C3 triplets). Compared to the traditional method of generating triplets,
it appears that the online method of generating triplets reduces the number of operations by
2C times, but not all triplets generated by the online method is valid triplets. To overcome
the problem of valid triplets, we combine the sampling strategy of Hermans et al. [45] with
the online approach for generating triplets to form our deep metric learning with the online
hard mining (DMLOHM) method, which can be seen in Algorithm 1. The core idea of
valid triplets mining is to form batches by randomly sampling P (P is the total number of
classes in all samples) classes, and then randomly sampling K (K is the number of samples
by randomly sampling) samples of each class. Thus, the total number of samples in a batch
is PK. For each sample in a batch, we can select the most challenging positive and negative
samples in the batch. The final loss function of DMLOHM can be formulated as

`θ =
P

∑
i=1

K

∑
a=1


max

p=1···K
D(Xi

a, Xi
p)− min

j = 1 · · · P
n = 1 · · ·K

j 6= i

D(Xi
a, Xj

n) + m


+

, (3)

where [•]+ represents hinge function, if the value in the formula is less than 0, then lθ is
equal to 0; otherwise, vice versa.

For DMLOHM, the online method and hard triplet mining is adopted for efficiently
generating valid triplets. Moreover, generating valid triplets allows for the production
of more discriminative information. With the help of valid triplets, it is now possible to
perform hyperspectral classification without many training samples.



Remote Sens. 2021, 13, 1368 7 of 19

Algorithm 1 A single iteration for training the DMLOHM

Input: Model: Dθ

The training set χ = {(X1, y1), . . . , (Xn, yn)}, where yi ∈ {1, . . . , K}
Parameter: the value of margin m (set as 0.1)

Output: Updated model Dθ

Begin
1. Obtain the embedded features E through the embedded net.
2. Utilize the random hardest negative sampling strategy to get the hardest positive samples
and hardest negative samples from the embedded features E.
3. Calculate the distance of anchor-positive samples and the distance of anchor-negative
samples by (1).
4. Calculate the loss `θ by (3) with margin m.
5. Update parameter sets θ by backpropagating through `θ .

End

4. Experiments and Analysis

Due to several critical problems, including the “curse of dimensionality” and limited
labeled samples for training, we proposed a deep metric learning-based method to tackle
these two problems. We used high-dimensional hyperspectral images to verify the former
problem and used different sample sampling strategies to verify the latter problem. Firstly,
to demonstrate the performance of the proposed DMLOHM algorithm, we implemented
experiments on three publicly available datasets, which were commonly used in hyper-
spectral classification, namely, the Salinas dataset, the Pavia University dataset, and the
HyRANK dataset [46,47]. These datasets are described in detail as follows. Then, a detailed
analysis was made for the hyperparameters in the model.

4.1. Dataset Description
4.1.1. Salinas Dataset

The Salinas dataset was acquired by the Airborne Visible/Infrared Imaging Spectrom-
eter (AVIRIS) sensor over Salinas Valley, California, USA [38], which can be downloaded
from http://www.ehu.eus/ccwintco/index.php (accessed on 30 March 2021). There are
204 spectral bands available after removing the 20 water absorption bands. The spatial
size of this dataset was 512 × 217, with a spatial resolution of 3.7 m. The pseudo-color
composite image and ground truth map of the Salinas dataset can be seen in Figure 4. There
were 16 types of land cover with 54,129 labeled pixels in total, and the specific information
is shown in Table 1.
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Table 1. Land-cover classes and numbers of samples in Salinas dataset.

Class Color Name Total Number of Samples
C1 Broccoli green weeds 1 2009
C2 Broccoli green weeds 2 3726
C3 Fallow 1976
C4 Fallow rough plow 1394
C5 Fallow smooth 2678
C6 Stubble 3959
C7 Celery 3579
C8 Grapes untrained 11,271
C9 Soil vinyard develop 6203

C10 Corn senesced green weeds 3278
C11 Lettuce romaine 4wk 1068
C12 Lettuce romaine 5wk 1927
C13 Lettuce romaine 6wk 916
C14 Lettuce romaine 7wk 1070
C15 Vinyard untrained 7268
C16 Vinyard vertical trellis 1807

