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Abstract: In less than two decades, UASs (unmanned aerial systems) have revolutionized the field
of hydrology, bridging the gap between traditional satellite observations and ground-based meas-
urements and allowing the limitations of manned aircraft to be overcome. With unparalleled spatial
and temporal resolutions and product-tailoring possibilities, UAS are contributing to the acquisition
of large volumes of data on water bodies, submerged parameters and their interactions in different
hydrological contexts and in inaccessible or hazardous locations. This paper provides a comprehen-
sive review of 122 works on the applications of UASs in surface water and groundwater research
with a purpose-oriented approach. Concretely, the review addresses: (i) the current applications of
UAS in surface and groundwater studies, (ii) the type of platforms and sensors mainly used in these
tasks, (iii) types of products generated from UAS-borne data, (iv) the associated advantages and
limitations, and (v) knowledge gaps and future prospects of UASs application in hydrology. The
first aim of this review is to serve as a reference or introductory document for all researchers and
water managers who are interested in embracing this novel technology. The second aim is to unify
in a single document all the possibilities, potential approaches and results obtained by different
authors through the implementation of UASs.

Keywords: drone applications; surface water; groundwater; photogrammetry; optical sensing; ther-

mal infrared

1. Introduction

Sustainable water management has become a major concern over the past decades;
as water demand increases with socioeconomic development and population growth, the
availability of freshwater resources shrinks due to climate change, aquatic ecosystem deg-
radation and anthropogenic impacts. According to UNESCO [1], water use has been in-
creasing 1% annually worldwide since the 1980s and the global demand for water is ex-
pected to keep a similar trend until 2050. This would account for an increase of 20% to
30% above the current level of water use. Under these circumstances, ensuring water in
adequate quantity and quality to meet food security, environmental targets, public health
requirements and the production of energy, services and other goods remains one of the
greatest challenges for water managers in coming years. This is especially critical in re-
gions such as sub-Saharan Africa, central and southwest Asia, which are affected by per-
sistent multi-year droughts, or the Mediterranean basin, where water resources are une-
venly distributed and present severe deficiencies in its southern and eastern parts. On the
other side of the coin, extreme precipitation events and alterations in flood frequency and
duration are affecting an increasing number of countries globally, causing loss of lives,

Remote Sens. 2021, 13, 1359. https://doi.org/10.3390/rs13071359

www.mdpi.com/journal/remotesensing



Remote Sens. 2021, 13, 1359

2 of 43

health-related issues and multiple social and economic damages. These extreme hydro-
logical phenomena are likely to be exacerbated as a result of climate change, with increases
in their frequency according to the Fifth Assessment Report of the IPCC [2]. Likewise,
water quality issues are becoming a major concern. Numerous aquatic systems have un-
dergone severe pollution processes linked to agricultural, domestic and industrial activi-
ties and waste disposal, situation that compromises the supply of clean potable water and
have deleterious effects on the ecosystem functioning and biota.

This scenario demands effective management and intervention in catchments, which
necessarily involves gaining further knowledge of hydrological systems and filling cur-
rent information gaps. In this regard, unmanned aerial systems (UAS) also known as un-
manned aerial vehicles (UAVs), remotely piloted aircraft systems (RPAS) or drones, have
recently emerged as new allies in environmental monitoring and management. UAS have
not only made bird's eye observation a reality, but also offer a vast range of applications
that is continually growing as technology advances. Although initially devised to support
military operations, the civilian and scientific applications of UAS have attracted increas-
ing attention in recent years, experiencing an exponential growth in their commercial,
governmental and amateur use. The advances in fabrication, remote control capabilities
and power systems along with the improvements in sensing technologies installed
onboard, have led to the development of a wide range of UAS that can be used to obtain
valuable information in different contexts. Numerous advantages of UASs over other sys-
tems can be cited; they are portable and enable the retrieval of data with very-high spatial
resolutions and unprecedent temporal coverage. They also enable engagement with areas
that would otherwise be inaccessible or cost-prohibitive, especially if compared with
methods such as airborne campaigns. Moreover, these platforms are easy to deploy, can
be flown in small enclosed areas [3] and their imagery might constitute systematic and
permanent data that can be used by other individuals and organizations [4]. Regarding
the latter aspect, it should be noted that there is still a long way to go in terms of stand-
ardization of the methods and available information. To date, UASs have been imple-
mented in a wide range of fields, such as wildlife research and monitoring [5,6] forestry
[7,8], precision agriculture [9], architecture, engineering and construction [10,11], disaster
management [12] and social research just to name a few.

The need for monitoring the elements of the hydrological cycle is a widely recognized
issue. Although in the last decades the field of hydrology has witnessed tremendous ad-
vances that have resulted in an increasing number of papers on the subject, as McCabe et
al. [13] pointed out, there are still significant gaps in our hydrological knowledge and
analysis capabilities such as the estimation of water and mass transport processes across
aquatic—terrestrial interfaces, groundwater depth and storage, deep soil moisture, evapo-
ration or snow water equivalent, among others. In this regard, the emergence of UAS is
leading to improvements in the understanding of hydrological processes and the man-
agement of water resources [14].

This article presents a review focused on the latest applications and advances of UAS
technology in the field of hydrology, concretely in water resource research, comprising
surface water and groundwater. Although there are other reviews in this field, some have
a general scope, addressing the application of UAS to a wide range of civilian and envi-
ronmental purposes [15] while others focus on very specific aspects of hydrology. For in-
stance, Carrivick and Smith [16] reviewed the application of the structure from motion
(SM) algorithms in photogrammetry for aquatic and fluvial environments, Tomsett and
Leyland [17] the current applications of remote sensing in river corridors and Rhee et al.
[18] the application of UAS remote sensing to fluvial environments exclusively. DeBell et
al. [14] focused on pragmatic concepts of UAS technology and sensors adequate for water
resource management. Several authors reviewed the applications of UAS in harmful algal
bloom studies [19,20]. Here, nevertheless, we address the vast range of UASs applications
in inland water bodies with a purpose-oriented approach, classifying them according to
the aim of the research conducted. This paper addresses (i) the current applications of
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UAS in surface and groundwater research, (ii) the type of UASs and sensors mainly used
in these tasks, (iii) the type of products generated from UAS-borne data, (iv) the ad-
vantages and limitations associated with their use and (v) knowledge gaps and future
prospects of UASs application in freshwater research and management. Studies on oce-
anic-coastal applications, hydric erosion, atmospheric water cycle, glaciology and aquatic
biodiversity/ecology were excluded from this review.

2. Methodology

An exhaustive search of papers published in academic journals was carried out from
August to November 2020. Papers without direct relevance to the use of UAS in freshwa-
ter research were discarded. The academic databases and search engines used were Sco-
pus, Google Scholar, Science Direct and Web of Science. Search results were restricted to
English language. Table 1 depicts the keywords used in the bibliographic search, includ-
ing drone-related and hydrology-related terms.

For each application covered in this paper, search was conducted using different
combinations of keywords, such as: “UAS hydrology”; “unmanned vehicle bathymetry”;
“river bathymetry UAV”; “UAV river discharge”; “water surface velocity UAV”, “algal
bloom UAV”, “UAS submarine groundwater discharge”, etc.

Only those papers published over the last two decades (2000-2020) were considered
in order to report the most updated information and ensure the inclusion of the most rel-
evant works, given the recent development of this technology.

Table 1. Search terms.

UAS and Sensor-Related Terms Hydrology-Related Terms

Submarine groundwater discharge

Algal bloom .
& . Subsidence
Drone Aquifer Surface velocit
veloci
LiDAR Bathymetry ! Y . .
. . Surface-Groundwater interaction
Remote sensing Flooding Thermal plume
RPAS Photogrammetry  Freshwater P
. Thermal structure
UAS Multispectral Groundwater
Water budget
UAV Hyperspectral Hydrology
. . Water level
Unmanned Aerial System Thermal infrared ~ Morphology .
. . . Water pollution
Unmanned Aerial Vehicle River .
. . . Water sampling
Structure from Motion River discharge
. . Water storage
RGB Riverine plastic
Runoff Water table
uno
Wetland

The study focuses on the applications of UASs in hydrology, concretely in freshwater
research, thus the literature search process was restricted to those experiences in which
UAS were used to study rivers, lakes, reservoirs, wetlands, groundwater bodies and the
interactions among them. Figure 1 shows the steps followed in the literature search and
classification process, from the initial screening and selection of eligible articles to their
final inclusion. Research articles were manually screened by reading the title and abstract,
and to ensure relevance, were subsequently analyzed in detail. After discarding dupli-
cates and non-relevant works, a total of 122 research papers were selected and subse-
quently categorized according to the focus of the research work (Surface-groundwater in-
teractions, water levels, contamination studies, system dynamics, etc.). It should be noted
however, that some of the UAS applications presented here could fit into more than one
category. For this reason, the papers have been classified according to the main objective
of the study.
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Figure 1. Process of literature search and classification.

3. Types of UAS, Sensors and Other Payloads
3.1. Platforms

These sections do not intend to make an exhaustive overview on the type of UAS,
sensor, power systems, etc., but to provide the necessary background for the comprehen-
sion of the review as a whole. The vehicle itself is just one part of the complete unmanned
aerial system as recognized by other authors [21]. Components such as the control and
command element, the payload, take off and recovery system, data link and transmission,
and the most important part: the human component, are essential for the system to per-
form its task.

An unmanned aerial system consists of a flying device that includes: (i) A platform
with the structural, mechanical and electronic elements necessary for the flight, its control
and stability, (ii) a set of sensors and devices for the acquisition of information from the
environment and (iii) a ground control station. UAS characterization can be made based
on different variables. Normally, they are classified based on weight [22,23]. Terms such
as “nano drone”, “micro drone”, “mini drone”, “pico-drone”, etc., are the most frequently
used. Apart from weight, other authors include in the classification the typology of aerial
vehicle itself or the take-off and landing mode: horizontal take-off and landing (HTOL)
versus vertical take-off and landing (VTOL) [24]. Unconventional UAS such as bio-drones,
smart dust, air-land-water hybrid drones are being considered in recent times [24]. In any
case, most of the applications discussed in this work refer to “lightweight UAS”, which
due to their reduced maximum take-off weight (MTOW) (less than 7 kg), affordable price,
easy deployment and high performance are widely used in scientific research. The most
affordable models range between 500 and 1500 €, while the most sophisticated can reach
prices up to 120,000 € including the sensing equipment. Although some authors such as
Watts et al. [25] propose a classification for civil applications that ranges from very small
UAS to large remotely controlled vehicles that can reach thousands of meters in height
and many hours of autonomy, legal restrictions in most countries justify a more restrictive
classification. DeBell et al. [14], classified the lightweight UASs and analyzed their main
characteristics and the available sensors with application to the management of water re-
sources. More recently, Johnston [26] established a new classification and provided a cur-
rent overview of platforms and sensors that, although it is oriented at marine research and
conservation, it is also of interest for research on water resources.
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In general, for most hydrological applications these platforms can be categorized ac-
cording to their airframe configuration, propulsion method, and flight characteristics into
four main types: multi-rotor, fixed wing, transitional and others (balloons, kites and
blimps). Multi-rotor UASs have multiple engines and propellers that allow the lift, move-
ment and orientation of the platform (pitch, roll, and yaw). Multi-rotors, also known as
multicopters, typically employ four (quadcopter), six (hexacopter), or eight (octocopter)
motors and propellers; by increasing or decreasing the output of individual motors it is
possible to control the movement of such vehicles. A greater number of motors, especially
in larger UASs, reduces the risk of falling due to mechanical failures, even though this
redundancy is often accompanied by a reduction in efficiency. In fact, the main limitation
of multirotor systems is their flight time, mostly due to higher energy demands, battery
weight and energy storage constraints. Finally, these types of UASs are manufactured
from lightweight and resistant materials such as aluminum, composites (carbon fiber) and
plastic.

Fixed-wing UASs have one or two wings that provide maneuverability and lift; they
can have several wings configurations (gliders, delta wings, canards, among others).
Fixed-wing UASs are generally driven by one or two motors and propellers in a push or
pull configuration. These types of UASs are manufactured from very lightweight materi-
als, including various forms of expanded foam (polyolefin, polypropylene or polystyrene)
and composite. The flight efficiency of these aircraft is usually higher than in the multi-
rotors UASs, due to their lower relative weight and the fact that the lift is of the passive
type, through large airfoil surfaces.

Transitional UASs combine aspects of multi-rotor and fixed-wing devices to provide
greater flexibility in their use. They intend to incorporate the advantages of the vertical
take-off and landing of the former with the greater autonomy and range of action of the
latter. Vertical flight is typically driven through three or four motors facing upward, and
horizontal flight is driven by a motor and propeller in a push configuration while lift is
produced by the wings.

Finally, the category "other" includes devices that either do not have autonomous
means of propulsion (kites and balloons) or, if they do, the lift is given by gas lighter than
air (blimps). In recent years, these devices have been gradually replaced in most applica-
tions by the previous types, due to technological development which have notably im-
proved their performance. Table 2 shows the main characteristics of the platform classes
and Figure 2 illustrates different types of platforms and sensors.

Table 2. Classification of lightweight unmanned aerial systems (UAS) platforms and their main characteristics.

