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Abstract: The ecological restoration of mining areas is very important, and repeated field surveys
are inefficient in large-scale vegetation monitoring. The coal mining industry is currently facing
the challenge of the lack of appropriate methods for monitoring restoration processes. This study
used an open pit coal mine in Dongsheng District, Inner Mongolia, China as an example, and used
the 2011–2018 Landsat TM/ETM+ and OLI images to monitor and evaluate vegetation restoration
activity of the coal mine. The average value of the monthly maximum value of vegetation index
in the growing season was selected as the basic indicator for studying vegetation and bare soil
changes. The growth root normalized differential vegetation index (GRNDVI) and GRNDVI anomaly
method indicated that the constructed land type change factor was used to study the growth of
mine vegetation and change of the range of bare land in the entire mining region. We found that
westward mining activities started from 2012, and vegetation was restored in the eastern original
mining region from 2013. The restoration vegetation areas from 2015 to 2016 and from 2017 to
2018 were larger than those in the other restoration years. Moreover, areas of expanded bare land
from 2011 to 2012, and from 2017 to 2018 were larger than those in the other expansion years. The
restoration vegetation growth changes were compared with those of the natural vegetation growth.
Results showed that the restoration vegetation growth trend was considerably similar with that of
the natural vegetation. Inter-annual restoration effects were analyzed by constructing the effect of the
area-average factor and using vegetation growth data. Accordingly, the restoration vegetation effects
were best in 2014 and 2016. Comprehensive restoration effect was analyzed using the weighted
evaluation method to obtain the overall restoration effects of the coal mine. Results showed that
the comprehensive restoration effect is inclined to the inferior growth state. This study conducted a
preliminary evaluation of mine restoration vegetation, thereby providing a promising way for the
future monitoring and evaluation of such processes.

Keywords: restoration vegetation; coal mine; Landsat data; GRNDVI anomaly method; vegeta-
tion growth

1. Introduction

Coal is an important natural resource of China, and the coal mining industry is an
indispensable back-up force for the country’s economic development, thereby playing
an important role in social development in China [1]. Open pit mine is considered as a
degradation of the environment through pit, spoil tip, and water plate damage [2,3]. Con-
sequently, mining can further endanger the health of people and animals [4]. The recovery
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and management of mines are crucial and have attracted lots of attentions from Chinese
government [5]. The most common methods for such restoration involves chemical and
phytoremediation measures [6], although while there exist various methods of mine man-
agement, including slag reuse, reclamation, greening and mine geoparks. Until the end
2018, over 7000 mines had been managed in China [7]. Restoration vegetation is partic-
ularly important for the restoration and recycling of the mining region’s ecosystems [8].
While repeated field surveys are costly and inefficient in the large and inaccessible areas,
remote sensing data and methods are found as a promising tool for monitoring ecological
restoration of degraded coal mining areas.

Normalized difference vegetation index (NDVI) is mostly used in vegetation growth
research, including the application of vegetation index. Some studies [9–11] have used
NDVI to monitor vegetation growth changes at different times, and analyzed the potential
factors related to vegetation growth. Based on long-term Landsat series data, some stud-
ies [12–15] explored the changes in NDVI in the study region, monitored their vegetation
coverage and growth, and analyzed ecological changes in various conditions. Tote et al. [16]
used the NDVI time series from the SPOT/VEGETATION satellite data to evaluate the
vegetation status and analyze the impact of mining on soil characteristics. They also
applied the standard deviation vegetation index (SDVI) to reduce the impact of climate
factors on mining on time series [16]. The use of vegetation coverage to explore vegetation
is another commonly used method. Zhao et al. [17] took the Malanzhuang Iron Mine of
Tangshan Shougang as their research region, and utilized Landsat TM/ETM+ data and the
difference analysis method to explore the ecological restoration effects of the mining region
based on vegetation coverage. Eventually, they obtained the ecological restoration effect.
Qiao et al. [18] used long-term Landsat image data to analyze the fraction of vegetation
coverage (FVC) and vegetation condition index (VCI) in the Daliuta mine, and evaluated
the temporal and spatial characteristics of vegetation coverage and vegetation growth.
In addition, some literatures [19–21] studied the relevant types of mine vegetation, and
the relationship between the growth of the mine vegetation and the surrounding soil and
heavy metals, and monitored the ecological restoration of the mine.