Total 54,129

4.1.2. Pavia University Dataset

The Pavia University dataset was acquired by the Reflective Optics System Imaging
Spectrometer (ROSIS) sensor during a flight campaign over Pavia, Northern Italy [48],
which can be download from http://www.ehu.eus/ccwintco/index.php (accessed on
30 March 2021). After we removed 12 noisy bands, 103 spectral bands remained in the
Pavia University dataset. The spectral range of bands was between 430 and 860 nm. The
spatial resolution and spatial size were 1.3 m and 610 × 340, respectively. The pseudo-
color composite image and ground truth map of the Pavia University dataset can be seen
in Figure 5. As shown in Table 2, there were nine types of land cover with a total of
42,776 labeled pixels.
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Table 2. Land-cover classes and numbers of samples in Pavia University dataset.

Class Color Name Total Number of Samples
C1 Asphalt 6631
C2 Meadow 18,649
C3 Gravel 2099
C4 Trees 3064
C5 Metal sheets 1345
C6 Bare soil 5029
C7 Bitumen 1330
C8 Bricks 3682
C9 Shadows 947

Total 42,776

4.1.3. HyRANK Dataset

The HyRANK dataset was acquired by the Hyperion sensor on the Earth Observing-1
satellite with a spatial resolution of 30 m. It includes five images, two of which (i.e., Dioni
and Loukia) can be used as training hyperspectral images and three of which (i.e., Erato,
Kirki, and Nefeli) can be used as validation hyperspectral images. Since only the Dioni has
a sample size greater than 100 in each category, Dioni was chosen as our experimental data.
The spatial size of the HyRANK dataset was 250 × 1376, with 176 spectral bands, which
can be downloaded from http://www2.isprs.org/commissions/comm3/wg4/ (accessed
on 30 March 2021). The pseudo-color composite image and ground truth map of the Dioni
dataset can be seen in Figure 6. As Table 3 shows, there were 12 types of land cover with
total of 20,024 labeled pixels.
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Table 3. Land-cover classes and numbers of samples in HyRANK dataset.

Class Color Name Total Number of Samples
C1 Dense urban fabric 1262
C2 Mineral extraction sites 204
C3 Non-irrigated arable land 614
C4 Fruit trees 150
C5 Olive groves 1768
C6 Coniferous forest 361
C7 Dense sclerophyllous vegetation 5035
C8 Sparce sclerophyllous vegetation 6374
C9 Sparcely vegetated areas 1754

C10 Rocks and sand 492
C11 Water 1612
C12 Coastal water 398

Total 20,024

4.2. Experimental Setting

To illustrate the efficiency of the proposed method for reducing hyperspectral di-
mensionality and classifying limited labeled samples, we compared DMLOHM with four
deep learning classification algorithms, i.e., auto-encoder (AE), recurrent neural network
(RNN) [21], CNN [22], and deep metric learning with triplet network (DMLTN) [36]. Be-
cause of the single-pixel hyperspectral data as sequential data, we chose Hu’s 1-D (one
dimensional) CNN [22] as the embedded network of DMLOHM and DMLTN. In this
paper, overall accuracy (OA), average accuracy of each class (AA), and kappa coefficient
(kappa) were the performance metrics. The OA score assesses the overall classification
accuracy, i.e., the number of samples correctly classified in all categories divided by the
total size of testing samples and the average of each classification accuracy per class is the
AA score. Kappa is a statistical measure relating to the degree of agreement of categorical
items [49,50].

For the dimensionality reduction of the hyperspectral image, we performed the fol-
lowing experiments, setting extracted feature dimension to start at 1 dimension and then
increment to 200 in 10 intervals, utilizing 85 samples per class as the training set. Since we
were also interested in limited labeled samples classification, likewise, the experimental
parameter setting was that randomly picking out a very few numbers of labeled samples
per class (e.g., 10, 25, 40, 55, 70, 85, and 100) from the labeled set was to constitute the
training set, and then the testing set consisted of the rest of the labeled samples. After
considering the results of feature dimensions, we set the feature extraction dimension
of the limited labeled sample classification to 128, which is abbreviated as Dim, in or-
der to obtain stable and better classification results. Here, we took the average OA and
kappa values of 10 experimental results as a measure of the performance of the different
classification algorithms.