MAIN FEATURES Multi-Rotor Fixed-Wing Transitional Other (Balloons, Kites
and Blimp)
Diameter or wing-span 35-150 cm 100-200 cm 100-200 cm Upto5m
Flight time 15-50 min 25-75 min 25-90 min Hours
Payload Capability 1-2.5kg 1-2kg 1-2 kg >2.5kg
Maneuverability High Medium Medium-high Low
Wind resistivity 10-15 m/s 8-20m/s 12 m/s Highly variable
Ability to fly .gnder windy Medium Medium-high Medium-high Low
conditions
Spatial coverage in a single 2040 ha 80-320 ha 80-320 ha Variable
flight
Expertise required Low Medium High Low

Take-off and landing

Launch line, catapult, or hand

ical -off
launch; open area for landing or Vertical take-off and

Vertical take-off and Vertical take-off and

capability landing (VTOL) parachute landing (VTOL) landing (VTOL)
Velocity o thrust failure Crash Glide capability, controlled crash, Glide capability, controlled Variable
or parachute crash, or parachute
Ability to carry sampling
Yes No No No

devices
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Figure 2. (a) Fixed wing UAS Atyges-FV1 on catapult; (b) 1. Hexacopter DJI Matrice 600 pro, 2.
Micro UAS Quadcopter DJI Mavic Pro, 3. Micro UAS Quadcopter DJI Phantom 3 professional; (c)
Quadcopter DJI Matrice 300 RTK and radiocontrol station; (d) 1. Multispectral camera Micasense
dual (10 bands) and 2. visible and thermal camera Zenmuse XT2 onboard a DJI Matrice 210
RTKv2; (e) RGB camera Sony EXMOS onboard a DJI Phantom 3 professional; and (f) 1. LIDAR DJI
Zenmuse L1 and 2. hyperspectral camera Headwall VNIR-SWIR. Courtesy of the Drone Service of
the University of Cadiz.

Albeit different power supply and energy management systems can be used (see a
review on this topic in [27]) most UASs used for research purposes are battery powered.
Lithium polymer batteries provide significant energy density and can discharge enough
electrical current to meet the variable electrical current demands of the engine and pay-
load. Some systems are hybrid, employing combustion engines together with battery-
powered electric motors.

The flight control system, sometimes named autopilot, is the core of the vehicle. It
normally includes a flight control processing unit composed of an inertial measurement
unit (IMU), electronic speed control (ESC) units, barometer and a global navigation satel-
lite system (GNSS). The IMU consists of a set of accelerometers (normally 3), gyroscopes
and magnetometers whose main purpose is determining the orientation, linear and angu-
lar accelerations to estimate the movement direction with respect to the earth magnetic
field. A data storage system and communication modules (telemetry) are also additional
parts of the flight control system. UASs rely on two main navigation technologies, Inertial
Navigation Systems (INS) and Global Navigation Satellite Systems (GNSS), so that they
can work in a GNSS-only or INS/GNSS coupling mode. The cost reduction and miniatur-
ization of high-performance GNSS units, which allow connection to a nearby reference
station and reception of correctional data in real time (kinematic correction), can provide
accuracies of 3-5 cm in the dynamic position of the platform, with the consequent im-
provement in the observations made using sensors and devices.

3.2. Sensors and Other Payloads

The application of UASs in hydrology fundamentally encompasses the field of low
altitude aerial Photogrammetry and Remote Sensing (PaRS), although other non-remote
applications have also been successfully developed. In any case, an important limitation
of these systems is the size and weight of the payload, especially in lightweight UASs,
which rarely exceed 2.5 kg. This implies that the sensors and devices included in the UAS
must meet special requirements in terms of lightness and packaging. Fortunately, in re-
cent years a substantial number of sensor systems for PaRS applications that meet these
conditions have been specifically developed by manufacturers to be mounted in light-
weight UAS. Most of the sensors used in hydrological UAS-based mission are essentially
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digital cameras, which are optical-electronic sensors. These sensors consist of an optical
system (lens) that captures and projects electromagnetic radiation onto a CCD (Charge
Coupled Device) or alternatively onto a CMOS (Complementary Metal-Oxide-Semicon-
ductor) device, so that the light generates in each element of a matrix an electrical current
that is registered and encoded. Currently, there is a wide range of passive optical-elec-
tronic sensors available for UAS, which covers a wide spectrum range (400-14,000 nm)
and includes RGB, multispectral, hyperspectral and thermal infrared (TIR) cameras.

The usefulness of RGB cameras, which record radiation in the visible spectrum, lies
in obtaining aerial videos and imagery that can be processed to orthorectified image mo-
saics and digital surface models (DSM) using photogrammetry Although some models
already exist, usually RGB cameras onboard UAS are non-metric, which implies that the
interior orientation elements (focal length, principal point location, distortion parameters,
etc.) have not been determined through a calibration process, in addition to not meeting
certain requirements for lens quality and dimensional stability of its components. This
aspect, which constitutes a serious drawback for stereoscopic photogrammetry, has been
solved using new digital photogrammetry methods such as Structure from Motion (SfM).
By using multiple overlapping images, SfM reconstructs the 3D scene structure, camera
positions and orientations from a set of feature correspondences. The incorporation of
bundle adjustment techniques, which consist of a non-linear refinement of camera and
point parameters, has enabled to optimize SfM 3D reconstructions and to minimize re-
projection errors. [28]. Many UAS are endowed with consumer-grade RGB cameras that
provide excellent image quality in a relatively small and light package along with flexibil-
ity in imaging through their interchangeable lenses. As well, some RGB cameras have
been created specifically for UAS applications.

Multi- and hyperspectral cameras are typically used for material identification and
mapping purposes based on the study of the spectral signature of the different materials
(vegetation, soils, water constituents, waste, etc.) rather than defining metric properties.
These sensors sample multiple bands of the electromagnetic spectrum, from blue (400 nm)
to near infrared (840 nm), short wave-length infrared (1800 nm) and mid-wavelength in-
frared (4000 nm). While multispectral cameras detect radiation in a small number of bands
with relatively large bandwidth (20-40 nm), hyperspectral cameras can sample a broad
range with a much higher spectral resolution, even higher than 200, with narrower band-
widths (2-5 nm). The reduced need for correction of the atmospheric effect thanks to the
very low flight height of these platforms facilitates calibration using standards and field
radiometry. Nevertheless, several environmental factors such as light angle, shades, water
vapor content or technological constraints like the relatively high signal-to-noise ratio
makes it necessary to apply certain corrections during image processing. Adao et al. [7] or
He and Weng [29] among others, reviewed a range of hyperspectral sensors used with
UASs.

TIR sensors are aimed at detecting long-wave infrared energy (8,000-14,000 nm)
emitted by objects in the camera’s field of view. Since the emitted energy is directly pro-
portional to the fourth power of the thermodynamic temperature of the surface, TIR sen-
sors can be used to generate surface temperature maps but need to account for emissivity
effects such as angle of observation or material. Another aspect to consider is the time of
observation; while during day the recorded energy is a mixture of purely emitted and
reflected radiation, in the absence of incoming radiation (e.g., during night) the energy
and temperature maps show the truly emitted radiation of the surface. TIR sensors use
microbolometers as detectors; devices that change their electrical resistance as a function
of temperature. This resistance change is measured and transformed into temperatures
which can be used to create an image. Currently, there are two main types of commercial
TIR systems; (i) sensors with cooled microbolometer arrays, which measure the short-me-
dium wave IR, offer greater resolution and thermal sensitivity but are bulkier and more
expensive and (ii) sensors with uncooled microbolometers, which work in the LWIR spec-
trum and are less susceptible to solar reflection. As cooled microbolometers are heavier,
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they are normally used in airplanes or satellites. Uncooled microbolometer on the other
hand are lighter and cheaper, what makes them suitable to be mounted on UAS, but they
can experience temperature drift issues [30]. This temperature drift problem is an inherent
consequence of the set-up of the sensor; uncooled microbolometers are infrared sensors
distributed in an array where each unit function as single sensor elements. Temperature
drift in the system will occur due to temperature changes inside the camera or due to
heating of the lenses or focal plane array. The most common approach to tackle with this
issue is the application of non-uniformity corrections to remove noise, what leads to a
more homogenized response signal along the microbolometer array [31,32]. In this regard,
[32] proposes a workflow for data acquisition and preprocessing along with best practices
to reduce camera uncertainty in long and short-term noise. In recent years LiDAR (Light
Detection and Ranging) sensors are being incorporated into lightweight UAS platforms.
These sensor packages, which are active type, use lasers to scan the environment to pro-
duce 3D point clouds of the terrain, bottom of surface water bodies and vegetation.

Finally, in addition to the devices that remotely acquire information from objects
avoiding any physical contact, UAS platforms can carry instruments such as multiparam-
eter probes (temperature, electrical conductivity, pH, Eh, dissolved oxygen, oxidation-re-
duction potential, etc.) to be dipped into the water column, different types of samplers,
Geiger counters or magnetometers or multi-gas monitors among others. In all cases, UAS
constitute a platform from which conventional measurements can be carried out with
great flexibility in terms of location and movement, reducing campaign costs and mini-
mizing risks [33]. A general overview of the different types of sensors and their ad-
vantages, limitations and potential applications is provided in Table 3.

Table 3. Overview and some examples of sensors commonly used with UAS in hydrological research.

Types of Spectral Camera
Ranges Examples from Hydrological Applications Main Advantages and Disadvantages
Sensor .
(nm) Cited Works
Canon Powershot Advantages: 1) Wide range of prices, resolutions and
G5/Canon EOS, weights available depending on the model. 2) Video
[34] Visual analysis, bathymetry, DEM capture. 3) Easy integration in different platforms.
Zenmuse X3 photogrammetry, water stages, flood
RGB ~400-700 FC350, [35] monitoring, particle velocymetry, HAB!  Disadvantages: 1) Lower spectral resolution that makes
RGB OLYMPUS monitoring, mapping and classification of them unsuitable for many tasks. 2) Very sensitive to
EP-2,[36] surfaces. environmental and ilumination conditions. 3) Some lack of
Nikon geometric and radiometric calibration.

D500/D5100, [37]

Advantages: 1) Wider range of applications compared to
RGB sensors, allowing to discriminate/identify a variety of
materials. 2) Some present means of radiometric calibration.
3) Allow geometric reconstruction.4) Allow sub-decimetric
mapping.

Disadvantages: 1) Relatively high prices. 2) Detect radiation
in a small number of broad wavelength bands, limiting
their applications. 3) Currently, sensors are not optimised
for aquatic applications. 4) Limited compatibility to UASs.

Bathymetry, HAB monitoring, river/lake
Rededge trophic status, flood monitoring, SW-GW?2
Micasense [38,39]  interactions, wetland/river mapping,
surface/material identification.

Multispectral ~400-1000

Advantages: 1) High spectral resolution data, with many
narrow contiguous spectral bands that improve their ability
to discriminate/identify materials.

Bathymetry, HAB monitoring, river/lake
trophic status, flood monitoring, water
quality monitoring, wetland/river
mapping, surface/material identification.

Rikola 2D, [36]
Hyperspectral 500-2500
Nano Hyperspec,

Disadvantages: 1) High costs. 2) Size of sensors. 3) Need for

[40] spesialised software. 4) Low signal-to-noise ratio.
ThermoMAP, [41] Advantages: 1) Validation is not required if only relative
DJI Zenmuse temperatures are needed. 2) Relatively low cost. 3) Wide
Thermal 8000— XT,[42] River/lake temperature mapping, SW- range of models and resolutions.
infrared 14.000 ICI Mirage 640, GWD identification, thermal plumes Disadvantages: 1) Temperature drift issues. 2) Radiation
i [43] identification, river discharge. emitted from near-bank objects may impact the sensor,
FLIR TAU2 640 resulting in erroneous image interpretation. 3) Need for

[44] radiometric corrections. 4) TIR imagery interpretation can
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be complex and requires expertise. 5) Highly sensitive to
<30° observation angles and changes in surface roughness.

UAS LiDAR  500-900

Phoenix Scout
SL1 [45]

ASTRALITE edge

Advantages: 1) Less susceptible to environmental
conditions. 2) provides direct geometric measurements. 3)

. Possibility of discriminating the effect of vegetation.
Bathymetry, 3-D mapping, water stages, - . -
flood monitorin Disadvantages: 1) Limited by water clarity and bottom
& reflectivity. 2) High costs. 3) Few models compatible with
[43] UAS. 4) Need for groundfiltering corrections. 5) Strong

dependence on accurate dynamic positioning systems.

! Harmful algal bloom; ? surface water-groundwater.

4. UAS Applications in Surface Water Research

In the last two decades, UAS have become a widely applied tool in fluvial environ-
ments and specially in the study of river morphology. This has resulted in a large body of
available literature reporting the use of UAS for the study of channel evolution and bed-
form migration, bank erosion, bed grain size and fluvial topography/bathymetry mapping
among others [46—49]. Likewise, there is a growing number of papers addressing other
hydrological aspects such as river stage fluctuations, water budgets, river discharge, sur-
face velocity or flooding and temperature mapping. In addition to remote retrieval of data,
in recent years, UAS are being used as platforms to deploy a variety of sensors, as water
samplers or as key elements of water monitoring systems. This section presents a collec-
tion of studies focused on hydrological issues, the advances they represent and the role
that UAS have played in their execution.