The Chinese government has put a lot of manpower, resources and money to restore
the mine ecological environment, and one of the most important ways is the planting of
vegetation as forest and grassland. However, due to the influence of mining environmental
pollution and anthropogenic factors, the restoration vegetation in mining areas did not
grow at the same pace as the natural vegetation. Some planted vegetation died after a
few years, and then were re-planted in place again and again, which contributed to high
expenses and waste of resources in restoration process. Therefore, in order to monitor the
complex restoration vegetation growth status and its changes, we collect the images of
remote sensing satellites covering the process of mining and restoration, and use a typical
vegetation index method to estimate the area of land cover type and vegetation growth
level. Finally, an analysis model is constructed to evaluate the restoration effect, which can
intuitively indicate the input-output efficiency of the mine area at the pixel level.

Previous studies also showed that the ecological restoration monitoring of mining
region is particularly important [22]. From this point of view, taking the Bayin Mengke-
nayuan coal mine in Dongsheng as an example, this study aims at conducting a specific
investigation on the growth of restoration vegetation, monitoring the situation of restora-
tion in different years, and checking whether the restored vegetation grew normally.

2. Study Area and Remote Sensing Images Collection
2.1. Study Area

The Bayin Mengkenayuan coal mine in Dongsheng District was taken as this research
region. Dongsheng District is located in the middle and eastern regions of Ordos Plateau
in Inner Mongolia, and has a temperate continental climate and distinct seasons. The
Bayin Mengkenayuan coal mine in Dongsheng District was selected as an example to study
restoration vegetation and it was an open pit, as shown in Figure 1. The study region
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has long winters and short summers and alternating seasons. Dongsheng District has
long-term stable large-scale sedimentary basins. The stratum structure is simple and the
stratum development conditions are complete. No magma activity is observed and the
majority of the minerals are sedimentary minerals. These factors have provided the region
with a high quality mineral resource and energy environment, which has rich and diverse
mineral resources. The most abundant mineral resource in Dongsheng District is coal,
followed by oil shale, gas, pyrite, peat, and other mineral resources [23].
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Figure 1. Image of the Bayin Mengkenayuan coal mine in Dongsheng District, Erdos City, Inner Mongolia of China (at 0.23
m, true color, Google Earth image in August 2019).

The Bayin Mengkenayuan coal mine locates at 39◦46′18”–39◦48′58” N latitude and
110◦16′1”–110◦20′30” E longitude, and is about 25 km far from the Dongsheng downtown.
The area of the coal mine is approximately 32.36 km2, with a length of 6.42 km, and a width
of 5.04 km. This coal mine included evident restoration vegetation process characteristics.
However, since this region is generally lacking of precipitation (annuals average 381.8 mm),
the land covers are mainly shrubland, grass and barren land, while the background is
pedocal soil. According to the records of this coal mining area, this coal got the mining
permission license from the government in 2012 and then started mining operations at the
same year. The Bayin Mengkenayuan mine is an open pit coal mine and its mining activity
destroys the surrounding vegetation that consequently reduces the vegetation cover in
this region, and then the mining company was required by the government to restore the
vegetation cover artificially since 2103 in order to maintain the ecological environment.
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Therefore, this coal mine is suitable to be used for monitoring the restoration vegetation
status along with the coal mining activity.

2.2. Data Collection

The Landsat series imageries were used over the study area. All images were captured
with a spatial resolution of 30 m and contain blue, green, red, near-infrared, and other
two short-wave infrared bands. Since vegetation growth is sensitive to seasonal changes,
this study selected all Landsat images during the vegetation growing season from April to
October of each year in the study region to explore the yearly vegetation changes [24,25].
As shown in Table 1, about ten images per year, and a total of eighty-seven remote sensing
images from 2011 to 2018 were used. We firstly calculated the maximum value of monthly
vegetation index, and then used their average value to monitor the expansion of the mining
area and the changes in vegetation restoration in growing season [26,27]. Due to the inter-
ference of cloud and other atmospheric conditions, the Landsat data has different degrees
of noise [28,29]. In order to eliminate those potential noise, the above images were all
chosen under cloud-free condition and the atmospheric correction [15] was consequently
performed to reduce the atmospheric effect and obtain the surface reflectance for the calcu-
lation of the vegetation index. Moreover, the maximum value composite method (MVC)
was utilized to get the monthly vegetation index value [28,29]. The eighty-seven images
mainly covered three important mining periods: before mining stage (BMS), undergoing
mining stage (UMS), and after mining stage (AMS), and all of them were cropped to the
same study region according to the boundary of the coal mine. Finally, the average value
of the monthly maximum value in the growing season was taken to monitor the vegetation
growth of the mining region.