4.3. Parameter Setting and Convergence Analysis

As for training configuration, we ran our training procedures in a PyTorch environ-
ment with Adam optimization algorithm, and experiments were performed on Nvidia
RTX2060 with memory usage limited to 6 GB. For the proposed model, the learning pro-
cess was stopped after 200 training epochs without the validation set, and the learning
rate was set as 0.001. The hyperparameter, margin value m, also affects the classification
accuracy of DMLOHM. Thus, we performed an experimental analysis of this parameter,
utilizing 85 samples per class as a training set while setting the feature extraction dimension
as 128, and the result is shown in Figure 7a. From Figure 7a, we set the important margin
value m as 1. As shown in Figure 7b, our DMLOHM approach converged smoothly in the
training procedure.
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Figure 7. (a) Classification accuracy of different datasets under different margin values; (b) convergence performances of
different training numbers per class in the Pavia University dataset.

5. Results

To tackle the “curse of dimensionality”, many academics have studied the ability of
deep learning models to deal with this problem. Thus, in this paper, the dimensionality
reduction effect of our proposed method was analyzed by comparing the classification
accuracy of different algorithms from 1 to 200 dimensions. Experiments that compared
the classification accuracy of various algorithms when sampling 10, 25, 40, 55, 70, 85, and
100 samples per class were also set up to analyze the ability of our proposed approach to
deal with limited labeled samples classification problems.

5.1. Dimensionality Reduction

Figure 8a–c shows variation of classification OA values with differential extracted
feature dimensions of Salinas dataset, Pavia University dataset, and HyRANK dataset,
respectively. The dimension of the experiment was set to take one dimension as a single di-
mension, and then, starting with 10 dimensions, with 10 as an interval, until 200 dimensions
were taken. The following separately analyzed the experimental results. For the Salinas
dataset, when the feature dimension reached 10 dimensions, the classification accuracy
of DMLOHM was comparable to that of CNN but much higher than those of AE, RNN,
and DMLTN. For the Pavia University dataset, DMLOHM outperformed the other com-
parison algorithms when the feature dimension reached 10. DMLOHM achieved the best
classification result of about 40 feature dimensions. Then, the classification accuracy of the
DMLOHM algorithm gradually stabilized at a certain numerical range. For the HyRANK
dataset, DMLOHM was able to achieve the best classification result when the number of
feature dimensions reached 25, which was optimal earlier than any other algorithm.
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Figure 8. Classification accuracy varied as a result of feature dimensions. (a) Salinas dataset; (b) Pavia University dataset;
(c) HyRANK dataset.
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What is obvious from Figure 8 is that the DMLOHM algorithm can effectively reduce
the dimensions of hyperspectral data and improve the Hughes phenomenon. Meanwhile,
our proposed method performed with better OA in most situations (when the feature
dimension was greater than 10 dimensions).

5.2. Limited Labeled Samples Classification

Figures 9–11 show the classification accuracies of the Salinas dataset, Pavia University
dataset, and HyRANK dataset, respectively, including OA, AA, and kappa of all com-
parison methodologies in three datasets with different numbers of training samples per
class. The feature extraction dimension of all the comparison methods was set up to 128.
For the Salinas dataset and Pavia University dataset, the classification accuracy of DM-
LOHM always outperformed other algorithms with limited labeled samples, especially the
Pavia University dataset. For instance, in terms of the difference in classification accuracy
between DMLOHM and DMLTN, CNN was greater when the number of samples was
10 per class than when the number of samples was 85 per class. As for the Pavia University
dataset, we can see that our DMLOHM method outperformed the comparison algorithms
with the highest classification accuracy and the best robustness. Compared to CNN, which
was used as the embedded network of DMLOHM, DMLOHM improved the classification
accuracy by about 9%. Likewise, compared to DMLTN, DMLOHM substantially outper-
formed DMLTN, especially when the training sample was 100 per class, which improved
the classification accuracy by 7.72%. The superior performance of the DMLOHM approach
was also reflected on the HyRANK dataset, which is shown in Figure 11. From 10 training
samples per class to 100 training samples per class, the classification accuracy of DMLOHM
has always been better than other algorithms. That is, DMLOHM algorithm can boost the
classification accuracy with limited training samples.
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Figure 9. The classification performances using different numbers of training samples for the Salinas dataset. (a) overall
accuracy (OA); (b) average accuracy (AA); (c) kappa.
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Figure 10. The classification performances using different numbers of training samples for the Pavia University dataset.
(a) OA; (b) AA; (c) kappa.
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Figure 11. The classification performances using different numbers of training samples for the HyRANK dataset. (a) OA;
(b) AA; (c) kappa.