4.1. Bathymetry and Submerged Topography

Knowledge of river and stream bathymetry is fundamental to study fluvial processes
and provides essential inputs to hydrodynamic models. Bathymetric measurements were
traditionally carried out manually or using single/multibeam echo sounders mounted on
vessels. These methods, which are not only time-consuming but also difficult to imple-
ment in deep streams and rivers with strong currents, have been progressively comple-
mented with high resolution systems (remote sensing techniques, satellite imagery, aerial
photography and laser scanning) and particularly, with UAS. In the context of remote
sensing, bathymetric mapping can be tackled with three approaches; (i) spectral methods
based on the attenuation of the electromagnetic wave in the water column and the reflec-
tion from the bottom of the water body, (ii) photogrammetry, which uses sets of images
recorded with imaging sensors to identify coordinates of points, boundaries and features
in the images, and iii) bathymetric LIDAR, which measures the time from pulse emission
and echo reception, scattered back from the river/lake bottom within the instantaneous
field of view. These remote sensing tools can significantly improve the accuracy and reli-
ability of river geomorphology mapping and modeling specially when high topographical
resolution is required.

Optical methods such as UAS photogrammetry were traditionally restricted to
above-water studies, but nowadays their scope of application has been extended to below-
water areas due to the development of refraction-correction algorithms. This has made
possible to capture water surface and bottom features and water column characteristics
as long as the system is not masked by vegetation or other obstacles and water is clear.
One of earliest examples of this type of UAS application is provided by Lejot et al. [34],
who launched a paramotor-paraglider equipped with a conventional RGB camera to ac-
quire high resolution imagery and study channel water depth and gravel bar geometry at
the Ain and Drome rivers (France). A simple empirical model that related radiometric
signal with water depth was used to characterize aquatic zones of different size, yielding
spatial resolutions of 5-7 cm. The water depth surveyed ranged from 0 to 5 m, and the
results showed good accuracy until 3 m. The gravel bar was characterized through classi-
cal photogrammetry with a DEM generated using stereoscopic pairs, achieving 5 cm res-
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olution. Although heterogeneous, the quality of both products was sufficient for bathy-
metric and channel microtopography mapping. In a pilot study Zinke and Flener [50] gen-
erated bathymetric maps at 2 sites of a gravel riverbed in Norway using drone-borne pho-
tography and the Lyzenga’s deep water correction algorithm. Although the results of this
study offered variable levels of accuracy and precision, the authors demonstrated the use-
fulness of UAS-based optical remote sensing methods to improve the effectiveness of
bathymetric surveys. Flener et al. [37] created a seamless DEM of a subarctic river channel
and plains combining mobile laser scanning and UAS-photography based bathymetric
modeling. Albeit water depth in the study area did not exceed 1.5 m, the authors found
quality issues in the UAS imagery that were mostly related to reflection (sunglint) and
illumination changes during the flight. Accuracy varied depending on the combination of
methods applied. Despite these problems, the UAS-photography-bathymetric model gave
depth accuracies below 10 cm, which is suitable for applications such as hydraulic mod-
eling or habitat studies, but insufficient for more detailed studies.

On the other hand, structure from motion (5fM), has been widely used in fluvial ba-
thymetry in recent years. For instance, Woodget et al. [51] quantified the exposed and
submerged topography of two river reaches (depths ranging from 0.14 to 0.70 m) in UK
through SfM photogrammetry. An UAS equipped with a RGB consumer-grade camera
was used to produce DEMs with hyperspatial resolutions of 2-15 cm. Mean errors in sub-
merged areas ranged between 1.6-8.9 cm but were significantly reduced after the appli-
cation of a simple refraction correction, reaching values between -2.9 to 5.3 cm. Dietrich
[52] retrieved fluvial bathymetric measurements from UAS imagery and SfM and pro-
posed a multicamera-based refraction correction method for off-nadir SfM datasets. In this
case, the surveyed water depth varied between 0 and 1.5m. The bathymetric datasets ob-
tained after the correction showed precisions of 0.1% of the flying altitude (40 and 60 m
above ground level), which makes this method suitable for a range of fluvial applications.
Entwistle and Heritage [53] generated a SfM-derived DEM with imagery collected from a
small UAS to predict water depth and map bathymetric surfaces. The results from the SfM
survey were compared with others from a theodolite survey, showing similar accuracy
and precision (0.85 R? value after using a 1.02 multiplier on the regression line up to depths
of 1m), thus demonstrating that the UAS approach proposed could achieve good depth
estimations. Carrivick and Smith [16] reviewed the applications of SfM photogrammetry
and UAS technology in aquatic environments, highlighting the need of automated proce-
dures to correct refraction. The issue of refraction correction has been addressed in several
works; Woodget et al. [35] quantified above and below-water geomorphic changes in a
river through SM photogrammetry and analyzed the implications of refraction, water
surface elevation and the spatial variability of topographic errors. They demonstrated that
it is possible to quantify submerged geomorphic changes with levels of accuracy of less
than 4 cm similar to that from exposed areas without the need of calibration data and that,
using nadir imagery, the results obtained after different refraction corrections are practi-
cally the same. Partama et al. [54] presented a novel technique based on co-registered im-
age sequences or video frames to reduce the effects of water-surface reflection on UAS-
based photogrammetry. This promising method, applied in a river reach 0-1.5 m deep,
achieved accuracies of 5-15 cm, clarified the reflected signal from the bottom bed and
enabled to reduce moving light patterns. The issue of refraction correction has been ad-
dressed by several authors, although most works focus on the marine environment, for
instance Skarlatos and Agrafiotis [55] proposed an iterative algorithm that, applied at the
photo level, could reduce the effect of refraction to 2 times the ground pixel size within
the photogrammetric workflow. Also in marine environments, Agrafiotis et al. [56,57]
provided a deep-learning framework to automatically correct water refraction errors. The
method consisted in a support vector regression model based on known depth observa-
tions from bathymetric LIDAR surveys, which enabled to estimate the real depth of point
clouds obtained from SfM and multi-view-stereo techniques. The model demonstrated



Remote Sens. 2021, 13, 1359

11 of 43

great potential in terms of depth accuracy in shallow waters and can be used when no
LiDAR data are available.

River depth estimations have also been successfully retrieved from UAS hyperspec-
tral data; Gentile et al. [36] used very high spatial resolution hyperspectral images and an
empirical model to map the bathymetry of a shallow river, achieving a good fit in the
spectral range from 700-800 nm and average errors of even less than 13 cm at depths be-
tween 9-101 cm.

On the other hand, LiDAR sensors were rarely implemented in UAS owing to their
high costs and usually excessive weight, however, these issues are being overcome lead-
ing to the democratization of these systems and making their use increasingly frequent.
For these reasons, until recently, a widely applied alternative to optimize photogrammet-
ric DEMs and produce more accurate products was the complementary use of satellite,
airborne or land-based LiDAR data and UAS optical images. The performance of multi-
spectral satellite imagery, hyperspectral data from manned aircraft and UAS, and water
penetrating green LiDAR to map fluvial bathymetry was assessed by [40] in a short reach
of Sacramento River with a mean depth of 1.8 m. LiDAR systems offered greater accura-
cies, while UAS-borne products tended to underpredict depths, reaching R?values of 0.95
and 0.88 respectively. However, the maximum detectable depth for the LIDAR sensor was
an important constraint due to the lack of bottom returns at depths greater than 2m. Given
the constraints of remote sensing of river bathymetry, the authors advocate for a hybrid
field and airborne approach but recommend the use of hyperspectral or multispectral
UAS imagery for small channels and fine-scale information owing to their versatility, high
spatial resolution and the possibility of collecting targeted and task-specific data. A major
leap forward for river mapping is the methodology presented Mandlburger et al. [58] who
developed a novel compact topo-bathymetric laser scanner designed for integration on
UASs and other types of aircrafts. The sensor comprised an IR laser that emitted pulses at
a wavelength of 532 nm with a duration about 1.5 ns pulse and a pulse repetition rate of
50-200 kHz. The laser had a 10-30 cm footprint on the ground and yielded a point density
of 20-50 points/m2, which made it particularly well suited for capturing river bathymetry.
The system was tested in freshwater ponds with an overall depth of 5-6 m and turbid
bottoms. Although the system presented a maximum vertical deviation of 7.8 cm and a
systematic depth-dependent error, the sensor showed great potential for hydrology and
fluvial morphology applications owing to its good depth performance, accuracy and high
spatial resolution.

Bathymetric analysis has also been addressed with multiplatform and multisensor
approaches. Kasvi et al. [59] addressed the accuracy of shallow water (0-1.5 m) bathymet-
ric mapping through the implementation of three remote sensing techniques: optical and
bathymetric SM modeling, both from UAS data, and a remote controlled acoustic doppler
current profiler (ADCP) coupled with an echo-sounder. Their results (Figure 3) empha-
sized how the characteristics of the study site such as river size, depth and water quality
determine the results and suitability of each method.
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Figure 3. Orthomosaic and bathymetric models of 5 cm resolution obtained from (a) structure
from motion (SfM), (b) acoustic doppler profiler and (c) optical modeling. CS2: cross-section of the
river studied. Modified from [59].

Although the results of the echo-sounding were less detailed and restricted to depths
over 0.2 m, they were the most accurate. On the other hand, the bathymetric SM was
highly sensitive to flow turbidity, color and therefore depth, with mean errors that in-
creased notably at depths >0.8 m and notably changed between autumn (-50 cm mean
error) to spring (-120 cm). Optical modeling, was very sensitive to substrate variability,
color and depth. This evidences that bathymetric SfM is more suitable for clear waters and
structured and visible riverbeds. Erena et al. [60] proposed a method to create updated
capacity curves for 21 reservoirs of the Segura River Basin (Spain). Their study integrated
bathymetric measurements acquired using an Unmanned Surface Vehicle (USV) and an
Unmanned Underwater Vehicle (UUV) with a DSM generated from UAS imagery and
airborne LiDAR data. Apart from evidencing a substantial silting in the reservoirs, this
multiplatform methodology demonstrated being more efficient than the traditional meth-
ods.

UAS have also been used to deploy bathymetric measurement instruments such as
sonars. This is the case of the study by Bandini et al. [61], who measured accurate water
depths in lakes and rivers of Denmark using a tethered floating sonar controlled by an
UAS. This method, which enables to monitor dangerous or inaccessible areas, yielded sig-
nificantly accurate results (2.1%) although some observational bias (attributed to the de-
pendence of the sound wave speed on temperature, salinity, and pressure) was detected.
Ina U.S. reservoir, Alvarez et al. [62] implemented a novel bathymetric survey method by
merging two UAS-based sampling techniques; (i) a small UAS that propelled a mini boat
equipped with a single-beam echosounder for surveying submerged topography in
deeper waters and (ii) SfM photogrammetry to cover shallower areas visible from the UAS
but not detected by the echosounder. The UAS-5fM data successfully complemented the
echosounder survey and minimum depths from 0 to 5 cm were detected.

Finally, it should be noted that many studies on bathymetric reconstruction of shal-
low streams and reservoirs proved that models derived from high resolution UAS data
are more robust than previous models based on conventional methods, reducing inaccu-
racies and biases, and enabling better hydraulic modeling performance [63-66].

4.2. Water Level Measurement and Water Storage

Albeit the temporal and spatial fluctuations of water stored in rivers, lakes, reservoirs
and wetlands are among the most important hydrologic observations, the current
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knowledge of these variables is still considerably improvable, limiting our water manage-
ment and forecasting capacity. Water level measurements have been traditionally made
with limnimetric scales and limnigraphs, which despite being useful for determining wa-
ter stages, only provide information of very specific points in the water body. The trans-
lation of water levels into stored volumes can be complicated and give imprecise results.
In this regard, achieving a better understanding of these processes and reliable hydrologic
predictions require accurate observations of several variables, such as surface water area,
water level elevation, slope and temporal changes [67]. In this context, UAS are playing a
key role in quantitatively characterizing and monitoring water level and their usefulness
has been demonstrated in recent works. For instance, UAS allow to retrieve data from
inaccessible environments and to overcome the disadvantages of traditional static sensors,
which can be deployed in limited numbers and imply higher personnel and maintenance
costs. UAS imagery has been used to obtain rapid observations of water level fluctuations
in large-scale hydrological systems such as reservoirs. Ridolfi and Manciola [68] proposed
a sensing platform that allowed to measure the water level and collect hydraulic infor-
mation during adverse operation conditions such as floods. Water level in a dam was re-
trieved from the combination of UAS-based RGB imagery and optical methods based on
ground control points and edge detectors. Their results were promising and proved the
suitability of the platform for hydraulic measurement acquisition, however, the pixeliza-
tion of the images and the perspective constituted an important source of uncertainty. Gao
et al. [69] devised an innovative methodology that integrated UAS photogrammetry and
image recognition to define water level in a complex hydrological environment (plunge
pool downstream a hydropower station) in China. Water surface fluctuations were cap-
tured by an UAS and the regions of interest were extracted from imagery. The relationship
between image pixel scale and actual spatial scale, the real water surface elevation and
fluctuations, as well as the maximum, average and minimum water levels were obtained
applying specific calibration coefficients. The method was successfully implemented and
offered reliable results that back its potential to monitor water level.

