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Abstract: Satellite-based rapid sweeping screening of localized PM2.5 hotspots at fine-scale local
neighborhood levels is highly desirable. This motivated us to develop a random forest–convolutional
neural network–local contrast normalization (RF–CNN–LCN) pipeline that detects local PM2.5

hotspots at a 300 m resolution using satellite imagery and meteorological information. The RF–
CNN joint model in the pipeline uses three meteorological variables and daily 3 m/pixel resolution
PlanetScope satellite imagery to generate daily 300 m ground-level PM2.5 estimates. The downstream
LCN processes the estimated PM2.5 maps to reveal local PM2.5 hotspots. The RF–CNN joint model
achieved a low normalized root mean square error for PM2.5 of within ~31% and normalized mean
absolute error of within ~19% on the holdout samples in both Delhi and Beijing. The RF–CNN–
LCN pipeline reasonably predicts urban PM2.5 local hotspots and coolspots by capturing both the
main intra-urban spatial trends in PM2.5 and the local variations in PM2.5 with urban landscape,
with local hotspots relating to compact urban spatial structures and coolspots being open areas and
green spaces. Based on 20 sampled representative neighborhoods in Delhi, our pipeline revealed an
annual average 9.2 ± 4.0 µg m−3 difference in PM2.5 between the local hotspots and coolspots within
the same community. In some cases, the differences were much larger; for example, at the Indian
Gandhi International Airport, the increase was 20.3 µg m−3 from the coolest spot (the residential area
immediately outside the airport) to the hottest spot (airport runway). This work provides a possible
means of automatically identifying local PM2.5 hotspots at 300 m in heavily polluted megacities
and highlights the potential existence of substantial health inequalities in long-term outdoor PM2.5

exposures even within the same local neighborhoods between local hotspots and coolspots.

Keywords: fine particulate matter; machine learning; remote sensing; computer vision; satellite
imagery; convolutional neural network (CNN); random forest (RF); hotspot; exposure; risk

1. Introduction

Exposure to fine particulate matter (PM2.5, with an aerodynamic diameter of 2.5 µm
and smaller) has wide-ranging adverse health effects on, for example, cardiovascular,
cardiopulmonary and respiratory wellness [1]. Exposure to higher levels of PM2.5 can lead
to increased risks of mortality and loss of life expectancy mostly due to lower respiratory in-
fections and non-communicable diseases, such as ischemic heart disease, stroke, chronic ob-
structive pulmonary disease, lung cancer, diabetes and cataracts (e.g., [2–6]). A recent study
also suggests that a higher historical exposure to PM2.5 is, in particular, associated with
a higher COVID-19 mortality rate [7]. Novel measurement approaches including mobile
sampling (e.g., [8–12]) and low-cost air quality sensor networks (e.g., [13–18]) have had
success in revealing urban air pollution patterns at considerably greater spatial precision
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than existing rather sparse regulatory air quality monitoring (AQM) stations, which have
advanced our understanding of the adverse impacts of highly dynamic and heterogenous
air pollutants, such as PM2.5, at higher spatiotemporal resolutions; however, these two
approaches can be further complemented by a satellite-based modeling approach that
requires much less manpower for sampling or instrument calibration and maintenance to
potentially rapidly screen localized PM2.5 hotspots over wider spatial areas.

Satellite data have been most commonly used for mapping PM2.5 at a high spatial
resolution. With the help of the recent rapid >advance in satellite sensors and rise in
computing power suitable for big data wrangling, a handful of satellite-based methods have
succeeded in estimating ambient PM2.5 concentrations at sub-km levels with reasonably
low retrieval uncertainties, such as between 500 m and 1 km (e.g., [19–21]) and below 500 m
(e.g., [22–26]), with [19–25] using aerosol optical depth (AOD) while [26] (and this study)
using satellite imagery for ambient PM2.5 retrievals. However, few of the studies in [19–26]
took their fine-grain ambient PM2.5 estimates a step further by adapting them to be an
automated PM2.5 hotspot detector—a missed opportunity to inform decision makers about
the main urban PM2.5 emission sources in a never-before-realizable fashion and to facilitate
the effective formulation and implementation of commensurate policy interventions and
prioritization of resources for combatting air pollution in megacities. There are a few
notable exceptions: for instance, Zhang et al. [25] managed to precisely identify the main
PM2.5 emission sources and their contribution proportions at a 160 m resolution in Wuhan,
China, by leveraging the new 160 m AOD data retrieved by the Chinese Gaofen-1 satellite;
although only at a 1 km resolution, the work by Bi et al. [15] is worth mentioning in that
they demonstrated how massive uncalibrated PM2.5 measurements from a large-scale
PurpleAir low-cost sensor network can be creatively calibrated spatially first, then given
lower weights and finally incorporated into a satellite AOD-based PM2.5 prediction system
to help further boost prediction performance and locate the four most destructive wildfire
hotspots in 2018 in California. However, the PM2.5 hotspots identified in these satellite-
based studies are all “global” hotspots that have the absolute highest PM2.5 levels over the
entire study region. The “local” hotspots that have the highest PM2.5 levels only relative to
their neighbors at a fine-scale local community level were not studied. The PM2.5 gradients
even between these local hotspots and coolspots within the same local community can still
be rather large, which in turn can translate into a huge difference in the risks of mortality
associated with PM2.5 exposure for people (and particularly those potentially vulnerable
subgroups) even residing in the same community [3–5].

In light of these limitations, we parlayed our previous success in estimating ground-
level PM2.5 concentrations from satellite imagery at a 200 m resolution [26] into a satellite
imagery-based local PM2.5 hotspot detector at a 300 m resolution in this study, with 200 and
300 m being the optimal satellite imagery sizes (determined by the search method in
Section 3.3 of [26]) for PM2.5 modeling for the prediction systems in our previous study [26]
and the current one, respectively. Our previous PM2.5 prediction system [26] is a deep
convolutional neural network (CNN)–random forest (RF; [27]) sequential model that is
fueled by meteorological conditions and daily 3 m/pixel resolution PlanetScope satellite
imagery from Planet [28]. However, this previous CNN–RF sequential model, despite
effectively capturing spatial variations, was found to yield higher average PM2.5 prediction
errors than its RF part alone using only meteorological conditions, most likely the result of
CNN–RF sequential model being unable to fully use the information in satellite images in
the presence of meteorological conditions. To overcome this bottleneck in PM2.5 prediction
performance, this study reformulated the previous CNN–RF sequential model into an
RF–CNN joint model where the RF part uses only meteorological data to predict a PM2.5
baseline map on each day, whereas the CNN part uses PlanetScope satellite imagery of
a 300 × 300 m spatial coverage to fill in the PM2.5 residuals at a 300 m spatial resolution.
The revamped RF–CNN joint model adopts a residual learning ideology [29] that forces
the CNN part to most effectively exploit the information in satellite images that is only
“orthogonal” to meteorology, thus yielding a greater PM2.5 prediction performance than
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both the CNN–RF sequential model and the RF part alone using only meteorological
conditions. A local contrast normalization (LCN) algorithm [30] follows downstream to
further process the PM2.5 maps estimated by the RF–CNN joint model so that local PM2.5
hotspots can be automatically revealed.

We place an emphasis on the megacity Delhi in this study. Delhi is among the
most PM2.5-polluted megacities worldwide according to the World Health Organiza-
tion (WHO)’s ambient air pollution database update in 2016 [31]. India, as a whole,
had ~0.98 million deaths attributable to PM2.5 in 2019, a large increase of ~6.5 µg m−3

in population-weighted annual average PM2.5 exposure and a ~0.37 million deaths at-
tributable to PM2.5 since 2010 [32]. Health benefits gained from reductions in PM2.5 would
be much more significant for countries such as India that have the highest PM2.5 levels [3].
Air quality mapping and hotspot analysis at a fine spatial resolution can put the air quality
states in megacities “under the microscope” and help governments and policy makers
put the air pollution issues in megacities into a clearer perspective [33], and is, therefore,
the right path forward, particularly for regions such as India. Here, we first show that our
proposed RF–CNN joint model can achieve equally low PM2.5 prediction errors at a 300 m
spatial resolution for both Beijing and Delhi, which are the study areas of interest in our
previous study [26] and the current one, respectively, that have drastically different PM
pollution levels and urban spatial structures. We then provide insights into the local PM2.5
hotspot patterns in Delhi by applying our proposed RF–CNN–LCN pipeline. We demon-
strate that for megacities, such as Delhi, which is abundant in PM2.5 measurements from
reference AQM stations, a simpler and scalable subsampling strategy to estimate local
PM2.5 hotspots is plausible and favorable. Finally, we elucidate the local PM2.5 hotspots
and coolspots revealed by the RF–CNN–LCN pipeline in Delhi and the possible disparities
of long-term outdoor PM2.5 exposures and associated mortality risks between people living
in the local hotspots and coolspots within the same local communities. This work presents
and highlights a prediction system that can be potentially informative about local PM2.5
hotspots at a 300 m resolution in heavily polluted megacities. This work reveals that there
can be a substantial health inequality in long-term outdoor PM2.5 exposure even within
the same fine-scale local neighborhoods between local hotspots and coolspots, suggesting
that more attention should be paid to the populations in local community hotspots who
can often be shadowed by those in global hotspots when planning actions to control air
pollution in megacities.