From the results of limited labeled samples classification, when the number of samples
was small, our proposed method was able to effectively improve the classification accuracy.

5.3. Other Experiments

Tables 4–6 summarize the quantitative evaluation results of the three datasets, with
85 labeled samples per class, while reducing the original dimension to 128 dimensions.
The indicators for quantitative analysis of the results were classification accuracy of each
class, the average accuracy, the average OA with the corresponding standard deviation,
and the average kappa coefficient with standard deviation. Here, all the experiments were
repeated 10 times. The best results for each indicator are labeled in bold.

Table 4. Classification results for the Salinas dataset with 85 labeled samples per class (about 2.5% of
total sample) as the training set (DIM = 128).

AE RNN CNN DMLTN DMLOHM

Class Mean Std Mean Std Mean Std Mean Std Mean Std

C1 97.22 1.3627 98.65 1.2857 98.65 0.6453 98.53 1.8467 99.77 0.0483
C2 99.34 0.9468 98.78 0.5281 99.66 0.3874 99.07 1.1015 99.89 0.0276
C3 95.09 2.2834 96.93 0.9080 99.24 0.4368 99.15 0.4288 99.92 0.1227
C4 99.66 0.1069 99.54 0.2178 99.71 0.0337 99.69 0.0354 99.72 0.0538
C5 97.67 0.7972 96.77 0.3585 98.19 0.2418 97.13 4.2324 98.71 0.2078
C6 99.71 0.0832 99.58 0.3136 99.81 0.0258 99.74 0.0493 99.79 0.0063
C7 98.62 1.8405 99.19 0.1535 99.48 0.0579 99.48 0.1080 99.59 0.0658
C8 72.35 2.3715 71.04 6.4577 80.32 2.1563 69.80 15.0745 76.65 5.5246
C9 98.84 0.5185 98.80 0.3933 99.38 0.2161 99.51 0.4952 99.89 0.0462
C10 88.78 1.2900 86.23 1.3433 91.33 0.5655 92.11 0.9608 96.63 0.4062
C11 93.61 1.4996 97.05 1.0173 97.24 0.3975 98.34 0.7326 98.57 0.2012
C12 98.75 1.3655 97.34 1.5305 98.91 0.4584 99.11 0.7789 99.90 0.0583
C13 98.46 0.1872 98.28 0.7329 99.23 0.2783 99.27 0.2909 99.66 0.0759
C14 92.86 0.9391 93.00 1.5808 97.29 0.7526 97.52 0.5400 98.77 0.1197
C15 63.12 3.3930 53.36 9.3126 69.19 3.5673 74.19 16.5001 78.20 4.5129
C16 95.37 3.3747 96.27 1.0644 98.43 0.1059 98.35 0.0983 98.68 0.0705

AA 93.09 0.4580 92.54 0.3131 95.37 0.2045 95.06 0.5061 96.52 0.0751

OA 87.27 0.0515 85.61 0.559 90.58 0.0264 89.02 1.4321 91.63 0.0548

Kappa 0.8582 0.0057 0.8396 0.0061 0.8950 0.0029 0.8779 0.0155 0.9068 0.0059
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Table 5. Classification results for the Pavia University dataset with 85 labeled samples per class
(about 1.5% of total sample) as the training set (DIM = 128).