Table 1. The information of using Landsat images (from April to October).

Year Image Number Sensor and Image Date List

2011 9 TM: From 17 April 2011 to 24 September 2011
2012 9 ETM+: From 27 April 2012 to 18 September 2012
2013 10 OLI: From 3 April 2013 to 29 September 2013
2014 10 OLI: From 9 April 2014 to 2 October 2014
2015 12 OLI: From 12 April 2015 to 5 October 2015
2016 13 OLI: From 14 April 2016 to 23 October 2016
2017 12 OLI: From 1 April 2017 to 26 October 2017
2018 12 OLI: From 20 April 2018 to 29 October 2018

3. Methods for Restoration Vegetation Monitoring and Evaluation

Figure 2 shows the workflow of the proposed method. We selected a vegetation index
GRNDVI of growing season images from Landsat dataset to obtain the dynamic changes of
the inter-annual vegetation growth and the spatial and temporal changes in land types. The
restoration vegetation region and surrounding natural vegetation region were identified
by the analysis of land type changes, and were compared the mean GRNDVI of them.
Furthermore, the annual dynamic changes of vegetation growth for the restoration region
was conducted. The comprehensive restoration effect was estimated by calculating the
average growth of restored vegetation and analyzing their effects each year finally.



Remote Sens. 2021, 13, 1350 5 of 23
Remote Sens. 2021, 13, x FOR PEER REVIEW 6 of 24 
 

 

 

Figure 2. Main workflow of the proposed method. 

3.1. Vegetation Growth Monitoring Methods 

The open pit and underground mining can cause a change in surface cover type, 

thereby damaging the neighboring ecosystems and render the temporal and spatial 

changes in vegetation conditions [30]. Three common methods are often used for moni-

toring the long-term vegetation growth. The first method uses vegetation physiological 

elements and ecological parameters to determine vegetation growth trends and classify 

vegetation growth grades. The second method plots the growth process curve of the veg-

etation index and other parameters obtained from remote sensing data in each period, for 

getting a long-term growth trend change in time according to the curve shape. The third 

method uses vegetation in the same growing season of different years to evaluate the tem-

poral and spatial distribution of vegetation growth, for reflecting the change of growth in 

a long-term sequence [31]. The first method can determine the characteristics and correla-

tions of the physiological and ecological parameters of vegetation to observe vegetation 

growth trends, but it is more complicated than the other two. The second is simple, intui-

tive, and clear, and is often used in practical applications. However, it has some difficulties 

in classifying vegetation growth. Meanwhile, the growth obtained by the third method 

Figure 2. Main workflow of the proposed method.

3.1. Vegetation Growth Monitoring Methods

The open pit and underground mining can cause a change in surface cover type,
thereby damaging the neighboring ecosystems and render the temporal and spatial changes
in vegetation conditions [30]. Three common methods are often used for monitoring the
long-term vegetation growth. The first method uses vegetation physiological elements
and ecological parameters to determine vegetation growth trends and classify vegetation
growth grades. The second method plots the growth process curve of the vegetation index
and other parameters obtained from remote sensing data in each period, for getting a
long-term growth trend change in time according to the curve shape. The third method
uses vegetation in the same growing season of different years to evaluate the temporal and
spatial distribution of vegetation growth, for reflecting the change of growth in a long-term
sequence [31]. The first method can determine the characteristics and correlations of the
physiological and ecological parameters of vegetation to observe vegetation growth trends,
but it is more complicated than the other two. The second is simple, intuitive, and clear,
and is often used in practical applications. However, it has some difficulties in classifying
vegetation growth. Meanwhile, the growth obtained by the third method adopted in
this study can reflect the change of growth accurately in time and space. Moreover, the
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calculation is not complicated and can efficiently obtain the spatial and temporal changes
of vegetation in the mining region.