2. Materials and Methods
2.1. Ground-Level PM2.5 Data

Daily ground-level PM2.5 concentrations from 51 available AQM stations in the Na-
tional Capital Territory (NCT) of Delhi and its satellite cities, including Gurgaon, Faridabad,
Noida, Ghaziabad, Baghpat, Sonipat and Bahadurgarh, from 1 January 2018, to 30 June
2020, were acquired to build a high-resolution PM2.5 hotspot detector for Delhi NCT [34].
Detailed documentation of topographical, climatic and air quality conditions and the local
and regional sources that contribute to the air pollution in Delhi can be found in studies
such as [35–39]. The current study window was chosen to maximize the total number of
available AQM stations, because abundant new AQM stations in the study domain have
emerged since February 2018. Figure 1 displays the distribution of these 51 stations. As can
be seen in Figure 1, the 51 stations (except for the two stations with the highest and lowest
mean PM2.5, which were reserved for the training set for the sake of good training quality)
were randomly divided into a ~50–50% split or more precisely a 24–27 station split as the
respective training and test datasets that have roughly comparable summary statistics
for ground-truth ambient PM2.5 concentrations. Specifically, the PM2.5 of the training set
averaged 103.8 µg m−3 standard deviation (Std Dev): 81.3 µg m−3; range: 0.0–928.3 µg
m−3), and the test set averaged 105.2 µg m−3 (Std Dev: 78.1 µg m−3; range: 5.3–985.0 µg
m−3). The names of these stations along with their corresponding coordinates, categories
(training or test) and means of ground-truth ambient PM2.5 concentrations over the sam-
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pling period can be found in Table 1. The approximately even split between training and
test stations may appear to differ from the common practice (e.g., around 75–25%), but it
is ideal for this study in that: (1) given that the dataset is large with a total of 51 stations,
but only about half of them are more than enough for training our model, increasing the
number of holdout stations (for testing) to as high as possible will significantly improve
our confidence in the estimation of our model’s spatial predictability on never-before-seen
scenes, which is essential to generating both a pollutant concentration prediction map and
a pollutant hotspot detection map; (2) more holdout stations means more holdout samples
on each sampling day, which gives us more power to fairly examine the model’s spatial
predictability at a high daily temporal resolution, which in turn enables us to use only the
days on which the model makes the most accurate spatial PM2.5 predictions (as assessed
on the holdout samples) to detect PM2.5 hotspots, thus yielding a scalable (in both runtime
and storage) hotspot detection algorithm. It is worth mentioning that algorithm scalability
is very important here; since we are dealing with the computation and the storage of large,
high-resolution and high-frequency satellite imagery over more than 2.5 years, it would be
much less ideal if we had to rely on such images on all sampling days to uncover potential
hotspots. It is also worth highlighting that only stations, but not time periods, were held
out for testing in this study. This is because the local hotspot detection only requires spatial
predictability, meaning that it is only important that the model can spatially fill in where
there are no station data on the historical days.

Figure 1. Locations of the 51 air quality monitoring (AQM) stations that had PM2.5 measurements
during the period of 1 January 2018 to 30 June 2020 in Delhi and its satellite cities, of which 24 stations
(orange squares) were used for training and 27 stations (teal dots) were used for testing the forest–
convolutional neural network (RF–CNN) joint model in this paper.
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Table 1. The number, name, latitude, longitude, category (training or test), mean of PM2.5 concentrations, weather station
uptime (in %) and number of daily satellite image–stationwide averaged meteorology–PM2.5 triplets for each of the 51 AQM
stations in Delhi. The table is sorted based on each site’s mean PM2.5 concentrations in ascending order. Note that the
uptime of the weather station is different from the uptime of the instrument that measures PM2.5 at each AQM station.

Number Sites Lat Lon Category Mean of PM2.5
(µg m−3)

Weather Station
Uptime (in %)

Number of Daily
Image–Stationwide

Mean
Meteorology–PM2.5

Triplets

0 Murthal 29.02721 77.06208 train 62.2 0 392
1 Arya_Nagar 28.67008 76.92541 train 68.8 96 387
2 Pusa_IMD 28.63965 77.14626 test 78.3 81 711
3 Shooting_Range 28.49857 77.26484 train 81.1 100 683
4 Lodhi_Rd 28.59182 77.22731 train 81.8 1 718
5 Aya_Nagar 28.47062 77.10993 test 84.1 3 740
6 Sri_Aurobindo_Marg 28.53132 77.19015 test 86.5 100 572
7 IGI_Airport_T3 28.56278 77.11801 train 86.8 0 733
8 Indirapuram 28.64615 77.3581 train 88.9 97 361
9 Najafgarh 28.57012 76.93374 train 90.8 95 655
10 Knowledge_ParkV 28.55703 77.45365 train 91.7 100 240
11 Patparganj 28.62364 77.28717 test 94.3 99 706
12 Sector116 28.56921 77.39384 test 94.5 100 224
13 Sector1 28.5898 77.3101 test 94.6 100 247

14 Major_Dhyan_Chand_
National_Stadium 28.61128 77.23773 test 94.9 100 720

15 Sector62 28.62455 77.35771 train 95.1 3 729
16 Vikas_Sadan 28.45004 77.02634 train 95.1 99 671
17 IHBAS 28.68117 77.30252 train 96.2 100 722
18 Mandir_Marg 28.63643 77.20107 train 98.5 100 778
19 Knowledge_ParkIII 28.47273 77.48199 train 98.9 97 567
20 Sanjay_Nagar 28.68539 77.45383 test 99.3 96 339
21 NISE_Gwal_Pahari 28.42267 77.14893 train 99.6 0 530
22 New_Collectorate 28.97479 77.21335 test 100.1 71 269
23 Sirifort 28.55042 77.21594 test 100.3 97 694
24 Okhla_Phase2 28.53072 77.27121 test 100.8 100 706
25 North_Campus 28.65738 77.15854 test 101.1 4 678
26 R_K_Puram 28.56326 77.18694 test 103.6 100 753
27 Sonia_Vihar 28.71032 77.24945 test 106.4 100 715
28 Loni 28.75728 77.27879 test 106.6 98 351
29 Vivek_Vihar 28.67229 77.31532 train 106.6 100 748
30 Dwarka_Sector_8 28.57099 77.07193 test 107.4 100 744
31 Shadipur 28.65148 77.14731 test 107.9 99 714
32 CRRI_MTR_Rd 28.5512 77.27357 test 108.0 4 734
33 ITO 28.62855 77.24102 test 108.1 0 715
34 Alipur 28.81606 77.15266 test 109.4 97 429
35 Narela 28.8227 77.10191 test 113.2 98 708
36 Sector16A 28.40884 77.30988 train 113.3 99 723
37 NSIT_Dwarka 28.60902 77.03251 test 113.4 100 798
38 Ashok_Vihar 28.69538 77.18163 test 114.3 100 715
39 Punjabi_Bagh 28.67405 77.13102 train 115.1 99 719
40 Sector125 28.54476 77.32313 test 116.9 98 703
41 Nehru_Nagar 28.56786 77.25046 train 117.9 100 714
42 Burari_Crossing 28.72556 77.20111 train 118.8 2 453
43 DTU 28.75005 77.11126 train 119.8 98 700
44 Bawana 28.77618 77.0511 test 123.1 99 557
45 Rohini 28.73251 77.11993 train 124.8 99 690
46 Vasundhara 28.66033 77.35726 train 125.3 99 735
47 Jahangirpuri 28.73278 77.17064 test 129.4 100 697
48 Mundka 28.68449 77.07668 test 130.3 100 584
49 Wazirpur 28.69972 77.1654 train 132.2 99 725
50 Anand_Vihar 28.6469 77.31592 train 136.0 91 672

2.2. Meteorological Data

Meteorological data are a mainstay for our RF–CNN joint model in this paper. Sim-
ilar to [23,40], ground-based meteorological measurements from weather stations were
used for PM2.5 modeling. We acquired the daily temperature (T), relative humidity (RH)
and sea level pressure (SLP) measurements from the available weather stations at the
51 AQM stations from the exact same portal where we obtained the daily ground-level
PM2.5 concentrations [34]. We should mention that SLP and wind speed are interchangeable
for the RF–CNN joint model, as including either of them yields similar PM2.5 prediction
performances, while including both does not increase; hence, only one of the two (e.g., SLP)
is used. On each individual day, we averaged the daily meteorological measurements from
all AQM stations that had any of the T, RH and SLP measurements on that day and then
matched all 51 AQM stations with the same stationwide averaged meteorological records
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(i.e., all 51 AQM stations have the same set of meteorological records on each individual
day). The daily meteorological data after stationwide averaging had a completeness of
100% over the study period (the % uptime of the weather station at each of the 51 AQM
stations can be found in Table 1). The strategy of stationwide meteorological data averaging
and sharing was chosen after considering several potential alternatives: (1) common global
gridded meteorological datasets, such as the European Center for Medium-Range Weather
Forecasts 5th generation climate reanalysis dataset (ERA5) with a spatial resolution of
0.25◦ latitude by 0.25◦ longitude; the Goddard Earth Observing System Data Assimilation
System GEOS-5 Forward Processing (GEOS 5-FP) at 0.25◦ by 0.3125◦; and the Modern-Era
Retrospective Analysis for Research and Applications, version 2 (MERRA-2) at 0.5◦ by 2/3◦,
were considered. However, they can be too coarse for Delhi NCT. For instance, the latitudes
and longitudes of Delhi vary between (28.413, 28.881) and (76.838, 77.348), respectively.
Even with a 0.25◦ resolution, Delhi NCT would overlap at most around only 4 meteoro-
logical grids. More importantly, these analysis data are also generally less accurate than
the ground-truth measurements. Resampling these coarse assimilated meteorological data
using any of the nearest neighbor (NN) or bilinear or bicubic or cubic spline approaches to
match the fine prediction grids (e.g., 300 m), in fact, resulted in a poorer PM2.5 prediction
performance for our RF–CNN joint model in the test set than simply using stationwide
averaged meteorological data; (2) the strategy of using NN to resample the daily mete-
orological measurements from all available AQM stations to the prediction grids (e.g.,
300 m) was also considered. This strategy did not increase the RF–CNN joint model’s PM2.5
prediction performance in the test set, and most importantly, the RF–CNN estimated PM2.5
maps resulting from this strategy are off, as they resemble a Voronoi diagram where grids
that were matched to the same AQM station had the exact same predicted PM2.5 value,
and PM2.5 values were discontinuous at boundaries of clusters; (3) one can also argue that
these ground-based meteorological measurements should be spatially interpolated to fine
prediction grids (e.g., 300 m) using approaches such as bilinear, bicubic, cubic spline or
inverse distance weighting. We, however, consider this interpolation not necessary (at least
for this study). On one hand, the meteorological conditions are rather homogeneous across
Delhi with relatively consistent meteorological measurements across stations. The mean
T, RH and SLP of the 40 (out of 51) weather stations that had at least 80% uptime (see
Table 1) averaged 25.7 ◦C, 58.5% and 98,686 Pa with Std Devs of 1.2 ◦C, 5.0% and 622 Pa,
respectively. Second, as mentioned in (2), using site-specific meteorological conditions did
not outperform using stationwide meteorological data averaging in terms of PM2.5 predic-
tion for the RF–CNN joint model. Hence, we finally settled on the strategy of stationwide
meteorological data averaging and sharing. This strategy holds well both theoretically and
empirically. Theoretically, a prediction system using the same meteorological records for
all the stations in Delhi on a day can be thought of as generating a single homogeneous
baseline map that has the same PM2.5 prediction across Delhi on that day. The PM2.5
variation for each location can be filled in later by the prediction system using other sub-km
site-specific high-resolution input variables—such as the high-resolution satellite imagery
in our study. Empirically, the RF part (of our RF–CNN joint model) alone using stationwide
averaged meteorological conditions already yields low PM2.5 prediction errors, and the
spatial variations of PM2.5 added by the CNN part using satellite imagery further decrease
PM2.5 prediction errors.