AE RNN CNN DMLTN DMLOHM

Class Mean Std Mean Std Mean Std Mean Std Mean Std

C1 67.88 3.1520 79.21 4.0860 81.14 0.9982 81.73 3.4160 84.15 1.4853
C2 71.50 3.8101 76.78 3.7735 82.94 0.9966 81.26 3.1677 86.69 1.1915
C3 60.87 22.9224 70.75 7.6683 78.58 6.2574 79.49 7.7648 79.18 5.7180
C4 91.26 2.9592 90.90 3.2136 93.15 0.9456 94.79 1.6010 96.63 0.3333
C5 99.67 0.1191 99.46 0.1206 99.88 0.0566 99.83 0.0454 99.88 0.0566
C6 54.00 3.8511 67.12 4.5458 76.04 1.6330 83.66 2.9837 88.58 1.4022
C7 90.77 1.2038 86.57 5.4623 90.43 0.7575 91.74 2.2630 92.87 0.9842
C8 79.00 13.3296 81.85 3.8278 86.08 3.3800 87.24 4.3455 86.98 6.1821
C9 99.99 0.0379 100.00 0.0000 99.94 0.0632 99.98 0.0506 99.96 0.0580

AA 79.44 1.7345 83.63 1.0873 87.58 0.3755 88.86 0.6873 90.55 0.3262

OA 72.41 0.1329 78.61 0.1020 83.70 0.0340 84.25 1.2638 87.73 0.5049

Kappa 0.6459 0.0151 0.7235 0.0114 0.7879 0.0040 0.7967 0.0150 0.8402 0.0062

Table 6. Classification results for the HyRANK dataset with 85 labeled samples per class (about 5.0%
of total sample) as the training set (DIM = 128).

AE RNN CNN DMLTN DMLOHM

Class Mean Std Mean Std Mean Std Mean Std Mean Std

C1 61.15 6.4555 69.48 2.0579 83.64 2.0224 80.60 2.7210 84.15 1.6429
C2 92.78 0.7084 93.70 1.4948 96.56 0.6198 96.64 0.7920 97.56 0.2656
C3 85.99 4.3622 87.07 3.9504 93.33 0.9224 94.08 1.2981 93.93 0.7888
C4 97.69 2.2052 96.92 1.9180 99.85 0.4870 100.00 0.0000 100.00 0.0000
C5 73.23 3.6589 72.68 4.0310 82.90 0.8875 81.98 1.9504 84.43 0.6411
C6 99.35 1.1036 98.41 0.7690 100.00 0.0000 99.93 0.1518 100.00 0.0000
C7 89.91 0.7151 90.31 0.9047 92.60 0.3768 91.49 0.4103 91.22 0.3840
C8 86.04 1.7030 84.02 1.6785 86.47 0.8296 88.05 1.2872 86.76 0.4438
C9 74.09 3.8638 80.32 2.7080 90.09 0.8269 90.20 2.6676 90.01 1.7745
C10 94.13 2.3209 98.60 0.7511 99.56 0.1539 99.75 0.2310 99.68 0.2834
C11 96.80 1.7678 98.58 1.3699 99.91 0.1198 97.51 5.8051 99.97 0.0827
C12 94.15 4.1062 99.55 0.8950 98.88 0.4588 98.91 0.8560 99.62 0.4475

AA 87.11 0.6105 89.14 0.5744 93.65 0.1526 93.26 0.4684 93.94 0.1763

OA 84.76 0.0624 85.56 0.0470 89.95 0.0263 89.76 0.5770 89.89 0.2216

Kappa 0.8091 0.0074 0.8196 0.0057 0.8743 0.0032 0.8718 0.0070 0.8736 0.0027

As shown in Table 4, the proposed approach achieved the best classification accuracy
in most individual classes and obtained the highest OA and kappa coefficient values for
the Salinas dataset. It was observed that DMLOHM classified the vinyard untrained much
better than the other algorithms and reached 78.20%, being 5.4% higher than DMLTN.
Moreover, the classification accuracy of each class showed that DMLOHM presented a
higher accuracy with a robust classifier performance because of the lower standard devia-
tion in most situation. From Tables 5 and 6, we can observe from the comparison of results
that our proposed approach presented the highest OA and kappa coefficient values. The
classification accuracy of each class in these two datasets showed that DMLOHM presented
a higher OA, AA, and kappa in most cases, but it did not show a strong dominance.