3.1.1. Vegetation Index and Growth Monitoring Methods

To monitor vegetation trends, firstly we need to select a suitable vegetation index.
Vegetation index has been proved to be an effective method of capturing the vegetation
growth. As the most commonly used vegetation index, NDVI has been used in monitoring
vegetation growth using the mathematical combination of the near-red and red bands of
remote sensing images. Although NDVI is related to vegetation coverage, this indicator
is affected by atmospheric conditions, soil background, and becomes saturated at high
vegetation coverage [32]. Meanwhile, the Simple Ratio index (SR) is another well-known
vegetation index that has improved soil background, but its sensitivity will decrease when
the leaf area index value is high and vegetation is dense [33]. The growth root normalized
differential vegetation index (GRNDVI) combines the advantages of SR and NDVI [34].
As seen in Equation (1), the characteristics of the SR × NDVI mathematical quadratic
expression cause this vegetation index to be strengthened in low value part and weakened
in the high value part, respectively. A square root operation is performed on SR × NDVI
to reduce the impact of this shortcoming [34]. The value range of NDVI is [−1, 1] and
the term 1 is added to the part of the GRNDVI equation to retain a positive value [34].
Figure 3 shows the comparison example of NDVI, SR and GRNDVI, and finds that GRNDVI
provides an improved interpretation of the vegetation comprising woodland, grassland,
and other vegetation types, which will be used for vegetation status analysis in the study
region. As stated above, the related equation of GRNDVI is as follows:

GRNDVI =

√
ρNIR
ρred

×
(

ρNIR − ρred
ρNIR + ρred

+ 1
)

(1)

where, ρNIR and ρred are land surface reflectance of Landsat red and NIR bands after
atmospheric correction, respectively.
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Figure 3. Comparison of the vegetation index NDVI, SR and GRNDVI on 15 August 2014.

Furthermore, three trend methods based on vegetation index were compared to select
the best trend change analysis method: (1) vegetation index difference, which can express
the differences of vegetation growth directly, is generally used to monitor vegetation
growth [35]. (2) vegetation index ratio of two dates, which is available for analyzing growth
situation, is used less than the vegetation index difference method [31]. (3) vegetation
index anomaly that involves the normalization of the vegetation index differences to obtain
vegetation growth changes circumstances [36]. After extensive tests, the GRNDVI anomaly
method can highlight the change in vegetation growth in the mining region. Equation (2)
defines the GRNDVI anomaly (RGRNDVI) and the value is theoretically within [−1.0, 1.0]:

RGRNDVI =
GRNDVIm − GRNDVIr

GRNDVIm + GRNDVIr
(2)
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In Equation (2), GRNDVIm is the GRNDVI value in the monitoring year and GRNDVIr
is the GRNDVI value in the reference year. A negative value of RGRNDVI indicates that
vegetation suffers a degeneration trend from the reference year to the monitoring year. By
contrast, a positive value means that vegetation grows better and captures a restoration
trend between the two years.

3.1.2. The Estimated Method of the Land Cover Type Change (LTC) Factor

The use of various remote sensing image processing and analysis of the bare ground
and vegetation in the mining region can facilitate the monitoring of the recovery status
of the mining region [37]. The current study combined the inter-annual GRNDVI and
GRNDVI anomaly values to construct a land type change factor LTC to investigate the area
of the mining region, area of the restoration vegetation, and dynamic change of vegetation
growth.

The land type change (LTC) factor using GRNDVIm, GRNDVIr, and RGRNDVI can be
calculated as follows:

LTC = GRNDVIm × GRNDVIr × RGRNDVI (3)

The LTC was then recognized as six different values using the preceding classification.
If L stands for bare land, V stands for vegetation, B means that the growth becomes
better than the reference year, and W means that the growth becomes worse than the
reference year, then there will be six groups of their composition in two adjacent monitoring
and reference years: L-L-W, V-L-W, V-V-W, L-L-B, L-V-B, and V-V-B. For example, L-V-B
represents that bare land in the reference year changes to vegetation in the monitoring year,
and its growing condition is improved.

3.1.3. Annual Variation of Restoration Vegetation Growth

The vegetation index and trend method were used to determine the overall vegetation
growth and ground feature coverage category of the mining area from 2013 to 2018, and the
annual ground feature category changes were obtained by analyzing the LTC results. The
LTC factor can be used to determine the region of vegetation restoration. In this study area,
the region from bare soil to vegetation is the region of vegetation restoration by observing
the images, which can form a vector diagram of the restoration region. Combined with the
growth image, through the superposition of the growth image and the restoration region
image, the annual growth of the restored vegetation can be analyzed every year.

At the same time, based on the results of the LTC factor, natural vegetation was
obtained by superimposing all the regions of land type change images from vegetation to
vegetation. The region that has always been vegetation is natural vegetation by observing
the images. The annual dynamic contrast change of restored vegetation and natural
vegetation can be obtained by calculating the average value of the total growth year.