The water level in rivers and lakes was estimated in [70] using three types of sensors
(radar, sonar and a camera-based laser distance sensor) capable of measuring the range to
water surface onboard lightweight UAS. Water surface level was calculated by subtract-
ing the range measured by the sensors from the vertical position retrieved by the onboard
GNSS receiver. The radar offered the best results in terms of accuracy (0.5% of the range)
and longest maximum range (60 m), whereas the sonar was more appropriate for stable
and low flight altitude. The laser system gave less accurate results but proved to be useful
for narrow fields of view. This system proved that water level measurements acquired
with ranging sensors and GNSS receivers can provide more accuracy than spaceborne or
airborne altimetry. In a more recent work, [71] retrieved water surface elevation (WSE)
measurements in very small vegetated streams (1-2 m wide) using a drone-based radar
altimetry solution with full waveform analysis. The water surface elevations measure-
ments provided by this system were one order of magnitude better than those obtained
from LiDAR or photogrammetry. Following a similar approach, Jiang et al. [72] deployed
a UAS-based radar altimetry system to map spatially distributed WSE in a small vegetated
stream and subsequently used the dataset obtained to calibrate and validate roughness
parameters in hydrodynamic models. UAS altimetry delivered WSE observations with 3
cm accuracy and 0.5 m resolution and could identify significant variations of the Man-
ning-Strickler coefficients over time. The study demonstrated that UAS-borne WSE con-
stitutes a useful tool to understand the variations of hydraulic roughness. In order to as-
sess the usefulness of various UAS geospatial products in water body recognition, Tym-
kow et al. [73] combined data from UAS-based laser scanner, thermal infrared and RGB
imagery to estimate the water extent of several rivers and lakes. According to their results,
the most suitable product in water body detection was four bands RGB+TIR (Thermal
InfraRed) orthomosaic, achieving an average kappa coefficient above 0.9.
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On the other hand, SfM is currently offering promising results in the reconstruction
of free water surfaces. The potential innovative applications of this technique have been
highlighted in several recent works. Niedzielski et al. [74] observed the water stages in the
Scinawka river (SW Poland) by combining UAS RGB imagery and SfM algorithms to gen-
erate multitemporal orthophotomaps without using ground control points. The authors
detected statistically significant increments in water surface areas between orthophoto-
maps using asymptotic and bootstrapped versions of the Student’s t-test. This approach
proved to be effective in detecting statistically significant transitions produced by all char-
acteristic water levels, from low and mean, to high stages, and can be used to verify hy-
drodynamic models, monitor the water level in ungauged basins and predict high flows.
A methodology to estimate the water storage in seasonal ponds is provided by Garcia-
Lopez et al. [75] (Figure 4). The authors defined the geometry of a coastal wetland’s basin
in pre-flood conditions via UAS photogrammetry and SfM techniques. The DEM gener-
ated allowed a spatial resolution of 6.9 cm and a mean squared error in Z of 5.9 cm with a
practically nil bias and resulted an order of magnitude better than the pre-existing official
LiDAR cartographic products. Although the effect of vegetation on the DEM was the main
obstacle to the application of this method and it had to be minimized through spectral and
morphological techniques, as a whole, this approach proved to be useful for calculating
the water balance in this type of systems.

Figure 4. Prediction of the flooded area according to different water levels (1.80, 1.90, 2.00 and 2.20 m with respect to the
mean sea level) from UAS-derived DEM. Modified from [75].

To identify the river stages along the Kilim river (Malaysia), Mohamad et al. [76]
generated DSM and orthomosaics for different tidal phases through the combination of
UAS-based photogrammetry, GNSS vertical data and the use of the SfM algorithm. Alt-
hough the study achieved a limited vertical precision, it may be useful for future works
on water level measurement in estuaries and systems influenced by tides. SfM techniques
have also been employed in the mining field by Yucel et al [77] to analyze the areal
changes and evolution of lakes originated by acid mine drainage. More recently, Chen et
al. [45] developed a ground-filtering method to remove the effect of vegetation in wet-
land’s water budget estimations, thus improving the DEM obtained from UAS photo-
grammetry. Their approach comprised the combination of airborne LiDAR products with
UAS LiDAR, UAS photogrammetric surveys and the application of a linear-weighted-av-
erage filter to generate a filtered DEM where the vegetation interference in the bathymet-
ric data was reduced. The ground-filtered DEM showed a 90% correlation with in situ
measurements, diminished the errors in water balance and reduced the uncertainties in
the results.

4.3. Surface Velocity and Flow Estimations

Runoff and river discharge constitute a fundamental element of the water balance
and is of critical importance for the sustainable management of water resources, freshwa-
ter ecosystems integrity and flood forecasting, among others. Although river discharge is
one of the most accurately measured components of the hydrological cycle, the access to
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this information remains limited. The reasons are that large extensions of river basins
around the globe are still poorly gauged or even ungauged [78], the decline in hydromet-
ric stations, the gaps in datasets, the need for improved methods for the storage, retrieval
and processing of hydrometric information [79].

Traditionally, discharge measurements have been carried out through direct and in-
direct methods. The first consist of the definition of the river section and flow velocity
with mechanical current-meters, ADCP, tracers, etc. Indirect methods are based on the
measurement of water surface level at gauging stations, which provide flow estimations
through rating curves. Remote sensing and satellite altimetry on the other hand, has been
widely used to successfully calculate river discharge in well-known large rivers of the
world [80,81]. However, this methodology is less suitable for medium/small rivers and
presents limitations related to the measurement of the average flow velocity and slope,
the need of calibration with in situ measurements, poor spatial and temporal resolution
and other issues. In this line, UAS have been increasingly used in the estimation of river
discharge and flow as they overcome the handicaps of satellite remote sensing and present
some advantages over it in terms of data accuracy.

Some authors propose the combined use of UAS with traditional hydrological for-
mulas to calculate river discharge in ungauged areas. Yang et al. [82] calculated the river
discharge in ten sections in the Tibetan Plateau and Province of Xinjiang by (i) retrieving
the parameters of the slope-area method using an UAS to generate a digital orthophoto
map and a DSM and (ii) applying three different formulas (Manning—Strickler, Saint-Ve-
nant and Darcy—Weisbach). In Yang et al. [83], UAS remote sensing, high altitude remote
sensing and in situ measurements are combined to estimate river flow in medium/small
wide shallow rivers in arid areas. The attenuation coefficient and discharge of the un-
gauged Hotan river (Central Asia) was calculated by applying energy equations and a
trapezoidal cross-section discharge equation. Similarly, UAS-borne data were used to ver-
ify the river section morphology through orthophotomaps and a DSM, reaching a centi-
meter level accuracy. Both studies proved the usefulness of UAS for carrying out rapid
river discharge assessments and provide relevant hydrological data in poorly gauged or
ungauged systems. Lou et al. [84] integrated UAS and satellite remote sensing (Gaofen-2,
SPOT-5, and Sentinel-2) with the application of hydrological formulas (Manning-Strick-
ler) to obtain accurate discharge values from 24 ungauged rivers in the Tibetan Plateau on
a long term scale, extending the previously mentioned works.

In addition, the monitoring of surface velocity has been addressed through UAS-
based videos and the application of particle tracking velocimetry methods using natural
and artificial tracers. Koutalakis et al. [85] compared the results obtained from the analysis
of UAS imagery with 3 specific software based on different velocimetry methods: large-
scale particle image velocimetry (LSPIV), large scale particle tracking velocimetry
(LSPTV) and space-time image velocimetry (STIV). Although the three methods displayed
similar trends, the surface velocity values differed slightly in some vegetated parts of the
river reach and the authors point out the need for verification. Similarly, [86] used UAS-
borne imagery to evaluate the sensitivity of 5 image velocimetry algorithms under low
flow conditions and concluded that, for surface velocities of approximately 0.12 m/s, im-
age velocimetry techniques can provide results comparable to traditional techniques such
as ADCPs. Tauro et al. [87] presented a custom-built UAS platform equipped with a
ground-facing orthogonal camera that did not require image orthorectification, to monitor
the surface flow through LSPIV in a natural stream. This low-cost system expands the use
of traditional fixed cameras employed in particle velocimetry by enabling access to other-
wise inaccessible areas. Tauro et al. [88] assessed the suitability of a low cost UAS for cre-
ating accurate surface flow maps of small-scale streams. After calibration, flow velocity
maps were extracted from the motion of stream floaters at real-time by applying the LSPIV
high-speed cross-correlation algorithm. Similarly, [89] integrated LSPIV and UAS im-
agery and compared the discharge values obtained with that from other methods, such as
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a fixed camera, ADCP, stream gauges and a propeller meter. The authors also report the
minimum steps required to produce accurate LSPIV measurements using UAS.

Despite its many advantages, the accuracy of the image velocimetry method is con-
ditioned by several factors such as seeding density, the environmental and experimental
setting conditions or the presence of floating materials on the stream surface. In this re-
gard, [90] used high-definition UAS footage to test the precision of LSPIV and particle
tracking velocimetry methods under different seeding and hydrological conditions. The
authors demonstrated that seeding density, dispersion index and the spatial variance of
tracer dimension are statistically relevant metrics in the estimation of velocity and that a
prior knowledge of seeding conditions can be useful for selecting the processing intervals,
image velocimetry techniques to apply and for controlling the accuracy of results.

Time series of temperature images have also been used for estimating surface flow
velocities. Kinzel and Legeiter [43] proposed a methodology to estimate river discharge
through the combination of thermal velocimetry and scanning polarizing LiDAR, both
UAS-based. The velocity of surface features, expressed as small differences in tempera-
ture, was tracked with a particle image velocimetry algorithm. The system was able to
detect the movement of flow features expressed as subtle differences in temperature, with
velocity measurements that agreed closely with that made in situ. However, depths in-
ferred from the LiDAR showed less agreement with in situ measurements in the deeper
sections of the river. Another innovative approach was proposed by Thumser et al. [91]
who measured real-time river velocity using floating, infrared light-emitting particles and
a color vision sensor onboard a UAS to track the position of objects. The system, termed
by the authors as RAPTOR-UAYV, enabled to capture large-scale, nonstationary regions of
the velocity field where the flow fields are persistent and chaotic. Recently, remote sensing
of surface velocity and river discharge has been addressed in [92] through UAS-based
doppler radars yielding results comparable to conventional streamgaging if cross-sec-
tional area is available.

4.4. Flood Monitoring

Floods are among the most important driving forces in fluvial environments. These
periodic events not only reshape floodplain landscape and riverbeds, but also contribute
to basin connectivity facilitating the exchange of water, sediments, organic matter, and
nutrients between rivers, floodplains, and riparian wetlands. However, floods can also
have dramatic impacts on human societies, causing economic damage, health issues, and
loss of human life, infrastructures and productive land. For this reason, gathering infor-
mation on flooding conditions and dynamics and determining the extent of floods at dif-
ferent scales is crucial for predicting and mitigating the impact of this natural hazard.
Over several decades, flood hazard assessment and inundation mapping has been ad-
dressed through the use of satellite remote sensing. Nowadays, UAS provide very high-
resolution imagery on-demand and are being increasingly used in geohazard studies and
monitoring.

UAS-based photography has been extensively used to acquire data in inaccessible
locations and create high resolution DEMs, map flood-prone areas and to enhance hy-
draulic modeling [93-97]. In particular, SM techniques have seen a strong development
as an alternative approach to classical digital photogrammetry in the study of floods, lead-
ing to an increasing body of literature in the last years; Ozcan and Ozcan [98] extracted a
high-resolution DEM of a flood-vulnerable river in Turkey applying UAS-based SfM.
Landform alterations due to erosion and deposition after flood events were analyzed
through the application of DEM of difference algorithm (DoD) and geomorphic change
detection (GCD) techniques. After a 2-year monitoring period, the authors verified that
UAS SfM and DoD were useful tools for geomorphological dynamic mapping and flood
event monitoring. Diakakis et al. [99] investigated one of the most devastating floods oc-
curred in Greece in 40 years through the combination of systematic ground measurements
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and UAS observations during and after the event. Highly detailed DSM with 2.7 cm reso-
lution derived from SfM were used to obtain the flood extent, depth maps and the peak
discharge, as well as a comprehensive description of the physical characteristics of flood-
waters across the inundated area (Figure 5). An analysis of the flood impacts on geomor-
phology, vegetation, infrastructures and human population was also carried out.

Elevation (m)

169,58

126,68

Figure 5. Digital surface models (DSM) derived from SfM and high-water marks identified up-
stream and downstream a cross section (indicated by a black line) of the river after a flood event.
Modified from [99.

Moreover, UAS SfM photogrammetry is being increasingly applied to flood research
as an alternative to LiDAR techniques owing to its more flexible image acquisition, the
lower costs and the availability of powerful processing tools that generate DEM and DSMs
in a single workflow. As several authors have pointed out, the recent advances of UAS-
SfM provide accuracies comparable to that obtained by LiDAR. For instance, Leitdo et al.
[100] evaluated the suitability of several UAS-derived DEMs (obtained with different
flight parameters) for urban overland flow and flood modeling in Switzerland and com-
pared them with an aerial LIDAR DEM from the Federal Office of Topography (Swis-
sTopo LiDAR). According to their results, the quality of both products were comparable
and differences were not substantial, especially in building, vegetation and tree free areas.
For instance, the minimum, maximum, mean, and standard deviation of the elevation dif-
ferences between the UAS and LiDAR DEM was -0.468, 0.306, 0.06, and 0.119 m respec-
tively, and differences in slope were always below 10%. However, the UAS DEM suffered
from a major limitation; it did not cover the whole area of interest (e.g., areas behind build-
ings). Hashemi-Beni et al. [101] assessed the quality of UAS-derived DEMs for mapping a
flood event and its extent during a hurricane in North Carolina (USA). The water surface
extracted from the UAS-derived DEM was compared with LiDAR and stage gage data,
demonstrating general agreement between models. More recently, [102] used a fixed-
wing UAS equipped with a conventional RGB camera to generate very high resolution
bare-earth DEMs of a small river floodplain in Maryland, USA. The accuracy of the model
was compared with the pre-exiting LIDAR models, obtaining a trivial bias of 1.6 cm and
a root mean square derivation of 39 cm, which demonstrate the suitability of this method.
Annis et al. [103] compared the suitability of UAS-derived DEMs, freely available large-
scale DEM and LiDAR DEM:s for flood modeling in small basins. The authors proved that
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DEMs generated from UAS imagery significantly outperformed the large-scale DEM, and
that drone-derived topography constitutes an appropriate alternative to LIDAR DEMs.