2.3. Satellite Imagery

As in [26], we continued using the PlanetScope three-band (red-blue-green, RGB)
scene visual product for local PM2.5 hotspot detection in this study. This satellite product
is distributed by the Planet Team [28] and has a ground spatial resolution of 3 m/pixel.
In general, the satellite imagery retrieval, filtering and matching in this study followed the
procedures outlined in [26], from step 1 of defining areas of interest (AOI) as the 51 N × N
square grid cells with each of the 51 AQM stations located at the geographical center of the
square grid; to step 2 of searching and downloading all available images that intersect with
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our AOI, matching our study date range, and meeting any other potential criteria; and step
3 of weeding out the images that intersect with the AOI but below a certain threshold,
and finally matching the remaining images to their corresponding stations’ daily PM2.5
observations and meteorological conditions. However, two technicalities in total were
improved in steps 2 and 3 in this study to enlarge our dataset and to enable us to provide
PM2.5 predictions for as many days as possible. Specifically, unlike our previous study,
we no longer constrained ourselves to only the images on uncloudy days by turning off
the cloud coverage filter in step 2, and we lowered the AOI intersection threshold from
90% (area-wise) to only 50% in step 3. It should also be noted that the N in step 1 is the
spatial resolution of PM2.5 concentration prediction and hotspot detection that our model
offers and was set to 300 m or equivalently 100 pixels, because 300 m was tested to be the
resolution at which our prediction system performed best. Details on how to investigate
the sensitivity of our model to the satellite imagery size (or spatial coverage) and how to
determine the optimal satellite imagery size for PM2.5 modeling can be found in Section
3.3. of [26]. Example satellite images for each of the 24 training and 27 test AQM stations in
Delhi, which show the range of urban land covers that the model is trained and tested on,
can be found in Figures S1 and S2, respectively (see Supplementary Materials). Additionally,
Videos S1 and S2 show the temporal evolutions of all the images used in the model training
and test at an example training site, #18 Mandir Marg, and an example test site, #37 NSIT
Dwarka (the training and test sites that have the most samples), in chronological order,
respectively. Table 1 shows the number of image–meteorology–PM2.5 triplets for each of
the 51 stations. In total, we obtained 31,568 image–meteorology–PM2.5 samples, including
15,045 (from the 24 training AQM stations) for training the prediction system and 16,523
(from the 27 holdout AQM stations) for testing.

2.4. RF–CNN Joint Model

While the model in this paper and the one in our previous work [26] both use RF and
CNN as building blocks, the formulations of the two are drastically different.

First, the model in [26] is a CNN–RF sequential model, with CNN and RF trained
separately and in that particular sequence. Specifically, CNN was first trained on a satellite
image to extract satellite image features that best predict PM2.5, and RF was then trained
on the CNN-extracted image features along with meteorological conditions to provide
final predictions of PM2.5. In contrast, the model in this paper, as shown in Figure 2, is an
RF–CNN joint model jointly trained on satellite images and high-dimensional embedded
meteorological conditions (details in Section 2.4.1.). The joint training of RF and CNN
was made possible by adding the RF-predicted PM2.5 (i.e., the gray dot at the bottom
of Figure 2a) and the CNN-predicted PM2.5 (i.e., the last solid green dot in Figure 2b)
together to provide final predictions of PM2.5 (i.e., the gray-to-green dot at the bottom of
Figure 2b). In this way, CNN is forced to predict the residual of RF-predicted PM2.5 (i.e.,
true PM2.5RF-predicted PM2.5). The decision to switch to a joint model by deploying CNN
to predict residuals was made considering the following findings or reasonings: (1) RF
alone using meteorological conditions yields low PM2.5 prediction errors; (2) the previous
CNN–RF sequential model was found to yield higher average PM2.5 prediction errors
than RF alone using meteorological conditions. This finding indicates that the CNN–RF
sequential model cannot fully use the information in satellite images in the presence of
meteorological conditions. The optimization of the CNN–RF sequential model seems to
always reach a local (rather than global) optimum solution, despite in which both satellite
image and meteorological features being equally important for PM2.5 prediction, as shown
in [26]; (3) therefore, it makes sense to “piggyback” on RF’s low prediction error while
forcing CNN to effectively use the information in satellite images that is “orthogonal” to
meteorology for PM2.5 prediction, and hence the current architecture. This RF–CNN joint
model is guaranteed to yield lower average PM2.5 prediction errors than RF alone using
meteorological conditions. The RF–CNN joint model is also much easier to train than the
CNN–RF sequential model, because the former only requires back-propagation to tune
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both RF and CNN’s parameters, while the latter requires first back-propagation to tune
CNN and then an additional 5-fold cross-validation (CV) to tune RF.

Second, Zheng et al. [26] followed a transfer learning ideology by modifying and (iter-
atively) training only the several upper layers of a VGG16 network [41] while keeping the
remaining lower-level layers’ weights fixed at the original ImageNet weights. In contrast,
in this paper, we trained the entire deep CNN architecture (at one go) to best adapt it to
our dataset and task. This was made possible by switching from VGG16 to ResNet50 [29];
although over 3 times deeper than VGG16, ResNet50 (with ~23 million parameters) has
only ~1/6 of VGG16′s parameters (~138 million parameters). The significantly deeper
CNN representations of satellite images along with the more specific optimization of these
representations for our own task and dataset guarantee a performance at least as good as
the previous VGG16 transfer learning approach.

Figure 2. The RF–CNN joint model that includes: (a) an RF regressor to predict PM2.5 from the three
meteorological features, temperature (T), relative humidity (RH) and sea-level pressure (SLP); and
(b) a CNN model trained on the satellite images; the high-dimensional embedded T, RH and SLP
meteorological features; and the RF-predicted PM2.5 to give the final prediction of PM2.5. Notations
such as 100 ×100 × 3 indicate image size × image size × channel number. The visualization of RF
was adapted from [42].

2.4.1. RF Details

In this first stage, an RF regressor gives its PM2.5 predictions based on meteorological
conditions only. Three distinctive operations involved in this stage are worth emphasizing:

1. Instead of directly using the T, RH and SLP meteorological features (as they are) for
prediction by RF and CNN, they were first embedded in/mapped to a significantly
higher dimension using an unsupervised algorithm called Totally Random Trees
Embedding [43], as shown in Figure 2a. Totally Random Trees Embedding can be
easily implemented in Scikit-Learn. The idea of this unsupervised algorithm is to first
build an RF classifier (by fitting it to only all the meteorology datapoints that you
have without using your associated PM2.5 labels) that aims to separate the original
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observed meteorology datapoints from the synthetic ones that are generated by
sampling from a joint distribution of the observed T, RH and SLP values. Then, this
RF classifier transforms each observed meteorology datapoint into the indices of leaf
nodes which that datapoint ends up in, expressed in a one-hot encoding format (i.e.,
for K leaf nodes in each tree in the forest, only the leaf node which the datapoint is
sorted into is encoded in 1, while the rest of the K-1 leaf nodes are all encoded in 0).
For instance, in this paper, we embedded meteorological data using an RF classifier
that consisted of 800 trees, each of which had a max depth of 2 or equivalently at
most 22 = 4 leaf nodes. See Figure 2a for the example of a meteorology datapoint
embedded by such an RF classifier with the dimension increasing from 3 to at most
3200 (800 trees × at most 4 leaf nodes = 3200). Additionally, notice the sparse binary
nature of the embedded meteorological feature vector; that is, for each tree in the forest,
only one of the (at most) 4 leaf nodes is encoded in 1 and the rest all in 0. The intuition
behind the high-dimensional embedded meteorological feature vectors is that two
similar meteorology datapoints are more likely to lie within the same leaf node of
a tree. Embedding meteorological features, however, is not so much to improve
RF regressor’s PM2.5 prediction performance as to improve CNN’s. Embedding
meteorological features to a high dimension that rivals the dimension of satellite
image features helps CNN cope with the difficulty of combining and effectively using
multi-modality data, thus improving its PM2.5 prediction performance.