The thematic maps of the Salinas dataset are visually shown in Figure 12b–f. It
follows that the proposed DMLOHM algorithm achieved the best classification results for
most land cover classes. As for vinyard untrained land cover, most methods inaccurately
classified it into grapes untrained land cover while DMLOHM was able to handle this
aspect elegantly. The thematic maps of the Pavia University dataset are visually shown
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in Figure 13b–f. It can be observed that most methods incorrectly classified bare soil into
meadow while DMLOHM was found to be a great way to solve this problem. Obviously,
by comparing Figure 13e,f, we were able to see that the online hard mining strategy
is vital to the DMLOHM method, helping it to achieve a great improvement in results.
Simultaneously, the DMLOHM algorithm achieved the best classification results for most
land cover classes. Figure 14b–f shows the thematic maps of the HyRANK dataset. We
can see that the thematic map of DMLOHM was much closer to the ground truth map. It
can effectively distinguish water and coastal water in that the spectral bands of them were
found to be similar.
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Figure 12. Classification results of all the methods for the Salinas dataset. (a) Ground truth map; (b) auto-encoder (AE); (c)
recurrent neural network (RNN); (d) CNN; (e) deep metric learning with triplet network (DMLTN); (f) deep metric learning
with online hard mining (DMLOHM).
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Figure 13. Classification results of all the methods for the Pavia University dataset. (a) Ground truth map; (b) AE; (c) RNN;
(d) CNN; (e) DMLTN; (f) DMLOHM.

In short, deep metric learning and online hard mining strategy can greatly improve
the classification accuracy of the embedded network.
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Figure 14. Classification results of all the methods for the HyRANK dataset. (a) Ground truth map;
(b) AE; (c) RNN; (d) CNN; (e) DMLTN; (f) DMLOHM.

5.4. Time Complexity

The time complexity of DMLOHM was also empirically tested, utilizing 85 training
samples per class, which we compared with other approaches. The result in Table 7 shows
that DMLOHM consumed a slightly longer period of time than DMLTN because of the
extra online hard mining strategy. Although DMLOHM consumed a little more time than
DMLTN and CNN, the classification accuracy was significantly improved by 0.14%–4.81%,
thus proving that our work is worthy.

Table 7. Time consumption (seconds) of different methods.

Dataset AE RNN CNN DMLTN DMLOHM

Salinas 251.8425 239.5069 12.6026 19.9895 76.5048
Pavia University 196.8264 92.3627 7.6125 11.8698 74.8602

HyRANK 95.9221 90.6688 7.2823 15.3791 74.5944
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6. Discussion

We proposed a deep metric learning-based method aimed at improving dimensionality
reduction and limited labeled samples classification accuracy using hyperspectral images
in order to achieve good results.

For dimensionality reduction, we utilized a CNN based embedded network to map fea-
tures into lower-dimensional feature space. However, just using a CNN-based embedded
network was not enough. We also utilized an online triplet loss to control the over-fitting or
under-overfitting. CNN is originally a good dimensionality reduction tool, and at the same
time, we used better sampling strategies to make the network training more targeted, and
only used less data to achieve a higher dimensionality reduction effect. The performance of
DMLOHM was validated from the aspect of three classification metrics using three datasets
The classification accuracy of DMLOHM outperformed other algorithms.

For limited labeled samples classification, both online hard mining strategy and deep
metric network played an important part in solving this problem. Deep metric network
can effectively make the same class more compact and the heterogeneous more scattered,
which made the network better perform classification tasks. Simultaneously, the online
hard mining strategy can provide hardest triplets for embedded network to train the whole
model. Therefore, the classification accuracy of three datasets showed that our proposed
method was better than other algorithms.

Finally, the difference between our proposed method and the others is that other
algorithms directly classify hyperspectral data with cross-entropy loss or others, which
does not consider the influence of intra-class distance and inter-class distance. Since
our algorithm imposes constraints on intra-class distance and inter-class distance, our
algorithm improves the classification accuracy obviously.

7. Conclusions

In this paper, we proposed a deep metric learning-based method for hyperspectral
classification. Different from the traditional model, we utilized CNN as an embedded
network to only extract features. For dimensionality reduction, an embedded CNN network
was utilized to map the high-dimensional hyperspectral data to low-dimensional feature
space, while online triplet loss was used to constrain the training process of the network,
making the model more suitable for hyperspectral data. Online hard mining strategy was
utilized to tackle the problem of limited labeled samples classification, which improved
the classification accuracy under the condition of limited labeled samples. In future work,
we will focus on the classification of spectral features in conjunction with a spatial feature
to achieve further superiority in real applications.
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