Another recent development in DEM generation methods is the combination of SM
and multi-view stereo (MVS) 3D reconstruction techniques. In a typical SfM-based pro-
cess, the application of MVS algorithms follows image matching and allows to generate
dense 3D point clouds from large sets of images. Villanueva et al. [104] assessed the DEM
accuracy achieved from a SM-MVS processing chain using LIDAR-derived control points
and compared the estimations of flood volume and area obtained from UAS and LiDAR
data. The authors concluded that UAS based DEMs were as accurate as LIDAR DEMs.

Reconstruction of flood episodes is also crucial to better evaluate and prevent poten-
tial risks in the future, being thus necessary precise information on flood extents, flow
peaks, depths as well as on factors that might worsen the outcomes of the event. High
resolution pre- and post-flood topographic data and UAS-derived ortho-imagery (4-5
cm/pixel) were employed by [105] to analyze three-dimensional morphodynamic changes
associated with an extreme flood event in the Elbow River (Canada). Subsequently, geo-
morphic changes were assessed using the DEMs and their relationship with flow condi-
tions were analyzed with a 2D hydrodynamic model. The authors documented large ele-
vation changes, widespread bank erosion and channel widening after the flood and high-
lighted potential relationships between flood forces and geomorphic change. Abdelkader
et al. [106] employed an UAS as a platform for Lagrangian flood sensing. The aircraft
dropped small disposable buoyant wireless sensors that were carried away by the flood
and transmitted real-time data that were used to map the extent of the inundated area.
This method enabled accurate estimations of local flood parameters and short-term fore-
cast of flood propagation.

Computer vision techniques and machine learning have also been used to classify
remotely sensed imagery of flood events, e.g., [107] proposed a novel method for the de-
tection and segmentation of flooded areas based on texture and color analysis in a deep
neural network. The system, supported by ground control stations and a fixed wing UAS
for image acquisition, increased the accuracy of flooded area detection up to 99.12%. Ge-
brehiwot et al. [108] applied a deep learning approach based on convolutional neural net-
works (CNN) to extract the flooded areas from UAS-borne (fixed wing and multicopter)
RGB imagery. This method, implemented immediately after two hurricane events over 3
flood-prone areas in the USA, yielded a highly accurate classification (97.5%) of the re-
motely sensed data. Jakovljevic et al. [109] generated flood risk maps from LiDAR and
UAS-derived data through a novel methodology based on raw point cloud classification
and ground point filtering using neural networks. Flood risk assessment was calculated
at 12 different vertical water levels. Although the UAS-derived model was less accurate
than LiDAR and tended to overestimate the elevation, the overall approach met the accu-
racy required for flood mapping according to European Flood Directive standards.

In addition to the aforementioned applications, UASs constitute the most efficient
and fastest tool for situational awareness in disaster management, not only providing ac-
curate and spatially detailed hydrologic information during flooding events, but also en-
abling to identify safe shelter points, detect stranded people and damaged properties and
to define future action strategies [110,111].

Nevertheless, although UASs have demonstrated to be a very useful tool in flood
monitoring and delineation, they cannot substitute ground-truth measurements in this
field since they cannot provide data on flood depth and the quality of the topographic
products is compromised when the terrain is masked by vegetation or anthropogenic fea-
tures. This issue has been recently addressed by [112], who reconstructed the flash flood
events of two ungauged ephemeral streams in Olympiada region (North Greece) through
the combination of ground-based and UAS observations and hydraulic (HEC-RAS) with
hydrological (SCS-CN) models. Although the comparison between the modeled and ob-
served flow extents showed a good performance of the hydraulic model, the modeled
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flood depths displayed an overestimation attributable to the low resolution and quality of
the DEM especially in the urbanized and vegetated areas of the floodplain.

4.5. Temperature Mapping

Temperature is one of the most important variables that control the chemical and
biological processes within water bodies and determine the spatio-temporal distribution
of habitat niches for many aquatic species. TIR remote sensing not only enables to detect
groundwater discharge into inland and coastal systems, an aspect that will be discussed
in Section 5, but also allows to measure longitudinal and transversal temperature hetero-
geneities in rivers, to study their temporal variability and to identify aquatic thermal ref-
uges among other features.

UASs have emerged as alternative tools to traditional high-resolution TIR remote
sensing or ground-based thermography, allowing to collect data at a spatial scale inter-
mediate to both approaches and to conduct multiple surveys in a brief period of time.
However, as TIR river mapping is based on the quantification of temperature from the
amount of energy emitted by a water body, the quality of the measurements can be im-
pacted by diffuse reflections from solar radiation if surveys are not conducted during the
night or by factors such as surface roughness (e.g., riffles) that might alter the energy re-
ceived by the sensor. Emissivity on the other hand can be altered by suspended sediment
and dissolved minerals. Other sources of uncertainty are shadows cast by riverbank ob-
jects or the presence of foam, which can be misleading in the detection of discrete features
such as cool water patches. In addition, the angle of observation is of the utmost im-
portance. At oblique viewing angles above 30° water’s emissivity is reduced as a function
of increased specular reflection [113]. These problems can be ameliorated by careful selec-
tion of flight parameters (flight time, flight altitude and angle of observation) and type of
sensors, and by supporting thermal with simultaneous optical imagery.

Early attempts of thermal image acquisition consisted of handheld TIR cameras
adapted to be mounted on UASs [114,115]. Jensen et al. [114] combined a low-cost UAS-
based visible, NIR and TIR imagery to generate surface temperature maps with 30 cm
resolutions in order to identify the thermal patterns of a highly dynamic stream in north-
ern Utah (USA). On the other hand, the thermal patterns of braided rivers in the French
Alps are analyzed in [115] using an UAS equipped with an RGB and a TIR camera. In this
case, a powered paraglider was employed to acquire the TIR images, which allowed to
predict habitat diversity from temperature heterogeneity. More recently, Collas et al. [41
obtained UAS-borne high resolution imagery of a river side channel using a consumer-
grade TIR camera to map sub-daily temperature heterogeneity and habitat suitability for
native and alien fish species. The authors achieved an accuracy in water temperature es-
timates of 0.53¢ over all flights, thus demonstrating the usefulness of UASs TIR imagery
for temperature mapping and habitat management. Dugdale et al. [42] assessed the results
of UAS-based TIR surveys applied to the study of diffuse temperature and discrete ther-
mal inputs (springs, culverts, tributaries) in rivers of USA and Scotland. The data obtained
were strongly biased, which the authors attributed to sun glint (linked to flight character-
istics), the impact of radiative warming on the camera and to internal heating of the sen-
sor. This generated substantial differences between radiant and kinetic temperatures in
the rivers studied, making it necessary to apply substantial corrections. Temperature drift,
inherent to uncooled microbolometers, can be compensated through hardware and soft-
ware solutions. This issue has been recently addressed by several authors such as Mesas-
Carrascosa et al. [31] who provide an overview on the topic and present a correction meth-
odology based on redundant information from multiple overlapping images, or Kelly et
al. [116] who propose a set of best practices to minimize temperature drift of TIR cameras.

Another limitation is that TIR sensors can only measure the skin temperature of wa-
ter bodies. This issue, however, has been recently overcome through temperature sensor-
integrated-UASs, which enable the mapping of the thermal structure of shallow water
bodies. Chung et al. [117] developed an UAS equipped with a temperature probe that was
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dipped into the water to record temperature throughout the water column. Albeit the
temperatures measured from the UAS were higher than those obtained in situ even after
calibration, this system have the potential to enable high resolution 3D temperature map-
ping if some minor improvements are applied. Similarly, Koparan et al. [118] designed an
UAS-based temperature profiling system that measured water temperature and depth. A
key factor in their study is that the UAS system could land on and take off from water
surface, avoiding hoovering during the measurements, reducing battery use and enabling
more precise depth measurements.

To geolocate thermal plumes and collect temperature depth profiles over relatively
larger scales (100 m to kms), DeMario et al. [119] integrated an IR camera and an immers-
ible temperature probe in an UAS (Figure 6). This approach is especially useful for moni-
toring thermal effluents from power plants and can potentially displace the current boat-
based operations usually implemented to characterize such discharges.

IR Camera

Immersible
Temperature
Probe

Figure 6. UAS platform designed by De Mario et al. (2017), equipped with an infrared (IR) camera
for mapping water surface and a temperature probe to record the temperature depth profile. Mod-
ified from De Mario et al. [119].

Other applications of UAS include the monitoring and assessment of the effects of
stormwater on the temperature of urban streams. Caldwell et al. [120] characterized the
temperature response of a large urban stream in Syracuse (NY) to stormwater inputs by
combining UASs-based TIR imagery with in situ sensors and pairing the observations
with a deterministic stream temperature model. The authors quantified and characterized
the creek’s temperature heterogeneities and the relative magnitude and extent of storm-
water plumes. The study demonstrated the utility of airborne TIR imagery for simulating
hydrologic processes, heat exchange and for revealing complex interactions between ur-
ban effluents and stream water temperature.

4.6. Water Contamination

Pollution of freshwater bodies is a ubiquitous problem that has drawn the attention
of the scientific community, water managers and policy makers for a long time due to the
serious public health and environmental risks that it poses. The pollutants that reach riv-
ers, lakes and wetlands are extremely varied in nature, composition and source, being
closely linked to anthropogenic activities and land use. The effective management of these
substances and the prevention of their potentially harmful effects require the understand-
ing and prediction of their transport, dispersion and behavior within the aquatic systems.
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4.6.1. Dispersion Processes

UAS technology is enabling the rapid filling of knowledge gaps in the transport of
pollutants and other hazardous agents while overcoming the difficulties inherent to in
situ measurements. Powers et al. [121] coordinately used an UAS and an USV to detect
and track dye released in a reservoir. The UAS was used to capture videos and images of
the dye plume and to provide visual navigation of the tracer for the pilot of the USV. The
dye concentration measurements collected by the USV were compared with that from
UAS imagery, yielding similar results and demonstrating that processed images from
UAS can be used to predict dye concentrations near the water surface. Baek et al. [122]
estimated the concentration of fluorescent dye in an open channel using UAS RGB im-
agery. The authors applied an artificial neural network (ANN) to establish the empirical
relationships between the digital numbers in the images and the spatio-temporal distri-
bution of dye concentration (Figure 7). Although the ANN models required simultaneous
in situ measurements, the authors demonstrated the feasibility of generating accurate
high-resolution dye concentration maps with this novel and cost-effective approach.
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Figure 7. Transport of the tracer cloud at t = 90 sec, original UAS RGB image and dye concentra-
tion distribution at section 2. Modified from [122].

Legleiter [123] assessed the suitability of various types of remotely sensed data (field
spectra, hyperspectral images from manned and unmanned aircraft, and high resolution
digital aerial photography) to estimate concentrations of a visible tracer. The results
showed that a broad range of visible wavelengths were strongly correlated with dye con-
centration and therefore, tracer dispersion could be accurately mapped using RGB im-

agery.

4.6.2. Plastic Pollution

Similarly, the problem of plastic pollution in aquatic ecosystems has garnered wide-
spread public and scientific attention. The rampant proliferation of plastics has led to ex-
plore the use of UAS in the evaluation and dynamics of plastics in the aquatic environ-
ment and to the development of numerous works on this issue. Several authors such as
[124-126] have explored methodologies for the monitoring and automatic quantification
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of anthropogenic marine debris based on UAS imagery and machine learning techniques.
It should be noted however, that most of these studies have been conducted in marine
and coastal environments and to date, only a few works focus on fluvial systems. Geraeds
et al. [127] presented a novel methodology to quantify the floating riverine plastic
transport in the Klang River, Malaysia. In order to make detailed cross-sectional plastic
transport profiles, the authors conducted an aerial survey with flight transects perpendic-
ular to the river flow direction. The flight path was set up at three different altitudes rela-
tive to the instantaneous water level. Depending on the altitude at which images were
taken, they served different purposes. Although sudden changes in weather conditions
can lead to a loss of accuracy in flight altitude, the authors documented similar plastic
densities and transport profiles using UAS aerial surveys, visual observations and plastic
sampling. Jakovljevic et al. [128] utilized high resolution orthophotos obtained from UAS
and SfM algorithms to map floating plastics in rivers and lakes in Bosnia Herzegovina.
The authors developed an end-to end semantic segmentation algorithm based on U-Net
architecture that enabled to accurately detect and classify 3 types of plastic (OPS, Nylon
and PET) at different spatial resolutions with an underestimation of the plastic area of
only 3.4%. More recently, Hengstmann and Fischer [129] identified sources for plastics
and influences on their distribution at four sandy bank border segments of Lake Tollense
in Germany. They compared field-based observations with the results of anthropogenic
litter detection via UAS imagery and obtained good recovery rates when minimizing the
flight height. In addition, the aerial images were used to test automatic and supervised
image analysis to detect and classify plastics.