2. Unlike what is commonly seen in studies that explicitly train an RF using a 5-fold CV,
this study only implicitly trained the RF regressor in the tree part (Figure 2a) together
with explicitly training the entire CNN using back-propagation. This joint training
strategy was possible because we made the tree part’s information flow into the CNN
by adding the scaled RF-predicted PM2.5 to the CNN-predicted PM2.5 (i.e., the last
solid green dot in Figure 2b). Scaling RF-predicted PM2.5 by a stabilizing factor of
~0.90−0.95 (0.95 was used in this study) is important in that it leaves reasonably
more room for CNN to learn to predict PM2.5 (since RF alone using meteorological
conditions can already yield low PM2.5 prediction errors, as mentioned in Section 2.4.).
The optimal hyperparameters for the RF regressor in the tree part were determined
to be ~600, 1 and

√
total features for the number of trees in the forest (N); the mini-

mum number of samples required to be at a leaf node (n); and the number of input
features to consider when splitting data at a decision node (m), respectively. The op-
timal values of N and n (the most influential parameter of the three) are consistent
with [26], indicating that the RF setting can be universal, regardless of the locations
(i.e., hyperparameter tuning is not necessary for RF in the future), although m needs
to be switched to

√
total features for a joint model rather than total features for a

sequential model.
3. As discussed in Section 2.3, the meteorological data used in this study were deter-

mined to be daily measurements averaged from all available AQM stations on each
day (i.e., all AQM stations that have any of the T, RH and SLP measurements on
each day), meaning that all 51 AQM stations were matched with the same set of
meteorological records on each individual day. The tree part of our prediction system
can be thought of as using the same meteorological records to first generate a single
homogeneous baseline map that has the same PM2.5 prediction across Delhi on each
day, and the CNN part can be thought of as using the location-specific high-resolution
satellite imagery information to then fill in the PM2.5 variation for each location (e.g.,
a 300× 300 m grid) across Delhi on each day. Hence, in addition to thinking that CNN
learns to predict the residual of PM2.5, readers can also think that it learns to predict
the spatial variation of PM2.5. This also subtly explains why RF alone is not sufficient
for detecting hotspots, even though RF alone using meteorological conditions can
already yield low PM2.5 prediction errors. Regardless of how low the RF predictions
are, all the RF prediction values on a day are the same, and this is where CNN with
satellite imagery information is useful, as it breaks ties and reveals spatial patterns.
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2.4.2. CNN Details

With most of the difficult operations involved in the RF–CNN joint model having
already been described in Section 2.4.1, the CNN part (see Figure 2b) is fairly standard.
Each satellite image of an initial size of 100 (height) × 100 (width) × 3 (channel number) is
first forward-passed through a ResNet50 architecture whose top layers (including an aver-
age pooling, a 1000-dimensional fully connected and a softmax layer) have been replaced by
a global max pooling layer, yielding a 2048-dimensional global max-pooled feature vector.
This vector, after being concatenated with the ~3200-dimensional meteorology embedding,
then proceeds down two identical blocks of dropout (rate = 0.2)—200-way fully connected
layer—ReLU activation, before finally going through a fully connected layer of dimension 1
to yield the CNN-predicted residual, which adds the scaled RF-predicted PM2.5 to provide
the final PM2.5 prediction. The RF regressor and the entire CNN were jointly trained to
minimize the mean squared error (MSE) between the final predicted and true PM2.5 values
in the test dataset (i.e., the 27 AQM stations used for testing), using back-propagation
with an Adam optimization algorithm with α = 0.0001, β1 = 0.01 and β2 = 0.01 [44] on
mini-batches of size 32 of the training dataset (i.e., the 24 AQM stations used for training)
within 20 epochs, including early stopping if the model’s performance on the test dataset
did not improve in 5 epochs. It is worth mentioning that the model performance is highly
susceptible to several settings in the CNN, part including the dropout rates, the number
and dimensions of fully connected layers, the Adam setting and the numbers of training
and early stopping epochs. These settings were found to be generally not transferable
between locations, thus requiring fine tuning when applied to a new location.

2.4.3. RF–CNN Joint Model Evaluation

We evaluated the RF–CNN joint model’s PM2.5 estimation performance on the test
dataset (i.e., the 27 AQM stations used for testing). The evaluation was performed by first
forward-passing all the images in the test dataset along with their associated meteorological
conditions through the trained RF–CNN joint model and then comparing the model’s final
predicted PM2.5 to the ground truth values based on metrics of spatial Pearson correlation
coefficients (r), root mean square error (RMSE), mean absolute error (MAE), normalized
RMSE (NRMSE) and normalized MAE (NMAE). Spatial Pearson r is more appropriate than
total or temporal Pearson r to unbiasedly evaluate the model’s true spatial predictability
(i.e., the only predictability that is of interest to our current application). It is defined
as the Pearson r from regressing the mean of the true PM2.5 over the entire sampling
period against the mean of the predicted PM2.5 over the entire sampling period at each test
station [22,45–47]. The latter four metrics are defined by Equations (1)–(4). We reported
both RMSE (and NRMSE) and MAE (and NMAE) as the errors (and percent errors) of our
model, even though our model was trained to minimize only MSE. This is because RMSE
is more influenced by outliers than MAE, and by doing this, we ensured that we did not
completely ignore the effect of outliers on our model performance, but at the same time,
we did not let the performance be misrepresented due to potential outliers either.

RMSE =

√
1
N
‖y− ŷ‖2

2 (1)

MAE =
1
N
‖y− ŷ‖1 (2)

NRMSE =
RMSE

mean PM2.5 conc.in test set
(3)

NMAE =
MAE

mean PM2.5 conc. in test set
(4)

where y, ŷ and N are the true, model-predicted ground-level PM2.5 concentrations and the
number of samples in the test set, respectively.
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2.5. Local Contrast Normalization (LCN)

An LCN algorithm [30] was used to further process the PM2.5 maps estimated by the
RF–CNN joint model so that PM2.5 hotspots can be automatically detected. In this study,
PM2.5 hotspots are defined as the “locally” (i.e., in a N by N pixels neighborhood where N
� 100 pixels = 300 m) rather than “globally” (i.e., in the whole Delhi NCT region) brightest
spots (spots are 100 × 100 pixels or 300 × 300 m squares). LCN was originally designed
to reduce uneven illumination or shading artifacts in an image by standardizing (i.e.,
uniformizing the mean and variance of) an image around its local neighborhoods. Readers
are encouraged to interact with some LCN examples in [48] to build an understanding
that reducing the effect of non-uniform illumination on an image is exactly equivalent
to finding local pollutant hotspots around local neighborhoods in a pollutant prediction
map. We take the rice images, which can be found in the link above, as an example to
illustrate how correcting image uneven illumination is equivalent to finding local hotspots.
The rice images on the left and right are before and after the correction of the uneven
illumination artifact by LCN, respectively. The rice at the top of the uncorrected image on
the left is analogous to both global and local hotspots because it has the brightest pixels
not only in the whole image but also with respect to its surrounding black background
in its local neighborhood. In contrast, the rice at the bottom of the uncorrected image is
a strictly local hotspot (i.e., only local but not global hotspot) because, while it does not
have the brightest pixels in the image, it is indeed still much brighter than its surrounding
black background in its local neighborhood. It is interesting to note that wherever the
rice is in the image, its relative strength to its surrounding black background in its local
neighborhood is roughly the same. Therefore, once the uneven illumination in the image
has been corrected by the LCN algorithm, that is, once the image has been detrended by
standardizing all the pixel values in their local neighborhoods so that all the local patterns
(or hotspots) in the image emerge, these revealed local hotspots (i.e., all the rice) in the
image on the right have almost the exact same normalized pixel value (or better interpreted
as local hotspot strength in local neighborhood). This example intuitively highlights why
local hotspots are worth studying: despite strictly local rice hotspots at the bottom of the
uncorrected image having comparatively lower pixel values (analogous to lower absolute
PM2.5 concentrations) than global rice hotspots at the top, they are of the same strength
as local hotspots in their respective local communities in comparison to their neighbors,
because all the rice in the corrected image has the same brightness, indicating that people
in strictly local and global hotspots, in reality, can be subject to the same degree of health
inequality due to air pollution in comparison to their own neighbors.

The procedure for converting available PM2.5 prediction maps to a local PM2.5 hotspot
detection map is visualized in Figure 3 and can be summarized by Equation (5). First,
the PM2.5 prediction maps produced by the RF–CNN joint model on N valid days are
obtained, each of which is denoted as f (x, y). Then, for each f (x, y), an m f (x, y) is derived
by applying a 2-D Gaussian Smoothing/Blur (with a Std Dev of σ1 and a neighborhood size
default to 8× σ1+ 1) to each f (x, y), after which the intermediate product f (x, y)−m f (x, y)
is obtained. A 2-D Gaussian Smoothing/Blur is a 2-D convolution operation that transforms
each pixel’s value to a spatially weighted average of all the values in that center pixel’s
neighborhood with a filter whose weights are calculated by a 2-D Gaussian function
defined by Equation (6) and whose size is the 2-D Gaussian Smoothing’s neighborhood
size. Then, for each f (x, y)−m f (x, y), a σf (x, y) is derived by taking the square root of

the second 2-D Gaussian convolution blurred
[

f (x, y)−m f (x, y)
]2

(similar to the first
Gaussian Blur, the second one has a Std Dev of σ2 and a neighborhood size default to
8 × σ2+ 1). After yielding σf (x, y) for each f (x, y)−m f (x, y), the LCN-normalized- f (x, y),
that is g(x, y), is obtained by dividing f (x, y)−m f (x, y) by σf (x, y). Finally, averaging N
valid days’ g(x, y)s yields the final local PM2.5 hotspot detection map. These normalized
PM2.5 values in the hotspot detection map are directly comparable to one another and
indicate the intensity of these 300 × 300 m squares as local PM2.5 sources in their local
neighborhoods. The 300 × 300 m squares of dark red and dark blue colors at opposite
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ends of the spectrum are of the most interest, as they indicate extreme local hotspots and
coolspots, respectively.

1 
 

 
Figure 3. The flow diagram illustrating the use of the local contrast normalization (LCN) image pro-
cessing technique to estimate the local PM2.5 hotspot detection map. First, N valid days’ PM2.5 maps
predicted from the RF–CNN joint model are obtained, each of which is denoted as f(x, y). Second,
obtain f(x, y)−mf(x, y), where mf(x, y) is estimated by applying a 2-D Gaussian Smoothing/Blur to

each f(x, y). Third, obtain each g(x, y), that, is LCN-normalized-f(x, y), where g(x, y) = f(x,y)−mf(x,y)
σf(x,y) ,

and σf(x, y) is estimated by applying a series of operations, including square, another 2-D Gaussian
Smoothing/Blur, and square root to each f(x, y)−mf(x, y). Fourth, averaging N valid days’ g(x, y)s
yields the final local PM2.5 hotspot detection map. Note the change in the scales of the color bars
of the prediction maps throughout the flow diagram. Additionally, note that the final local PM2.5

hotspot detection map has a slightly different shape, which is because LCN can cause major edge
effects due to zero paddings beyond the study region by 2-D Gaussian Smoothing/Blur in LCN,
and we trimmed these problematic edges off the hotspot detection map so that it can be more properly
displayed. The visualization of LCN was adapted from [30].

g(x, y) =
f (x, y) − m f (x, y)

σf (x, y)
(5)

where f (x, y) is each of N valid days’ PM2.5 maps predicted by the RF–CNN joint model;
m f (x, y) is each f (x, y)’s corresponding mean map estimated by applying a 2-D Gaussian
Smoothing/Blur to each f (x, y); σf (x, y) is each f (x, y)’s corresponding Std Dev map
estimated by applying a series of operations, including square, another 2-D Gaussian
Smoothing/Blur and square root to each f (x, y) − m f (x, y); and g(x, y) is each LCN-
normalized- f (x, y).

w(x, y) =
1

2πσ2 exp(− x2 + y2

2σ2 ) (6)

where w(x, y) is the weight of the 2-D Gaussian Smoothing filter at (x, y) in the neighbor-
hood, and σ is the Std Dev of 2-D Gaussian Smoothing/Blur. Note that the pixel at the
center of the filter (0, 0) receives the highest weight, while its neighboring pixels (x, y)
(i.e., pixels that are x and y pixels away from the center in x- and y-directions) receive
increasingly smaller weights as they move away from the center pixel.
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Examining Equation (5) at a high level, one can probably recognize that it is simply
an extension of the 1-D standardization formula to 2-D. The two 2-D Gaussian Smoothing
operations simply facilitate the estimation of the mean and Std Dev values of each pixel
(x, y) based on that pixel’s (weighted) neighbors. Selecting appropriate σ1 and σ2 for the
two 2-D Gaussian Smoothing operations is likely the only part that requires expertise when
using LCN. In this study, σ1 and σ2 were both chosen to be 6 (hence, the neighborhood
sizes were both 8 × 6 + 1 = 49), under which the local hotspot detection map appears
to be trustworthy without being highly speckled due an insufficient neighborhood size
or having excessive edge effects due to an overly large bandwidth. With σ1 = σ2 = 6,

The size o f neighborhood
The size o f Delhi NCT is ~0.30. We suggest using this ratio as a rule of thumb to initialize the

values of σ1 and σ2 for new locations.

3. Results
3.1. RF–CNN Joint Model PM2.5 Prediction Performances
3.1.1. Delhi

Figure 4a–c present the spatial prediction performances of the RF part of the RF–CNN
joint model, while Figure 4d–f show the performances of the full RF–CNN joint model
on the 24 training and 27 holdout AQM stations in Delhi, respectively. As can be seen in
Figure 4a,b, the RF part (of our RF–CNN joint model) alone using the same stationwide
averaged T, RH and SLP meteorological conditions for all stations on each day yielded low
PM2.5 spatial prediction errors in the training and more importantly in the test set with
an RMSE, MAE, NRMSE and NMAE of 33.44 µg m−3, 20.57 µg m−3, 31.8% and 19.6%,
respectively. Additionally, as demonstrated in Figure 4d,e, the full RF–CNN joint model
with the additional CNN part that uses satellite imagery to predict the residual of RF-
predicted PM2.5 further improved the PM2.5 spatial prediction errors in both training and
test sets with an RMSE, MAE, NRMSE and NMAE of 32.69 µg m−3, 20.07 µg m−3, 31.1%
and 19.1%, respectively, in the test set. The RF–CNN joint model also appreciably increased
the predictions’ spatial Pearson r over RF (0.48 in Figure 4f vs. 0.19 in Figure 4c), indicating
that a reasonable amount of additional information was added by the satellite imagery
over meteorology that helped significantly improve the RF–CNN joint model’s spatial
predictability. This also explains why, despite the RF–CNN joint model not decreasing
RMSE or MAE by a significant margin over RF in Delhi, it still captured the spatial variation
in PM2.5 rather well (as shown in Section 3.3). Our model’s prediction errors rival a state-of-
the-art ensemble framework in a recent Delhi PM2.5 prediction study [47] that reported an
RMSE of ~47.2 µg m−3 over 2010 to 2016 based on a 10-fold CV of 17,152 samples, but our
framework outperforms [47] in terms of the spatial resolution of predictions (300 m vs.
1 km). These results empirically support our model design—the RF part of our prediction
system uses the same station-wide averaged meteorological records to first generate a
single homogeneous PM2.5 baseline map across Delhi on each day (which already has low
errors on average in comparison to the corresponding “true map”), and then, the CNN
part uses high-resolution satellite imagery information at 300 × 300 m to fill in the PM2.5
variations across Delhi at a 300 m resolution to complete the estimated PM2.5 map (which
has even lower average errors in comparison to the corresponding “true map”).

3.1.2. Beijing

It is worth pointing out that the two features that our model possesses, which are (1)
RF alone using meteorological conditions yields low PM2.5 prediction errors and (2) the
RF–CNN joint model is guaranteed to yield lower average PM2.5 prediction errors than
RF alone using meteorological conditions, are not only applicable to the most polluted
megacities, including Delhi. They also hold well for other megacities, such as Beijing,
which is the area of interest in our previous study [26] that first presents the possibility of
estimating daily ambient PM2.5 at below 500 m from high-resolution and high-frequency
satellite imagery using a deep learning-based model (i.e., CNN–RF sequential model).
Beijing is naturally an additional megacity for benchmarking the RF–CNN joint model’s
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PM2.5 prediction performance, because (1) the image, meteorological and PM2.5 data are
readily available; more importantly (2), it is in Beijing that the issue of inefficient use of the
information in satellite images in the presence of meteorological conditions by the previous
CNN–RF sequential model was first found, which directly motivated the formulation
of the RF–CNN joint model in this study. It is, therefore, reasonable to show that the
reformulated RF–CNN joint model is indeed superior in that it is able to overcome the
CNN–RF sequential model’s bottleneck in PM2.5 prediction performance exactly where the
issue was first identified.

Figure 4. Scatterplots of the true PM2.5 concentrations against PM2.5 concentrations predicted from:
(a) only RF using T, RH and SLP meteorological features for the 24 training AQM stations; (b) only
RF using T, RH and SLP meteorological features for the 27 test AQM stations; (c) same as (b) but
regressing the mean of the true PM2.5 over the entire sampling period against the mean of the
predicted PM2.5 over the entire sampling period at each test station to estimate spatial Pearson r;
(d) RF–CNN joint model using satellite images and high-dimensional embedded T, RH and SLP
meteorological features for the 24 training AQM stations; (e) RF–CNN joint model using the same set
of predictors as (d) for the 27 test AQM stations; and (f) same as (c) but using RF–CNN joint model
for prediction. Note that in (a–f), the black dashed lines are the 1:1 lines.

For the Beijing experiment, the training and test sets are the exact same ones as in [26],
with 13,022 image–meteorology–PM2.5 samples from 35 ground AQM stations randomly
divided into ~80% and ~20% splits for the training (10,400 pairs) and test (2622 pairs) sets,
respectively. The settings of the RF–CNN joint model and its Adam optimizer for Beijing
are drastically different from those for Delhi. The RF–CNN joint model for Beijing has a
stabilizing factor of 0.90; a dropout rate of 0.6; one fully connected vector of dimension
400; ~200 training and ~60 early stopping epochs; and an Adam setting of α = 0.0001,
β1 = 0.9 (default value) and β2 = 0.999 (default value), which stands in stark contrast
to 0.95; 0.2; two fully connected vectors of dimension 200; ~20 and ~5; and α = 0.0001,
β1 = 0.01 and β2 = 0.01 for Delhi. As can be seen in Appendix A Figure A1, by switching
from RF alone to the full RF–CNN joint model, the PM2.5 spatial prediction performances
improved significantly over both training (see Figure A1a,d) and more importantly test
sets (see Figure A1b,c,e,f) with the RMSE, MAE, NRMSE, NMAE and spatial Pearson r
improving from 15.69 to 13.00 µg m−3, 8.6 to 7.26 µg m−3, 36.7% to 30.4% (a 17.2% relative
drop), 20.1% to 17.0% (a 15.4% relative drop) and 0.82 to 0.99, respectively. The previous
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CNN–RF sequential model achieved only 17.6 µg m−3, 10.1 µg m−3, 41.2%, 23.7% and
0.91 [26], respectively, on the same test set, which is considerably poorer than the RF–CNN
joint model and even RF alone. The comparison among the three model performances
over the Beijing dataset perfectly demonstrates the superiority of the RF–CNN joint model
and that it can effectively use the information in satellite images that is “orthogonal” to
meteorology for greater PM2.5 prediction over RF, which the previous CNN–RF sequential
model failed to do.

3.1.3. Comparison between Delhi and Beijing

It is encouraging to observe that with measurements of only three meteorological
variables and satellite imagery as input, the RF–CNN joint model achieved similarly low
NRMSE (within ~31%) and NMAE (within ~19%) on the test samples in both Delhi and
Beijing that have drastically different levels of PM pollution and urban spatial structures,
even though Delhi had a less significant improvement from RF to RF–CNN than Beijing.
The most plausible explanation for Delhi’s lesser improvement is that Delhi is the more
polluted region of the two, and as a result, its satellite imagery quality is in general far
inferior to Beijing (based on our observation) with Delhi’s landscapes most of the time
being covered in haze or fog. In other words, there is comparatively less to learn from the
images in Delhi. The facts that Delhi’s model and optimizer settings are drastically different
from Beijing and that Delhi’s model stopped learning within ~20 epochs, while Beijing
lasted around 100 epochs, also support this explanation. The comparison implies that
the settings of the RF–CNN joint model and its Adam optimizer for Beijing should be
considered as the default when initializing the RF–CNN joint model for new locations.

3.2. A Subsampling Strategy to Detect Hotspots in Delhi

The substantial number of 16,523 samples from a total of 27 holdout stations give
us the unique advantage to examine the full RF–CNN joint model’s spatial prediction
performance at a daily resolution. The daily performances of the RF–CNN joint model
for all available test samples on each available day during the study period as assessed
by the daily spatial Pearson r (i.e., the Pearson r from regressing the true PM2.5 against
predicted PM2.5 at each available test station on one given day), NRMSE and NMAE are
illustrated in Figure 5a–c, respectively, in the form of frequency distribution. The r values
(excluding the negative ones), NRMSE and NMAE average 0.35 ± 0.22, 27.0 ± 15.1% and
21.0 ± 10.2%, respectively. These average values are, in general, consistent with the results
in Figure 4. Figure 5, in general, demonstrates that all days cannot be predicted equally
well, but the RF–CNN joint model can indeed perform extraordinarily well on a subset
of days. The most interesting long-term persistent PM2.5 hotspots were supposed to be
uncovered, regardless of which days were randomly sampled, as long as the RF–CNN
joint model performed exceptionally well on those days. Therefore, it is days like these
on which the satellite imagery added the most information to the baseline RF prediction
(assessed by Pearson r) and the RF–CNN joint model most accurately predicted PM2.5
(assessed by NRMSE and NMAE) for the holdout samples that we can take advantage of
to reveal the hotspots, thus yielding a scalable (in both runtime and storage) subsampling
hotspot detection algorithm.