4.7. Harmful Algal Blooms (HABs) and Eutrophication

Harmful algae blooms (HABs) outbreaks are closely linked to anthropogenic eu-
trophication and have dramatically increased in the past three decades. HABs not only
give rise to a rapid depletion of dissolved oxygen in water bodies and massive deaths of
aquatic organisms but can also pose a serious threat to human health owing to the pro-
duction of neurotoxins of some species [130]. As in other disciplines, HAB monitoring
evolved from expensive and labor-intensive water sampling techniques to satellite moni-
toring. However, HABs are highly dynamic and their monitoring, even with high resolu-
tion satellite data, is not always suitable owing to their limited temporal resolution (large
time intervals between image re-acquisition). The quality of satellite images can be af-
fected by weather conditions, cloudiness and atmospheric absorption. Remote sensing
from manned aircrafts, nevertheless, can provide high spatio-temporal resolutions but its
implementation is costly and usually limited by safety, logistical and operational issues.
In this context, UAS offer the flight flexibility, temporal and spatial resolution and rapid
response needed to detect and monitor HAB dynamics with minimal environmental dis-
turbance. Despite these advantages, since the development of UAS-based techniques and
the commercialization of suitable sensors is very recent, the current number of studies
focused on the study of HABs with UAS is limited. One of the applications given to UAS
imagery has been the visual inspection of water bodies, e.g., [131] detected the beginning
of eutrophication process and tracked the proliferation of ragweed in a small lake in Hun-
gary using high resolution photography from two different models of fixed wing UAS
and an hexacopter.

Other early works include the use of conventional cameras separately or in combina-
tion with NIR sensors to map water quality and quantify algae concentrations. Ngo et al.
[132] studied the relationship between algae concentration and water color through the
implementation of a regression model. A RGB camera mounted on an UAS was used to
capture videos and retrieve individual frames to subsequently extract the color compo-
nent values of green and blue pixels. Van der Merwe and Price [133] exploited the contrast
between clear water and cyanobacteria in color-infrared imagery. The authors employed
UAS equipped with modified cameras that captured NIR and blue wavelengths to quan-
tify algae densities at water surface through the formulation of a parameter termed as
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“blue normalized difference vegetation index”. Their work emphasizes the role of UAS
remote sensing as a complement to traditional methods and the usefulness of drones
when HABs need to be characterized and tracked with a high spatio-temporal precision
and accuracy. Su and Chou [134] utilized UAS RGB and NIR imagery and established
regression models to find the best correlations between water quality parameters and
band ratio in order to map the trophic state of a small reservoir. The authors emphasized
that, compared with traditional photogrammetry or satellite remote sensing techniques,
UAS offer a better cost/profit ratio in terms of reservoir mapping. Jang et al. [135] moni-
tored HABs in one of the largest rivers in South Korea and developed a modified Algal
Bloom Detection Index that included the red band (625 nm) to better distinguish algal
bloom from clear water. Their study combined the use of UASs equipped with a S110 RGB
camera and a NIR camera with in situ measurements of spectral reflectance and water
quality analysis. Aguirre-Gomez et al. [136] combined UAS high-definition imagery with
in situ radiometric measurements and algae sampling to conduct spatio-temporal analysis
of the extension and distribution of cyanobacteria in urban lakes of Mexico. Their ap-
proach included dark object subtraction techniques in order to correct sun/sky glint errors
and proved to be an accurate, flexible and rapid method to detect and predict eutrophica-
tion and cyanobacterial blooms in reservoirs. Salarux and Kaewplang [137] employed
UAS-derived RGB and NIR imagery to calculate vegetation indexes and assess their per-
formance using mathematical models (Figure 8). This approach proved to be useful for
estimating algal biomass.
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Figure 8. Map of algae biomass. Modified from [137].

Since the recent development of the first lightweight hyperspectral cameras adapted
to be mounted on UASs, the applications of this type of imagery have increased in numer-
ous research fields, including algal bloom monitoring. Although hyperspectral sensors
are still expensive, these are emerging as alternatives to conventional RGB and multispec-
tral cameras owing to their improved capacity of quantifying water constituents and iden-
tifying algal and phytoplankton groups species and genus by their spectral pigment ab-
sorption. Some recent experiences using drone-borne hyperspectral imagery can be cited;
in an early work, Honkavaara et al. [138] presented a promising water quality monitoring
technique that combined small-manned vehicles and UAS equipped with a Fabry-Perot
interferometer (FPI) hyperspectral camera. Becker et al. [139] deployed two different low-
cost UAS configurations in a lake and a river to monitor water quality and assess potential
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algal blooms in near-real time. UAS were equipped with hyperspectral radiometers to
measure chlorophyll-a, cyanobacteria index, surface scums and suspended minerals. The
UAS spectral data presented a quality similar to that from ground based spectroradiome-
ters and enabled the construction of transect maps of derived cyanobacterial index prod-
ucts that showed the distribution of algae abundance in the systems. Penmetcha et al. [140]
proposed a deep learning-based algae detector and a multi-robot system algae removal
planner integrated by an UAS and a USV. More recently, Castro et al. [38] presented a
multisensor tool to monitor water quality in a Spanish reservoir affected by eutrophica-
tion. Their approach combined satellite, in situ data and multispectral UAS imagery to
retrieve chl-a concentrations, which indicates the trophic status of the system. The perfor-
mance of the different sensors, empirical models and band indices was evaluated. The
authors concluded that multi-platform and multi-sensor approaches have great potential
for small reservoir eutrophication monitoring. Kwon et al. [141] retrieved hyperspectral
data from portable and drone-based sensors to develop bio-optical algorithms, measure
the vertical pigment-concentration profile and map the distribution of phycocyanin in a
deep reservoir. The bio-optical algorithms implemented using UAS-based reflectance
measurements performed slightly worse than those using in situ remote sensing. The au-
thors point out that future work should aim to improve remote-sensing algorithms
through the identification of the relationship between pigment cumulation depth and
light attenuation. Zhang et al. [142] mapped the concentration of eutrophication-related
parameters in an urban river through the development of a self-adapting ANN based on
UAS hyperspectral imagery and using the modified spectral reflectance of water meas-
ured with a ground-based analytical spectral device.

4.8. Water Sampling and In Situ Parameter Measurement

In addition to acquiring images, UAS are being increasingly used to take water sam-
ples, as they eliminate sampling risks to humans and allow to reach otherwise inaccessible
locations. These innovative sampling platforms reduce costs and efforts, increasing the
speed and range at which samples were traditionally obtained and allow to obtain undis-
turbed samples when hoovered at an adequate height to avoid induced mixing due to
downwash. Some of the first references on the use of these instruments date correspond
to Ore et al. [143] and Detweiler et al. [144], who designed a mechanism for sampling
water autonomously from an UAS. The system was able to collect 3 samples of 20 ml per
mission and the properties of the water collected matched that from manual samples,
proving the adequacy of this technique. Similar works on the use of UAS as water sam-
pling tools can be found in [145,146].

More recently, water sampling from UAS has gone a step further by including a wide
range of sensors to conduct in situ measurements of different physical-chemical parame-
ters. Song et al. [147] compared the reliability and effectiveness of UAS-based in situ phys-
icochemical measurements and water sampling with traditional and sensor-based meth-
ods. Although UAS enhance the reliability of data, there are still barriers to their full inte-
gration in limnological studies; the drone’s maximum carrying capacity limits the number
and volume of samples, making these less representative of water chemistry compared to
manually collected samples. Elijah et al. [148] implemented a smart river monitoring sys-
tem that included an UAS to collect water samples and was equipped with and array of
sensors and probes. Koparan et al. [149] designed a lightweight hexacopter equipped with
a multiprobe system to measure temperature, electrical conductivity (EC), dissolved oxy-
gen (DO), and pH. To avoid hoovering, the platform had flotation elements to allow the
UAS to land on water surface at the waypoints in the flight mission. Esakki et al. [150]
designed a UAS-based platform equipped with a robotic arm, a water pump and several
sensors to collect 500 ml water samples and conduct in situ measurements of water qual-
ity. The results gathered by this system were in close agreement with laboratory test, with
a 98% accuracy. To take samples of DNA fragments from a reservoir, Doi et al. [151] de-
veloped a new method for water collection consisting of a UAS with an attachment for a
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1-liter water bottle. The performance and contamination risk of the system was compared
with that of samples obtained by boat, yielding similar results. Banerjee et al. [152] devel-
oped an electromechanical and pneumatic system to collect water samples from UAS, fa-
cilitating the access to inaccessible water bodies or dangerous mine sites and enabling the
analysis of several physical-chemical variables. Castendyk et al. [153] presented the first
application of UASs for deep water sampling (up to 80 m) in pit lakes. Their system col-
lected samples using Nisking sampler bottles and measured in situ the physical-chemical
profiles of the water body. Later, Castendyk et al. [154] built on this work and on similar
experiences to assess the state-of-the-art of drone water sampling of pit lakes in North
America and to demonstrate how UAS-derived profiles can be used to select optimal sam-
pling depths.

The use of UAS is not restricted to HAB monitoring and detection; in recent years
UAS have also been employed to counteract them. Jung et al. [155] developed an autono-
mous robotic system to remove algal blooms that combined a catamaran-type USV instru-
mented with an electrocoagulation and flotation reactor with an UAS. The latter detected
the HABs through an image-based algorithm and sent GPS coordinates to the USV for
path planning. This method achieved a 98.3% of cyanobacteria removal.

Finally, the recent advances in technology have facilitated the creation of “multipur-
pose drones” that apart from completing standard tasks such as the acquisition of videos
and photos, can monitor and take samples in a variety of environments and situations. An
example of multipurpose UAS is provided by Agarwal et al. [156] who designed a plat-
form capable of taking water samples, monitoring air and water quality in situ and that
included video recording functions. Similarly, in order to access to an extreme environ-
ment such as the Lusi mud eruption in Indonesia, Di Stefano et al. [33] designed a multi-
purpose UAS. The platform was able to complete video surveys, high resolution photo-
grammetry, TIR mapping and was equipped with deployable thermometers and gas, mud
and water samplers. An UAS equipped with a hydrophilic with a lipophilic balance
(HLB), thin-film solid-phase microextraction (TF-SPME) sampler was developed by
Grandy et al. [157] to remotely screen a wide range of pollutants present in water bodies.
Finally, a recent review on drones use for water sampling can be found in [158].

5. UAS Applications in Hydrogeology

The number of papers documenting the application of UAS to groundwater (GW)
and aquifer research is rather scarce, especially if compared with the extensive literature
dealing with their use in riverine and oceanic environments. The reasons are the inherent
limitations of remote sensing and the very early stage in which the technological devel-
opments in this field are currently. The major constraint in GW detection and mapping is
related to the insufficient penetration capacity that remote sensing offers, only enabling
the acquisition of data at the ground surface or within shallow subsurface layers a few
meters deep. Apart from geophysical techniques, ground-penetrating radar (GPR) is the
only technology that can survey depths of several meters. However, at present, owing to
the mass, size and very high costs of these sensors, radars onboard UAS are still uncom-
mon, and most experiences are restricted to applications such as landmine detection. Cur-
rently, some technological advances such as the Frequency Domain Electromagnetic
(FDEM) method allow to perform geophysical surveys from UASs. These are aimed at the
detection of underground properties such as magnetism and resistivity, which can be sub-
sequently related with the presence of groundwater and its characteristics (e.g., salinity).
Nevertheless, this field is still to be developed in scientific terms.

On the other hand, the thermal inertia of groundwater emergence in coastal areas
(SGD) and fluvial systems has been recently exploited to generate temperature maps and
monitor warm plumes by means of TIR-equipped UAS yielding promising results. Cur-
rent available research on UASs applications in hydrogeology includes studies on surface-
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groundwater (SW-GW) exchange flow, submarine groundwater discharge (SGD), piezo-
metric level delimitation and subsidence processes associated to groundwater withdraw-
als.

5.1. Surface Water—Groundwater (SW-GW) Interactions

Surface water—-groundwater (SW—-GW) interactions are critical to calculate water bal-
ances and sustainable levels of water extraction. These interactions have been traditionally
studied through an array of methods (e.g., differential gauging, seepage meters, tracer
injection experiments, monitoring of piezometric heads or satellite remote sensing) whose
selection depend on the temporal and spatial scale, limitations and uncertainties inherent
to each technique. Recently, UAS have been implemented in SW-GW research since they
are the only tools that enable indirect observations of these processes with a sufficiently
high spatial resolution.

As several experiences have demonstrated, UAS-derived TIR imagery can provide
useful information on the size and extent of groundwater plumes emerging from springs
and near streambanks, especially when the temperature contrast between SW and GW is
marked. Abolt et al. [159] mapped thermal refugia associated with groundwater discharge
in Devil's river (Texas) using a small UAS equipped with an inexpensive uncooled mi-
crobolometer and proposed a method for stabilizing the resulting image mosaic and com-
pensating the pixel bias. This low-cost platform produced more consistent results than
those obtained from a more expensive TIR camera system and allowed to generate high
quality maps of surface temperature in riparian ecosystems.