The days on which the RF–CNN joint model performed extraordinarily well on the
available test samples in Delhi are defined as the days on which the Pearson r, NRMSE and
NMAE values were all in the best 20% (>0.47, <18.3% and <14.6%, respectively) among all
801 available test days (each of which had at least two test samples), as shown in Figure 5.
There are 43 such “exceptional” days, and Figure A2 (in Appendix B) shows that these
43 days are approximately evenly scattered throughout the study period without any
obvious bias or pattern except for the apparent lack of samples from June to September due
to monsoon season. We also compared the satellite images in the test dataset of these 43 days
and of the remaining available test days on which the RF–CNN joint model had suboptimal
performances in Appendix C Figure A3. The imagery pixel value frequency distributions
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for the two groups exhibit no major discrepancy in any of the blue (Figure A3a), green
(Figure A3b) or red (Figure A3c) channels, further suggesting that the images on these
43 days are not associated with any specific pattern and qualify as random subsamples
for estimating hotspots. The contrast between the performances of RF (see Appendix D
Figure A4) and the RF–CNN joint model (see Appendix E Figure A5) on these 43 days
is huge. The daily Pearson r, NRMSE and NMAE values for RF alone on these 43 days
average 0, 17.3% and 13.7%, as compared to 0.62 (a 0.62 absolute increase), 14.4% (a 16.8%
relative improvement) and 11.2% (a 18.2% relative improvement), respectively, for the
RF–CNN joint model. It is days like these on which the satellite imagery added the most
information to the baseline RF prediction and the RF–CNN joint model most accurately
predicted PM2.5 for the test samples that we can trust to reveal the perennial hotspots.
Figure A4 highlights why RF alone is not sufficient for detecting hotspots, even though
RF alone using meteorological conditions can already yield low PM2.5 prediction errors.
Regardless of how low the RF predictions are, all the RF prediction values on a day are
the same, and this is where CNN with satellite imagery information aids in revealing the
spatial patterns. Due to the subsampling strategy, our devised hotspot detection algorithm
is scalable in both runtime and storage. It is worth mentioning that algorithm scalability
is very important in this case, since we are dealing with the computation and storage of
large-scale high-resolution and high-frequency satellite imagery over a long study period.

Figure 5. Histograms illustrating the frequency distributions of the daily performances, as assessed by: (a) Pearson r, (b)
NRMSE (in %) and (c) NMAE (in %), of the RF–CNN joint model in terms of predicting ground-level PM2.5 for all available test
AQM stations in Delhi on each available day during the period of January 1, 2018, to June 30, 2020. Note that in (a–c), the black
dashed lines indicate the thresholds for the top 20% best Pearson r (>0.47), NRMSE (<18.3%) and NMAE (<14.6%), respectively.

The RF–CNN-predicted daily PM2.5 maps of Delhi on the most trustworthy 43 days
can be found in Appendix F Figure A6. Averaging these 43 maps yields the averaged PM2.5
prediction map as shown in Figure 6a. Similar to [25], to cope with the potential influences
of severe haze episodes (uniformly high across a region) and excellent diffusion days
(uniformly low across a region) on hotspot estimation, a corresponding adjusted averaged
PM2.5 prediction map in Figure 6b was derived by first excluding the top 10% highest
and the top 10% lowest values among all pixels over the 43 days and then averaging.
By applying the LCN algorithm in Figure 6b, we obtained the corresponding local PM2.5
hotspot detection map in Figure 6c that is based on the most trustworthy 43 days. These
normalized PM2.5 values in the local hotspot detection map are directly comparable to one
another and indicate the intensity of these 300 × 300 m squares as local PM2.5 sources in
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their local neighborhoods. The 300 × 300 m squares of dark red and dark blue colors at
opposite ends of the spectrum are of most interest, as they indicate extreme local hotspots
and coolspots, respectively. Figure 6c appears to be highly speckled with widespread
extreme local hotspots all over Delhi. This is because the hotspots we attempted to find
in this study are local hotspots, whose PM2.5 values are just higher than their neighbors
but not (necessarily) the highest in the whole study region. It is, therefore, reasonable
to see hotspots appearing in even the relatively less populated North and West Delhi.
We also examined the averaged PM2.5 prediction map (Figure 6d), the adjusted averaged
PM2.5 prediction map (Figure 6e) and the corresponding local PM2.5 hotspot detection map
(Figure 6f) that were generated based on all available days from January 1, 2018, to June
30, 2020. Seven subregions within Delhi (i.e., North, South, West, East, Central and New
Delhi and the airport area) are demarcated in Figure 6e based on the spatial clusters in [47].
The estimated gradients of PM2.5 concentrations in both Figure 6d and e show that the
densely populated East and Central Delhi and airport area are among the subregions that
on average have relatively high ambient PM2.5 concentrations, while the relatively less
populated North and West Delhi have on average relatively low ambient PM2.5 concentra-
tions. These patterns, in general, bear a strong resemblance to the results in [35,47], even
though their results are for the periods of 2001–2016 and 2010–2016, respectively. However,
we did find New Delhi and South Delhi to be experiencing elevated PM2.5 levels, as shown
in Figure 6e, which was not reported in [47] or [35,47]. Kumar et al. [49], on the other hand,
reported similarly elevated PM2.5 levels in these two subregions and attributed the elevated
PM2.5 levels to heavy traffic at major transport corridors. The PM2.5 hotspot detection map
based on the whole study period (Figure 6f) reveals essentially the same extreme local
hotspots as the hotspot detection map based on the most trustworthy 43 days (Figure 6c),
which further supports the validity of using a subsampling strategy to detect hotspots.
However, the averaged PM2.5 prediction maps generated from a subsampling strategy in
Figure 6a,b with striping artifacts because of the relatively small sample size appear to be
less useful in uncovering the spatial gradient of PM2.5 concentrations. In fact, Figure 6c,f
being identical came as no surprise. Note that the predictions would be akin to baseline
RF predictions (a flat line) on a large majority of the days when satellite imagery added
little information, and the noise in each pixel’s estimation cancels out when averaging
over abundant samples, so the critical votes would still depend on those subsampled
“exceptional” days. Figure 6c and f being identical offers another insight: for places with
limited PM2.5 data that we are not generally able to proactively find the most trustworthy
days from the test set, we can simply let the most trustworthy days reveal themselves by
using the whole study period to detect hotspots, although some runtime and storage are
sacrificed by doing this. We also want to point out one advantage and one drawback asso-
ciated with our local hotspot detection LCN algorithm. The advantage is that, regardless
of whether an averaged or adjusted averaged PM2.5 prediction map is used to produce a
hotspot detection map, the resulting local hotspot detection maps are identical, implying
that LCN is robust to perturbations in PM2.5 estimations. The apparent flaw is that LCN
can cause major edge effects because of zero paddings beyond the study region by 2-D
Gaussian Smoothing/Blur in LCN, as can be seen in Figure 6c,f. One solution, however,
is to always predict slightly over the boundary of the area of interest so that the area of
interest falls outside the edges in the future.
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Figure 6. (a) The averaged PM2.5 prediction map, (b) the adjusted averaged PM2.5 prediction
map after excluding the top 10% highest and the top 10% lowest values and (c) the local PM2.5

hotspot detection map after LCN are generated from the RF–CNN-predicted PM2.5 maps on the
most trustworthy 43 days, as shown in Figure A2. (d) The averaged PM2.5 prediction map, (e) the
adjusted averaged PM2.5 prediction map after excluding the top 10% highest and the top 10% lowest
values with demarcation of seven subregions within Delhi and (f) the local PM2.5 hotspot detection
map after LCN are generated from the RF–CNN-predicted PM2.5 maps on all available days from
1 January 2018 to 30 June 2020. Note that the scales in (a–f) are the same. Additionally, note that
because LCN can cause major edge effects due to zero paddings beyond the study region by 2-D
Gaussian Smoothing/Blur in LCN, to more properly display the final hotspot detection maps in (c,f),
we trimmed these problematic edges off (c,f) with the trim lines shown in the figure.