TIR imagery has also been supported by optical products; Harvey et al. [160] evalu-
ated the suitability of UAS equipped with lightweight TIR sensors to identify groundwa-
ter discharges and validate thermal refugia goals in a hydrological restored peatland. TIR,
visible, and DSM products were compared to evaluate the landscape forms and thermal
signature of groundwater inflows. The authors detected substantial inflows of warm
groundwater that were visible along the restored channel, along with seepage areas, dis-
crete seeps and thermally stable pools of ecological importance (Figure 9). This work em-
phasizes the usefulness of UAS-based TIR for mapping groundwater seeps in wetlands
with a spatial coverage that is unimpeded by site-access considerations. However, the ap-
proach presents several limitations: Firstly, while the method proved to be effective in a
continental climate with cold winter conditions, it is less effective when applied in spring,
autumn or in temperate to tropical climates as the temperature contrast between SW-GW
is less evident and becomes quickly lost by surface mixing. Secondly, TIR sensors cannot
penetrate vegetation, meaning that surface waters may not always be visible because of
foliage. Thirdly, shallow groundwater temperature can be similar to the mean annual sur-
face temperature, weakening the TIR images contrast. Casas-Mulet et al. [161] generated
high-resolution TIR and RGB orthomosaics to characterize cold water patches associated
with groundwater inputs over a 95 km-long river section using simultaneous UAS flights.
This method allowed to identify riverscape spatial patterns of temperature and to detect
and classify these patches. Finally, UAS-based TIR has also been applied in the field of
mining by Rautio et al. [162]. The authors combined airborne and UAS TIR imagery to
identify SW—-GW interactions for the planning and siting of mining facilities in order to
prevent potential acid mine drainage pollution.
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Figure 9. Thermal infrared (TIR) imagery showing the diffuse and discrete warm groundwater
inputs into the stream. Modified from [160].

Other studies focused on SW-GW interactions rely on the combination of ground-
based measurements, UAS photogrammetry and hydrologic modeling. Pai et al., [39]
quantified sinuosity-driven GW-SW exchange in a river employing a suite of UAS-de-
rived products (water surface elevation, normalized difference vegetation index (NDVI)
maps and vegetation-top elevation distribution along meanders) and distributed in situ
temperature measurements. SfM photogrammetry was used to generate a DSM that al-
lowed to estimate the river gradient, the hydraulic gradient across the meander necks,
river-reach topography, and vegetation-top elevations. Compared with the surveyed
ground control points, the modeled surface presented a 3.8 cm mean absolute error (less
than aerial LIDAR) and a precision of 2.5 cm. The NDVI maps obtained presented a reso-
lution better than 10 cm, enabling to document even individual plants. The combination
of topographic analysis with low-cost multispectral imaging enabled to identify GW
shortcutting, which occurred through the necks of the meander bends, where hydraulic
gradients were found to be larger. Bandini et al. [163] evaluated the potential of spatially-
distributed UASs observations for improving hydrological models and in particular, esti-
mates of GW-SW exchange flow. The authors simulated a river and its catchment using
an integrated hydrological model that was calibrated through 2 methods; first, against
river discharge retrieved by in situ stations and the piezometric head of the aquifers and
second, against dense spatially distributed water level observations obtained with UASs.
After calibration, the sharpness of the estimates of GW-SW time series improved by 50%
using UASs and the root mean square error decreased by R75% compared with the values
provided by the model calibrated against discharge only. Tang et al., [164] simulated a
flood event with the groundwater model HydroGeosphere to study the spatial and tem-
poral variability of riverbed topography and hydraulic conductivity on SW-GW exchange
and groundwater heads. The authors combined several state-of-the-art techniques; UAS-
based photogrammetry, physically based measurements and the ensemble Kalman Filter.
This combination resulted in substantially improved hydrological predictions and ena-
bled the estimation of river-aquifer fluxes. Briggs et al. [165] combined remote sensing
with ground- and drone-based measurements to characterize the enhancement of SW—
GW interactions and changes in water chemistry induced by beaver activity along two
alluvial mountain streams in USA. Several UAS were deployed to map the river corridor
and beaver ponds and SfM techniques were applied to generate time-specific digital ele-
vation models of floodplain structure and channel geomorphology. The UAS information
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was complemented with historical imagery, TIR data from handheld cameras and meas-
urements of water quality (metals) and seepage associated to beaver pond return flows.
The authors reported a multi-seasonal enhancement of the floodplain hydrologic connec-
tivity and an increase in groundwater storage associated with beaver activity. Furlan et
al. [166] combined electrical resistivity tomography with UAS photogrammetry to map
the topography, internal morphology, water storage and hydrologic flow paths in a sa-
vanna wetland in Brazil. The authors used a fixed-wing UAS with a RGB sensor to obtain
very high-resolution images and create an orthomosaic and a DSM for the relief analysis.
The wetland was compartmentalized and the area and volume of each sector calculated
for the subsequent hydrological modeling. On the other hand, the geophysical surveys
provided information about groundwater behavior and infiltration zone architecture and
enabled to produce a 2D inversion and a pseudo-3D model to visualize the subsurface
geologic structure and hydrologic flow paths. The combined application of very high res-
olution UAS images and electrical surveys allowed the authors to propose a broader hy-
drologic interpretation of the wetland functioning and to complete surface and subsurface
imaging of the system.

5.2. Submarine Groundwater Discharge (SGD) Mapping

Submarine groundwater discharge has a suggested impact on marine environment
and geochemical cycles, playing a key role in the transport of nutrients, contaminants, and
other chemical substances to coastal water. Although neglected for many years owing to
the intrinsic difficulty of its quantification and the poor understanding of the process, in
the last decades there has been a sharp increase in the number of publications on this topic.
SGD has been traditionally studied using geochemical tracers, geophysical techniques,
piezometric levels, water budgets and hydrological modeling. These classical methods,
however, have large uncertainties associated, are labor-intensive and difficult to imple-
ment over large areas. Most SGD research is based on the detection of groundwater dis-
charge from temperature anomalies and the seasonal contrast between ocean and ground-
water temperature. TIR imagery from manned aircraft, although costly, has proved to be
useful in mapping SGD, especially in areas where temperature contrasts between ground-
water and seawater are marked. Conversely, satellite monitoring suffers either from an
inadequate spatial resolution for detailed studies, or it is restricted by established sched-
ules (revisit times) that may not be adequate for the needs of each study. In this context,
since the implementation of UAS in SGD research is still relatively new, only a few recent
studies are available, highlighting UAS's suitability as affordable alternatives to the afore-
mentioned methods and to overcome limitations in terms of spatial resolution.

Siebert [167] studied what they termed as “sub-lake groundwater discharges” in the
Dead Sea; off-shore springs that drained the surrounding mountain freshwater aquifers.
The authors integrated data obtained from ground-truth measurements, high-precision
and high-resolution bathymetric campaigns, side-scan sonar imaging from an USV and
imagery of sea surface temperature from a TIR sensor mounted on an UAS. Their ap-
proach proved to be suitable for precisely mapping SGD locations from remotely sensed
thermal anomalies and even led the authors to hypothesize that the anomaly size reflects
discharge quantities.

In a pioneer work, Lee et al. [168] successfully characterized and quantified SGD in
an island of the Korean Peninsula through UAS-based TIR mapping supplemented by
ground-based observations. Thermal signatures of SGD plumes and their tidal-derived
fluctuations were captured with great detail (Figure 10).
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Figure 10. (a) Sea surface temperature maps and (b1-4) temperature fluctuations depending on
the tidal stage (1.rising tide, 2. high tide, 3. outgoing tide and 4, low tide) captured by the UAS-
based TIR. Extracted from [168].

This work evidenced that UASs offer better results in the study of SGD dynamics in
small, localized target areas (0.01-1km?) than manned aircrafts, which are more adequate
for regional characterizations. The drone-based methodology allows an easier control of
the spatial resolution, more flexibility in field operations and lower costs compared to
conventional aerial surveys, making it a powerful tool to study SGD and other coastal
processes.

More recently, Mallast and Siebert [44] investigated variations in thermal radiation
induced by focused and diffuse SGD in a sedimentary fan of the Dead Sea. The authors
used a hoovering UAS equipped with a long-wave TIR camera and a radiometry module
and assumed that thermally stable areas indicated focused SGD whereas highly variable
areas indicated diffuse SGD. After applying specific subjective variance thresholds and
spatio-temporal analysis, their results highlighted that the spatio-temporal behavior of a
SGD-induced thermal radiation pattern can vary in size and over time by up to 155% in
the case of focused SGDs and by up to 600% in the case of diffuse SGDs owing to under-
lying flow dynamics. The authors recommend the application of this approach prior any
in situ sampling in order to identify adequate sampling locations and intervals.

5.3. Water Table Definition

The definition of the water table of an aquifer is usually carried out from observations
at specific points in the territory with the subsequent application of the interpolation
methods devised for this purpose (linear, polynomial, IDW, kriging, etc.). Direct observa-
tions are made by measuring water level depth with specific instruments (electrical
probes, pressure transducers, radar, etc.) at observation points that reach the saturated
zone (wells, boreholes, piezometers, pits, excavations). The piezometric level is inferred
from the subtraction of water level depth from ground elevation with respect to datum.
Photogrammetry carried out from UAS can provide high accuracy in the definition of the
morphology of the terrain and is useful for levelling the observation points. Nevertheless,
the determination of the level depth using UAS require certain exposure of the water
sheet. Therefore, it is not possible to detect the piezometric level when the observation
points are closed (installed boreholes or piezometers with covers) or when their geometric
characteristics (diameter) do not favor inspection from air. That is why there are very few
works in this field. The only applications described refer to peatlands and karst aquifers
affected by large dissolution/collapse structures (cenotes).
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Thus, Rahman et al. [169] proposed a methodology for mapping groundwater in a
treed-bog peatland using orthophotography and photogrammetric point clouds acquired
from an UAS. DSM and a DEM were used to obtain a canopy height model and open
water objects were converted into a continuous surface. The elevations of the samples
were interpolated to generate a water table surface, which was then subtracted from the
DEM to obtain the depth to water surface. This method demonstrated great potential for
measuring groundwater levels over large, complex and inaccessible areas, although its
performance and effectiveness were hindered in densely vegetated areas. Bandini et al.
[170] proposed a methodology based on the observation from UAS to define the water
surface elevation (WSE) in cenotes in the calcareous aquifer of the Yucatan Peninsula
(Mexico), which is useful to feed hydrological models and estimate hydraulic gradients
and groundwater flow directions. WSE observations were retrieved using a radar and a
global navigation satellite system on-board a multicopter platform. Moreover, water
depth was measured using a tethered floating sonar controlled by the UAS. Later, these
observations are transformed to orthometric water height above mean sea level and com-
pared with the ground-truth observations retrieved by a GNSS rover station. The authors
estimate an accuracy better than 5-7 cm in the WSE and they highlight that UASs allow
monitoring of remote areas located in the jungle, which are difficult to access by human
operators.

Other applications related to the detection of the saturated zone depth using UAS are
focused on the identification of drainage systems in agricultural fields; Allred et al. [171]
conducted UAS surveys to detect drainage pipes in a pilot agricultural field where docu-
mentation on the pipe network was available. The study was caried out using visible, NIR,
and TIR images during the dry period. Under these field conditions, drainage pipes could
not be detected with the VIS and NIR imagery. Conversely, the TIR image detected
roughly 60% of the subsurface drainage infrastructure. Kratt et al. [172] followed a similar
approach and obtained better results with visible images than with the TIR sensor, which
did not detect the phenomenon owing to thermal differences lower than the sensitivity of
the instrument, a consequence of non-optimal environmental conditions.

5.4. Subsidence

Subsidence is a slow and gradual movement caused by tension-induced changes over
natural terrains or built surfaces. This geological hazard can affect all types of terrains and
is produced by a range of natural factors and human activities. With regards to the latter,
groundwater extraction plays a significant role in the occurrence of land subsidence;
pumping can lead to substantial drawdowns and water table depressions in the neighbor-
ing areas of boreholes, resulting higher water extraction costs and, in the worst-case sce-
nario, to material and human damage.

This phenomenon has been extensively documented worldwide using different tech-
niques like interferometry synthetic aperture radar (InSAR) from satellites or numerical mod-
els [173-175]. Nowadays, the implementation of UASs as complements or enhancing tools for
conventional surveying and mapping of subsidence is drawing increasing attention among
the scientific community, however, this discipline is still in its earlier stages of development.

Although works on the application of UASs in the study of subsidence linked to ground-
water extraction are scarce, some pioneering attempts are worth mentioning. One of them was
conducted in Arizona (USAEE.UU), where the central and southeastern regions present sub-
sidence problems driven by groundwater pumping, leading to fissures and cracks caused by
tensile failure of sediment and soil. These fissures have resulted in property damages and in-
crease the risk of groundwater contamination from surface pollutants. To address this issue,
the Arizona Geological Survey (AZGS) founded the earth fissure program in 2007 to system-
atically identify, map, and monitor earth fissures. In 2018 the AZGS incorporated the use of
UAS-5M for fissure monitoring and terrain mapping [176]. As a result, they produced accu-
rate DSM of the areas affected by fissures, highlighted the diffuse nature of ground surface
disturbance around fissure openings and proposed to extend the use of UASs to other zones
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of Arizona due to the better precision of the method. On the other hand, the effect of subsid-
ence on groundwater levels has been studied by [177,178]. The authors used RGB images from
a rotatory-wing UAS to extract subsided cultivated land in high-groundwater level coal
mines. After calculating several vegetation indexes and applying a hierarchical extraction
method to define subsided farmland, the comparison of the results of the UAS-based images
(Kappa coefficient of 0.96) with a traditional method (Kappa coefficient of 0.86) demonstrated
the highest accuracy of the former. However, the methodology displayed some weaknesses;
although the remote sensing images obtained by UAS at low altitude had high spatial resolu-
tion, the amount of data was relatively large, slowing down data processing. In addition, the
high energy demands of the rotary-wing UAS only allowed to conduct shorter flights, what
hindered the obtention of data over larger areas, and the resolution of the images was affected
by meteorological conditions (cloudiness and fog).