3.3. Case Study: Hottest and Coolest 300 × 300 m Spots within Each of the 20 Sampled
Neighborhoods in Delhi

It is critical to make sense of the messages the RF–CNN–LCN pipeline attempts to
convey by examining the patterns of some predicted local hotspots and coolspots, such as
those in the 20 sampled representative neighborhoods across Delhi (see their coordinates in
Appendix G Table A1) labeled in Figure 7a,b. We conducted the sampling randomly but also
considering diversity: (1) at least one sample should be from each of the seven subregions
within Delhi, as demarcated in Figure 6e; (2) the sampled neighborhoods (i.e., the rectangles
labeled in Figure 7a,b) should come in various sizes, with the rectangles aiming to cover the
complete local patterns and preferably but not necessarily at least one dark red and dark
blue pixel in the local neighborhoods. The landscapes, the LCN-normalized PM2.5 values
(see Section 2.5 for details) and the mean RF–CNN-predicted PM2.5 concentrations over
the whole study period associated with the hottest and coolest spots (each of which is a
300 × 300 m grid), respectively, within each of the 20 sampled neighborhoods are displayed
in Figure 7c. The mean PM2.5 concentration estimates over the whole study period are
referenced here because they approximate long-term outdoor PM2.5 exposures, enabling
the relation of the PM2.5 concentrations in Delhi to the corresponding health risks discussed
later in this section. The PM2.5 hotspot detection map based on the most trustworthy
43 days rather than throughout the whole study period is referenced here because the
former has more contrast and is, therefore, better for visualization, although both of
them reveal essentially the same information about the local hotspots (and coolspots).
We want to emphasize that local hotspots can be, but are not necessarily, global hotspots.
Zhang et al. [25] defined global hotspots as the pixels that are among the top 5% of
the adjusted annual averaged PM2.5 estimates. We borrow the concept in this study.
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With a 95th percentile of 98.2 µg m−3 in Figure 7a, we can see that cases 1, 3, 4 and 9 that
have concentrations below 98.2 µg m−3 are strictly local hotspots, meaning that they are
only local but not global hotspots. In fact, a large number of the hotspots in West and
North Delhi (the subregions that have comparatively low PM2.5 concentrations) are strictly
local hotspots. Similarly, local cool spots only have low PM2.5 concentrations relative to
their neighbors but not necessarily the lowest concentrations in the entire study region.
For instance, the coolest spot in case 13 had a PM2.5 concentration of 95.8 µg m−3, which is
on-par with the concentrations of the hottest spots in cases 3 and 4 (96.8 µg m−3). It is also
worth mentioning that the strengths of local hotspots and coolspots are only dependent
on their neighbors. For instance, despite the hottest spot in case 15 (Uttam Nagar West
subway station) not having the highest PM2.5 concentrations out of the 20 cases, it is the
strongest local hottest spot with the highest normalized PM2.5 score of 2.62. In a similar vein,
although the PM2.5 concentrations of the coolest spots in cases 3 and 13 differ by 6.3 µg m−3,
they are both relatively mild to weak coolest spots with similar normalized PM2.5 scores of
−0.93 and −0.86, respectively. We should also point out that the strength of a strictly local
hotspot (see case 9 with a normalized PM2.5 score of 2.06) can be much stronger than the
strengths of a large majority of global hotspots (i.e., cases 2, 6, 7, 10, 11, 13, 16, 17, 19 and
20). The contrasts of landscapes between the hottest and coolest spots in Figure 7c indicate
that the RF–CNN–LCN pipeline made reasonable and informed predictions for these
spots by capturing both the fluctuations of PM2.5 in microenvironments induced by local
built environment features and the main intra-urban spatial trends in PM2.5. The pipeline
made reasonable estimates of the local variations (thanks to the satellite imagery), because
Figure 7c illustrates that the hottest spots are mostly associated with scenes of dense
buildings, while the coolest spots are typically associated with scenes of green space, water
area, open space or considerably less dense buildings. However, obviously, the pipeline
did not make the decisions solely based on landscapes, as can be seen from the variations
within the hottest and coolest spots. For instance, the hottest spot in case 12 with a much
less dense setting in Central Delhi has a higher PM2.5 concentration than the hottest spot in
case 16 with a very dense setting in West Delhi. Similarly, despite the coolest spot in case
11 having an (almost) all green setting, it has a higher PM2.5 concentration (90.3 µg m−3)
than the coolest spots in cases 4 and 8 (87.6 and 88.2 µg m−3, respectively), which barely
have any green in them.

The main reason that we are interested in these local hotspots is because large gra-
dients of long-term average PM2.5 concentrations can exist even within local neighbor-
hoods/communities between extreme local hotspots and coolspots, as shown in Figure 7c.
The gradients average 9.2 ± 4.0 µg m−3 over the 20 sampled representative neighborhoods.
Among the 20 cases, case 18 (Indian Gandhi International Airport area) had the steepest
increase of 20.3 µg m−3 from the coolest spot (the residential area immediately outside
the airport) to the hottest spot (airport runway), followed by case 12 with an increase
of 19.1 µg m−3 from park area (coolest spot) to dense school area (hottest spot), to the
smallest increase of 4.4 µg m−3 in case 13 from a parking lot near New Delhi Railway
Station (coolest spot) to a dense commercial area (hottest spot).

With the PM2.5 prediction values averaged over the whole study period (i.e., from
1 January 2018 to 30 June 2020) approximating long-term outdoor PM2.5 exposure, we are
able to gauge the disparity of risks of death attributable to long-term outdoor PM2.5
exposure within the same neighborhood. According to Burnett et al. [3], who examined the
association between long-term outdoor PM2.5 exposure and the risk of death by relying on
data from 41 cohort studies from 16 countries of outdoor air pollution that covered most
of the global concentration range, the association exhibits a near-linear relationship in the
high concentration range (e.g., the concentrations in Delhi), and an increase of 10 µg m−3

in PM2.5 was estimated to be associated with an increase in the risk of death of ~6.7% (95%
confidence interval (CI)], 4.6% to 9.2%). This translates into an average of a significant
6.2% (95% CI, 4.2% to 8.5%), a maximum 13.6% (95% CI, 9.3% to 18.7%) and a minimum
2.9% (95% CI, 2.0% to 4.0%) difference in the risks of mortality between the hottest and
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coolest spots within a local community in Delhi based on the 20 sampled neighborhoods.
In particular, the four strictly local community hotspots in cases 1, 3, 4 and 9 also had a
significant average difference of 5.0% (95% CI, 3.4% to 6.8%). The results reflect that there
can be a huge health inequality in the long-term outdoor PM2.5 exposure even within the
same local neighborhood. The results also call for more attention to be paid to the people
living in strictly local community hotspots, who can be equally disproportionately affected
by air pollution as people in global hotspots in comparison to their respective neighbors
but who can often be shadowed by those living in global hotspots when authorities plan
actions to control air pollution in megacities. It is, however, critical to emphasize that these
roughly estimated differences in the risks of mortality are only the upper limits, as people
are generally unlikely to stay in their grids all day.

Figure 7. Twenty sampled neighborhoods illustrated in (a) the adjusted mean PM2.5 prediction map for the whole study
period (i.e., from 1 January 2018 to 30 June 2020) after excluding the top 10% highest and the top 10% lowest values (i.e.,
Figure 6e) and (b) the PM2.5 hotspot detection map based on the most trustworthy 43 days (i.e., Figure 6c); (c) illustrates the
contrast between the landscape, the mean RF–CNN-predicted PM2.5 concentrations over the whole study period and the
normalized PM2.5 after LCN of the hottest and coolest 300 × 300 m spots within each of the 20 sampled neighborhoods
(sorted in ascending order from north to south). Note that the scales in (a,b) are the same. Additionally, note that the
meaning of the trim lines shown in the figure can be found in the caption of Figure 6.

4. Discussion

Validating local hotspots remains a challenge. Moving forward, it is of paramount
importance to corroborate the validity of these local hotspots and coolspots in terms of both
their absolute PM2.5 concentrations and their rankings in neighborhoods by conducting
field investigation and ground monitoring with low-cost air quality sensor (AQS) networks.
The synergy between satellite PM2.5 monitoring and low-cost AQS network PM2.5 monitor-
ing should be explored in future studies. Community air monitoring programs can deploy
low-cost AQS under the guidance of high-resolution satellite estimates of PM2.5 to conduct
surveillance in locations that appear to have high concentrations and validate the satellite
estimates for those locations at the same time. Low-cost AQS networks can also provide
significantly more training samples that cover much more wide-ranging landscapes than
reference AQM stations to further improve the model’s generalization/prediction perfor-
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mance, although a downweighting strategy [15] should be followed by assigning a lower
weight to the loss function for low-cost AQS samples during the training of our deep
learning model in order to reduce the negative impact of the residual errors of calibrated
low-cost AQS. The enhanced PM2.5 prediction model can, in turn, help monitor the health
of low-cost AQS networks and report any potential malfunction or drift in calibration in a
timely fashion.

This study demonstrates that the RF–CNN joint model can achieve similarly low PM2.5
prediction errors in both Delhi and Beijing, the two heavily polluted megacities that have
drastically different levels of PM pollution. A natural follow-up research question is the
following: will this single (in contrast to ensemble-based [22,47]) ambient PM2.5 prediction
framework perform equally well at 300 m in lightly polluted megacities that have relatively
limited PM2.5 data (e.g., Los Angeles with only a few Federal Reference Method monitors
that most commonly sample only once in 3, 6 or even 12 days)? A multitasking [50]
variation of the original RF–CNN joint model could be a solution to the issue of PM2.5
data limitation in these lightly polluted megacities. The architecture of this multitasking
RF–CNN joint model is displayed in Appendix H Figure A7 with a detailed description
and explanation in Appendix H. In summary, the multitasking RF–CNN joint model
derives from the original RF–CNN joint model by simply growing additional branch(es)
from the root of the 5248-way concatenated vector in the CNN part in order to learn to
predict additional air pollutants that are highly relevant to PM2.5 (such as PM10) as side
tasks in addition to its main PM2.5 prediction task. Take PM10 as an example, by learning
to predict PM10 through its PM10 side task branch, the upstream of the CNN part (i.e.,
from the satellite imagery input to global max-pooled feature vector) learns more about
the structure of the satellite imagery and consequently how to more effectively extract
the satellite imagery feature vector that can be more informative about PM pollution,
which in turn improves the model’s performance in its main task of predicting PM2.5.
Therefore, multitasking is essentially a data augmentation technique, with the limited
PM2.5–image training pairs being augmented by the datasets of PM2.5′s highly relevant
air pollutants, such as PM10. With the local PM2.5 hotspot detection maps based on the
whole study period and the subsampled most trustworthy days revealing essentially
the same information about local hotspots and coolspots, as shown in Section 3.2, LCN
shows promise of identifying local PM2.5 hotspots even for places where PM2.5 data can
be somewhat limited (such as in lightly polluted megacities) that we are not generally
able to proactively find the most trustworthy days from the test set. This is because via
LCN, the most trustworthy days can reveal themselves when using the whole study period
to detect local hotspots. A lingering research question along the same vein, however,
is as follows: will LCN still make reasonable predictions about local PM2.5 hotspots at
300 m in low PM2.5 concentration environments with no prevalent local point sources or in
environments whose air quality regimes are dominated by large particles (i.e., the antithesis
of Delhi)? Benchmarking the PM2.5 prediction performances of the RF–CNN joint model
and its multitasking variation and examining LCN at 300 m in low PM2.5 concentration
environments with comparatively limited regulatory monitoring PM2.5 data and local
PM2.5 point sources and in different air quality regimes are critical in future studies.