6. Results and Conclusions
6.1. Current Applications of ULASs in Water Resource Research

The advent of UASs as remote sensing platforms for hydrological monitoring constitutes
a major breakthrough in water research, overcoming the shortcomings of traditional manned-
aircraft and satellite observations, and opening up new opportunities to achieve the spatio-
temporal resolutions required to understand small-scale hydrological processes and dynam-
ics. In this regard, UASs are bridging the gaps between satellites, airborne imagery and
ground-based measurements. In addition, the increasingly competitive prices of these plat-
forms, together with the parallel advances in sensor development and software tools that au-
tomate data processing, have led to a growing interest of the scientific community on this
technology.

In this paper a total of 122 research works is summarized, providing an overview on
UASs recent advances and state-of-the-art methodologies implemented in the study of surface
water and groundwater, including notions about the types of sensors, platforms and ad-
vantages and limitations of this technology that is in rapid and continuous development. The
works reviewed were classified according to the phenomenon or process under study and the
type of water body considered.

The number of studies focused on surface water notably exceeds those on groundwater
investigations (Figure 11). In fact, UASs applications on surface water account for 84.4% of all
the papers reviewed, of which river bathymetry and the study of floods are the prevalent
studies. Conversely, groundwater research using aerial drones constitute only a 15.6% of the
total, being most of these papers related to SW—GW interactions.

Groundwater .
Surface water t

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
H River/lake bathymetry (15.6%) B Flood monitoring (14.8%)
W Water contamination (4.9%) M Surface velocity & flow estimation (9.8%)
® Water sampling & parameter measurement (13.1%) m HABs and eutrophication (10.7%)
Water level measurement (9.0%) Temperature mapping (6.6%)
M SW-GW interactions (7.4%) W water table definition (3.3%)
SGD (2.5%) Subsidence (2.5.%)

Figure 11. Percentage distribution and number of reviewed studies of UASs applications in hy-
drology.
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As this review evidences, a wide number of approaches have been developed for
observing surface and submerged features of rivers, lakes and other wetlands. For in-
stance, UAS-based optical methods have been used to create bathymetric maps by stab-
lishing correlations between pixel values or spectral properties of the images. The combi-
nation of UAS images and videos with optical velocimetry and particle tracking tech-
niques have enabled to characterize surface flows and velocity fields of rivers and streams.
UAS-derived data have been extensively used to produce high accuracy DEMs to identify
the extent of inundations and improve flood models. IR sensors mounted on UASs have
been also deployed to detect temperature patterns within rivers or lakes, and to identify
groundwater inputs or warm effluents from power plants. Likewise, RGB, IR and more
recently hyperspectral cameras are being deployed from UASs to early detect and monitor
eutrophication and harmful algal blooms. Moreover, beyond being tools for the remotely
acquisition of data, UAS have gone one step further, with devices that allow the collection
of water samples and the measurement of parameters in situ, overcoming the many limi-
tations of traditional manual sampling.

Nevertheless, the application of UAS technology to surface water research is subject
to several limitations and challenges. Among the most obvious are the weather conditions,
such as strong winds, rain, cloudiness and sunglint contamination that may hamper the
flights and result in geometrically distorted images. These factors might degrade the qual-
ity of the images, making necessary the formulation of correction algorithms specific for
the flight and environmental conditions. Likewise, the characteristics and distribution of
vegetation can hinder the acquisition of data from the terrain in both aerial and underwa-
ter conditions and can even represent a serious risk for the movement and safety of un-
manned aerial platforms. The accuracy in vertical and horizontal position (x,y,z axis) is
crucial in many studies and rely heavily on the GCP or the availability/accuracy of the
IMU/INS/RTK units. In this regard, ensuring a good geolocation and alignment of UAS
imagery in highly dynamic environments (e.g., rivers),areas with scarce ground control
points or surfaces rich in contrast, constitutes another problematic aspect. Fortunately, the
recent advances and miniaturization of differential GNSS are yielding significant im-
provements in flight performance both in terms of accuracy and integrity. Other indirect
problem associated with the large body of information generated by UASs, is the high
data storage and processing capacity needed. Additional constraints related to low pay-
load capacity, which limits the number of sensors that can be mounted on the platform,
short flight times and battery duration also requires previous consideration.

On the one hand, the implementation of UAS remote sensing to the study of under-
ground environments and processes, hidden from direct observations, is even more chal-
lenging since this technology was initially devised to detect features directly from the sky.
In this context, the main limitation is the insufficient penetration capacity that most re-
mote sensing techniques (except for long wave radar) present beyond the uppermost soil
layer. If conditions are favorable and in the absence of vegetation, long wave radar im-
agery can detect groundwater levels situated a few meters deep. Although the application
of UAS remote sensing to groundwater exploration is limited by technological develop-
ment, several recent studies demonstrate the usefulness of this technique and represent a
promising step forward in the knowledge of these water bodies. Most of these works are
based on the detection of groundwater-induced thermal anomalies in coastal waters or
riverine systems to characterize plumes and produce temperature maps. On the other
hand, a few studies have taken advantage of the particular configuration of certain areas
such as cenotes and peatlands to map water table. A research field currently under devel-
opment is the use of geophysical instruments from UASs for the detection or characteri-
zation of groundwater (e.g., the aforementioned FDEM).

Regarding the types of UASs employed in hydrological research, as Tables 4 and 5
show, the prevalent type was rotary-wing, both in surface water and groundwater, alt-
hough fixed wing and other types (paraglider) were also reported. The reason is that, even
though fixed-wing UAS can cover larger areas and offer longer flight times, rotary wings
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allow greater maneuverability, allowing vertical movements and hoovering, as well as
working in inaccessible areas, which are characteristic often needed in many data collec-
tion tasks. However, some authors have made a combined use of both types of platforms
in order to complement their strengths and compensate for their weaknesses. Among the
122 works reviewed, 10 did not specify the type or model of UAS used and were excluded
from tables.

Table 4. Number of reviewed works by UAS type in surface water research.

Bathymetry Water Surface Flood TermperaTu Water ABs Water um
Level  Velocity/Discharge Monitoring re Mapping Contamination Sampling
Fixed-wing 1 1 0 10 2 0 2 0 16
Rotary-wing 17 9 12 6 6 5 8 14 77
Both 0 0 0 2 0 0 2 0
Other 1 0 0 0 0 0 0 0 1
Table 5. Number of reviewed works by UAS type in groundwater research.
SW_G,W SGD Water Table Definition Subsidence Sum
Interactions
Fixed-wing 1 0 1 0 2
Rotary-wing 4 2 3 3 12
Both 0 0 0 0 0

6.2. UAS Application in Freshwater Research: Future Prospects

Since their recent emergence in the civil sphere, UASs have been subject to continu-
ous improvements and innovations developed in parallel with advances in sensors. Their
incorporation into the research field has opened a new era in remote data acquisition, with
a range of applications that is continuously growing.

UASs are providing researchers and water managers the opportunity of gathering
exceptionally large data volumes in a safe, cost-effective and relatively easier manner than
traditional methods. In fact, UASs have come to revolutionize measurement and sampling
campaigns and, owing to their unprecedent spatio-temporal coverage and the recent ad-
vances in sensor technologies that allow to capture surface and submerged processes, it is
possible to analyze aquatic systems from a holistic point of view more than ever. In a
period of just two decades, UASs have deeply transformed the discipline of hydrology
and its use alone or in combination with other instruments have contributed to the gener-
ation of highly accurate representations of fluvial morphology, to map surface properties
and study system’s interactions.

In addition, UASs have rapidly evolved from early prototypes like balloons, para-
gliders and paramotors to sophisticated lightweight platforms able to operate in difficult
to reach and hazardous environments preventing risks for operators. The decreasing
prices of the electronic components and the many possibilities available in terms of plat-
form customization and sensor combination have democratized their use and made them
affordable even for small research groups and modest institutions.

In the light of the broad literature selection presented here, there are several oppor-
tunities and challenges that need to be considered for the full and efficient implementation
of UAS in hydrological research and management:

Platform limitations: The use of non-metric cameras and the development of low-cost
platforms have been a key in the rapid uptake of UASs for the obtention of high-resolution
data on demand. However, UASs are subject to a number of limitations. Among the most
important and evident ones, is UAS maximum payload, which have hindered their cou-
pling with certain sensors and storage devices so far (e.g., to date there are only a few
commercially available models of LiDAR sensors compatible with UAS). This limitation
has prevented drones from carrying more integrated systems with multiple sensors, data
processing equipment and communication hardware. Another hurdle of this technology
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is UAS’s high energy requirements (an inherent issue of scaling down the vehicle), which
limit their autonomy, spatial coverage and makes necessary to interrupt the flight multi-
ple times to replace batteries. In addition, most UASs cannot fly autonomously without
GPS and may not be deployed under adverse meteorological conditions, situation that is
recently changing with the development of new industrial ratings (e.g., IP44 and IP45)
that ensure protection against debris and water. The widespread and more effective im-
plementation of UASs in research calls for further miniaturization of components, the de-
velopment of alternative power sources such as thin-film photovoltaic panels or tethered
systems that extend the battery duration and provide a reliable wired communication,
and improvements in vehicle autonomy, minimizing human intervention.

Methodological robustness: The many papers reviewed here reflect the necessity of
increasing research efforts and carrying out more experiences on the application of UASs
in hydrology, with a special focus on groundwater. While some applications based on
visual imagery to extract river morphology, bathymetry or flood extents have gathered
highly accurate results, other methods such as multispectral approaches to infer water
quality, TIR imagery to study fluvial temperature patterns, video data to estimate stream
flow or UAS-based approaches to define water table are still subject to important limita-
tions. These methodologies will have to be refined as UAS and sensing technologies ma-
ture and optimized processing tools and algorithms are developed.

Information gaps: The availability of detailed hydrological information at global
scale is still uneven in terms of spatial distribution and type of data. Thus, we believe that
future research efforts should aim at increasing the current collection of UAS imagery
over different types of basins, hydrological conditions and events, with especial focus on
ungauged systems and information-scarce areas. On the other hand, as this review evi-
dences, most UAS remote sensing techniques are focused on morphological aspects, while
works on dynamic processes such water surface elevation, discharge estimations and sur-
face-groundwater interactions are less common owing to technological, spatial and tem-
poral limitations. In this regard, future advances in the field of UASs, together with mul-
tiplatform and multisensor approaches will narrow these information voids and will en-
able a deeper understanding of water bodies functioning and interactions.

Image processing and the role of machine learning: Manual extraction of regions of
interest from the large volumes of information generated by UASs is a costly and time
demanding task, even more in long-term monitoring programs involving repeated sur-
veys. In this context, the emergence of machine learning algorithms provides great oppor-
tunities to automatize image processing workflows and address the challenges of hydro-
logical research. To date, some works have successfully implemented machine learning
approaches such as support vector machine or ANN for feature extraction and classifica-
tion, or to solve non-linear problems in hydrological forecasting. Nevertheless, despite
machine learning usually outperforms physically based models, their predictive accuracy
is restricted to the range of input data used in the training stage. Thus, a long-term goal
to improve model predictions at broader scales is to fill information gaps and acquire con-
sistent spatial-temporal hydrological input data for their subsequent integration into arti-
ficial intelligence networks. As technology matures, UASs will be extremely useful tools
for the acquisition of different types of training data.

Uneven legal framework: The rapid expansion of UASs has not been balanced by an
exhaustive regulation and to date, there is not a single harmonized regulatory instrument
at international scale. This situation stems from the shift in the use of UAS technology
from the initial military purpose to professional/commercial and recreational use, leading
to new legal implications. UASs must comply with principles of safety and privacy and
every activity performed by a drone is subject to a convoluted set of specific sectorial rules
such as data protection, privacy law, aviation law, telecommunication law, environmental
law, product liability or criminal law, which hinders the potential and competitiveness of
the drone market. The integration of civil UAS into all areas of the airspace while remov-
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ing the technical barriers that limit their flight and addressing the inherent security, pri-
vacy and ethical issues still one of the main obstacles to overcome. Recently, the European
Regulation 2019/947 [179] on the rules and procedures for the operation and registration
of unmanned aircraft has constituted a leap forward in the unification and integration of
civil drones into all areas of the airspace. The document sets the rules for conducting op-
erational risk assessment and cross-border operations within the EU, the conditions under
which drone operations can be allowed and establishes the requirements for the registra-
tion of UAS operators and certified UAS among others.

Finally, this paper presents a comprehensive literature review on the diverse appli-
cations of UAS in the fields of hydrology and hydrogeology, classifying them according
to the aim of the study and covering a range of aspects such as the types of platforms and
sensors used, their strengths, limitations and the new possibilities opened up by their
combination with other measurement instruments. The compilation of experiences here
summarized has demonstrated the great supporting role of UASs to ground-based and
satellite-borne observations, covering the demand of near real-time and cost-effective data
especially in the study of highly dynamic processes. Despite the rapid advances experi-
enced and all the advantages UASs offer, their integration in water resource research (as
in many other research fields) it is still in its infancy; there is room for improvement in
many aspects such as image processing, standardization of the techniques and procedures
adopted, or UASs integration with traditional instruments and analysis tools. In this re-
gard, experience and data sharing among researchers can further improve hydrological
research, help to fill knowledge gaps and lay the foundations for the design of methodol-
ogies and protocols appropriate to different hydrological contexts. This review aims at
serving as a reference or introductory document for all the researchers and water manag-
ers who are interested in embracing this novel technology to meet their needs and to unify
in a single document all the possibilities, potential approaches and the results obtained by
different authors through the implementation of UASs.
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