While the RF–CNN joint model can achieve reasonably low PM2.5 prediction errors
with only three meteorological variables and satellite imagery as input, it might be worth-
while to explore additional variables that RF can use to generate an improved PM2.5 baseline
map on each day in future studies, although we speculate that the improvement will not
be significant. Benefiting from our RF–CNN–LCN pipeline and the established association
between long-term outdoor PM2.5 exposure and the risk of death in the high concentration
range [3], we identified and analyzed local major PM2.5 sources (i.e., local hotspots) and
local background areas (i.e., local coolspots) at a 300 m resolution, based on which we
conveniently gauged the potential maximum disparity in risks of death attributable to
long-term outdoor PM2.5 exposure within Delhi local neighborhoods. The finding of the
possible existence of huge health inequality in fine-scale local neighborhoods in this study
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can be a prelude to more rigorous future studies that will investigate the precise health
implications of long-term PM2.5 exposure at a fine-grain community level using the air
quality analytic products resulting from our RF–CNN–LCN pipeline.

5. Conclusions

The RF–CNN–LCN pipeline presented in this study can be potentially informative
about local PM2.5 hotspots at a 300 m resolution in heavily polluted megacities—thanks to
(1) the RF–CNN joint model in the pipeline that was proven to achieve a low NRMSE for
PM2.5 of within ~31% and an NMAE of within ~19% for the holdout samples at a 300 m
spatial resolution in both Delhi and Beijing and (2) the ability of LCN in the pipeline to
reasonably reveal local major PM2.5 sources by further processing the RF–CNN-estimated
PM2.5 maps. We placed emphasis on analyzing the local PM2.5 hotspot patterns in Delhi
as an example in this study to showcase the effectiveness of the RF–CNN–LCN pipeline.
The pipeline revealed an annual average 9.2 ± 4.0 µg m−3 difference in PM2.5 between the
local hotspots and coolspots within the same community in Delhi, based on 20 sampled
representative neighborhoods across Delhi. In some cases, the differences were much larger;
for example, at the Indian Gandhi International Airport, the increase was 20.3 µg m−3 from
the coolest spot (the residential area immediately outside the airport) to the hottest spot
(airport runway). The results imply that substantial health inequalities in long-term outdoor
PM2.5 exposure can potentially exist even within the same local communities between
local hotspots and coolspots. This implication could be a wake-up call for governments
and policy makers who might have only paid attention to the health impacts of outdoor
air pollution on the populations in global hotspots but not those in community-level
local hotspots when designing policy interventions to control air pollution in megacities.
Future studies should explore the synergy between satellite PM2.5 monitoring and low-
cost AQS network PM2.5 monitoring, examine the RF–CNN–LCN pipeline in low PM2.5
concentration environments with comparatively limited regulatory monitoring PM2.5 data
and local PM2.5 point sources and shed light on the precise health implications of long-term
PM2.5 exposure at a fine-grain community level using novel air quality analytic products at
high spatial resolutions (such as those produced by our RF–CNN–LCN pipeline).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13071356/s1, Figure S1: Example satellite image for each of the 24 training air quality
monitoring (AQM) stations in Delhi to show the range of urban land covers that the model is trained
on (the site numbers shown in Table 1 are superimposed on the images); Figure S2: same as Figure S1
but for each of the 27 test stations; Video S1: Temporal evolution of all the images used in the model
training at an example training site, #18 Mandir Marg (the training site that has the most samples),
in chronological order; Video S2: same as Video S1 but for an example test site, #37 NSIT Dwarka
(the test site that has the most samples); Video S3: A video that shows the RF–CNN-predicted daily
PM2.5 maps of Delhi on the most trustworthy 43 days in Figure A6 frame by frame.
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Appendix A

Figure A1. Scatterplots of the true PM2.5 concentrations against PM2.5 concentrations predicted from (a) only RF using T,
RH and SLP meteorological features for the Beijing training dataset (the exact same one used in [26]); (b) only RF using
T, RH and SLP meteorological features for the Beijing test dataset (the exact same one used in [26]); (c) same as (b) but
regressing the mean of the true PM2.5 over the entire sampling period against the mean of the predicted PM2.5 over the
entire sampling period at each test station to estimate spatial Pearson r; (d) RF–CNN joint model using satellite images
and high-dimensional embedded T, RH and SLP meteorological features for the Beijing training dataset; (e) RF–CNN joint
model using the same set of predictors as (d) for the Beijing test dataset; and (f) same as (c) but using RF–CNN joint model
for prediction. Note that in (a–f), the black dashed lines are the 1:1 lines.
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Appendix B

Figure A2. The 43 days during the study period of 1 January 2018 to 30 June 2020, on which the
RF–CNN joint model best predicted PM2.5 for the available test AQM stations in Delhi, with Pearson
r, NRMSE and NMAE values all in the best 20% among all available days.

Appendix C

Figure A3. Comparison of the pixel value frequency distributions in (a) blue, (b) green and (c) red channels between the
satellite images in the Delhi test set of the 43 days (in Figure A2) on which the RF–CNN joint model performed best in terms
of predicting PM2.5 for the available test samples and the images in the Delhi test set of the remaining available test days on
which the RF–CNN joint model had suboptimal performances.
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Appendix D

Figure A4. Scatterplots of the true PM2.5 concentrations against PM2.5 concentrations predicted by
only RF using T, RH and SLP meteorological features for all available test AQM stations in Delhi on
the most trustworthy 43 days, as shown in Figure A2.
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Appendix E

Figure A5. Scatterplots of the true PM2.5 concentrations against RF–CNN-predicted PM2.5 concentrations for all available
test AQM stations in Delhi on the most trustworthy 43 days, as shown in Figure A2.
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Appendix F

Figure A6. The RF–CNN-predicted daily PM2.5 maps of Delhi on the most trustworthy 43 days (as shown in Figure A2).
These daily PM2.5 maps were used to generate the maps in Figure 6a–c. A video that shows these prediction maps frame by
frame can be found in Video S3.
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Appendix G

Table A1. The latitudes and longitudes of the hottest and coolest spots within each of the 20 sampled
neighborhoods, as shown in Figure 6.

Case #
Hottest Spots Coolest Spots

Lat Lon Lat Lon

1 28.82872204 77.10700999 28.82350141 77.09460978
2 28.80949079 77.12506275 28.80422361 77.11573631
3 28.80213779 77.07574336 28.80470179 77.08501388
4 28.80554491 77.02971166 28.79971394 77.05725672
5 28.76531395 77.1794628 28.77087418 77.17036198
6 28.75227615 77.14847589 28.74135447 77.15439489
7 28.73269406 77.18799839 28.74647139 77.17292852
8 28.72336389 77.26150048 28.73153257 77.2586055
9 28.70975135 77.09847964 28.72869391 77.09885802
10 28.69026256 76.95380395 28.69554192 76.96311248
11 28.67827673 77.20528242 28.68353818 77.2146013
12 28.67442916 77.10698321 28.67960154 77.1224344
13 28.65632843 77.22323517 28.642799 77.22294971
14 28.6348702 77.03869029 28.64000433 77.05720023
15 28.62106102 77.05683072 28.60776183 77.041234
16 28.60307928 76.99206508 28.6087164 76.97683348
17 28.57328896 77.16935841 28.58150494 77.16339384
18 28.54486672 77.08293893 28.53641738 77.10423034
19 28.5227744 77.27865733 28.54186924 77.26987231
20 28.50720147 77.23848587 28.52062986 77.24489909

Appendix H

Figure A7. The multitasking variation of the RF–CNN joint model (see Figure 2). This multitasking RF–CNN joint model
can theoretically improve its main PM2.5 prediction task performance by also learning to predict additional air pollutants
that are highly relevant to PM2.5 (e.g., PM10) as side tasks through its side task branches that start from the 5248-way
concatenated vector in the CNN part. The default settings of the multitasking RF–CNN joint model and its Adam optimizer
are identical to the default settings of the original RF–CNN joint model and its Adam optimizer (as seen in the Beijing
experiment in Section 3.1.2), which consist of a stabilizing factor of 0.90; a dropout rate of 0.6; one fully connected vector of
dimension 400; ~200 training and ~60 early stopping epochs; and an Adam setting of α = 0.0001, β1 = 0.9 (default value)
and β2 = 0.999 (default value).
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Figure A7 shows the multitasking variation of the original RF–CNN joint model
(see Figure 2). This multitasking RF–CNN joint model is specifically designed for lightly
polluted megacities that are causally somewhat deficient in PM2.5 data (e.g., Los Angeles)
by taking advantage of the datasets of other air pollutants that are highly relevant to
PM2.5 (e.g., PM10). “Multitasking” stems from the fact that starting from the 5248-way
concatenated vector in the CNN part, the original RF–CNN joint model branches out into
learning to predict other air pollutants that are highly relevant to PM2.5 (such as PM10
in Figure A7) as side tasks in addition to its main PM2.5 prediction task. By learning to
predict, for instance PM10, through its PM10 side task branch, the upstream of the CNN
part (i.e., from the satellite imagery input to global max-pooled feature vector) learns
more about the structure of the satellite imagery and consequently how to more effectively
extract the satellite imagery feature vector that can be more informative about PM pollution.
Mathematically speaking, this is because the MSE of the PM10 prediction propagates back
through the PM10 task branch all the way up to the satellite imagery input and, therefore,
optimizes all the model parameters on this route. Note that while the MSE of the PM10
prediction does not propagate back through the PM2.5 task branch (which is parallel to the
PM10 task branch), the model’s PM2.5 prediction performance will improve as a result of
the more effective extraction of the satellite imagery feature vector due to it learning to
predict PM10 as an additional side task. It is also worth pointing out that since we are not
concerned with the model’s PM10 prediction performance (note that we are only concerned
about the model’s PM2.5 prediction performance), we do not ever need to test the model’s
PM10 prediction performance on any holdout PM10–image pairs. In other words, the test
sites for the multitasking RF–CNN joint model do not need to have any PM10 samples. In a
sense, PM10 can be considered an extra predictor for the RF–CNN joint model (in addition
to satellite images and high-dimensional embedded meteorological features). However,
more precisely, PM10 should be thought of as a data augmenter for the limited PM2.5–image
training pairs.
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