3.2. Evaluation Method of Restoration Vegetation Effects
3.2.1. Annual Restoration Vegetation Effect Factor E

Since the overall growth of the vegetation cannot represent the growth of the restora-
tion vegetation, and the area and the growth time of the restoration vegetation are different
annually, and therefore, it is necessary to separately analyze the region of inter-annual
restoration vegetation to get the different effects of inter-annual restoration vegetation
and exclude the influence of above conditions (i.e., the area and the growth time of the
restoration vegetation) on the monitoring of restoration effects to mitigate the interference
of human activity factors and vegetation itself.
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According to the specific conditions of the study region, the GRNDVI values were
re-classified into specific values to facilitate subsequent calculations according to a new
term as calculated in Equation (4):

E =

m
∑

k=1
GRNDVIk

m
(4)

where, k represents the kth growth year of restoration vegetation annually and GRNDVIk
represents the value after the reclassification of the vegetation index in the kth year, which
is the upper limit m of the growth year of the restoration vegetation during the study
period. For example, for the restoration vegetation beginning from 2014, m is equal to 5 by
2018. Equation (4) was used to calculate the average vegetation index value to represent
the effects of restoration vegetation annually.

3.2.2. Restoration Effect of Area-Average Factor EAA

The area of restoration vegetation varied in different years, and the factors of the
area exclusion were determined using the effect statistics of the restoration vegetation
to calculate the total EAA (effect of area-average) restoration vegetation and analyze the
restoration effects annually. Among these factors, the EAA value is the total effect of
area-average restoration vegetation annually and calculated using Equation (5) as follows:

EAA =

5
∑

i=1
Gri × (Si/0.0009)

S
(5)

where, Gri is the restoration vegetation level, Si is the area occupied by the restoration level,
0.0009 km2 (=0.03 km × 0.03 km) is the size of the pixel area, and S is the total restoration
area annually.

3.2.3. The Comprehensive Restoration Effect Factor CE

In addition, the overall repair level of the mining region in all years also needs
investigation to view the comprehensive repair effect of the mining region. This study
used the weighted average method to consider various level factors comprehensively and
provide a quantitative evaluation of restoration vegetation effects [38,39]. The weights of 0,
1, 2, 3, and 4 in each level were utilized to calculate the comprehensive restoration effects,
and the overall situation of restoration vegetation was analyzed.

CE =

6
∑

n=1

5
∑

i=1
Wi × Si

SS
(6)

where, CE is the comprehensive restoration effect, Wi is the weight of each level, Si is the
area occupied by the restoration level, and SS is the total area of restoration vegetation in
all years.

4. Restoration Vegetation Monitoring and Evaluation Results
4.1. Inter-Annual Vegetation Growth Results and Cross-Validation

Vegetation indices in different dates can provide effective information for the inter-
annual vegetation growth in a mining region [40]. As shown in Figure 4, remote sensing
images used to calculate the vegetation index were displayed in false colors (near infrared
band, red band and green band), highlighting various ground features and vegetation
growth. It was found that the vegetation growth in 2011 was generally poorer than other
years. We calculated GRNDVI according to Equation (1). By considering the authenticity of
the results, the threshold 1.22 of GRNDVI for 2011 and 1.24 for other years were respectively
adopted to identify vegetation pixels (i.e., GRNDVI > the threshold). Moreover, in order



Remote Sens. 2021, 13, 1350 9 of 23

to make the spatial pattern of the vegetation growth substantially clear [40], the GRNDVI
images of each year were divided into five levels with reference to the division of NDVI,
as follows: (1) 0.00–1.24 (0–1.22 for 2011) for bare land, including pits, pumping regions,
roads, and other places without vegetation coverage; (2) 1.24–1.50 (1.22–1.50 for 2011)
for low-level vegetation growth; (3) 1.50–1.75 for medium-level vegetation growth; (4)
1.75–2.00 for high-level vegetation growth; and (5) 2.00–4.00 for remarkably dense-level
vegetation growth. Figure 5 presents the GRNDVI levels images of the mining region from
2011 to 2018, while Figure 6 shows the percentage statistics of GRNDVI levels. Table A1
lists the areas and pixel percentages of the different GRNDVI levels in those years.
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According to Figure 5, the area of bare land (red pixels in the figures) was found to
increase from 2011 to 2018, and the mining region was expanding and generally contin-
uing to develop in the western part. The GRNDVI was generally small in 2011, thereby
indicating that vegetation did not grow well in this period. Vegetation growth improved
in 2012 and vegetation growth status was significantly enhanced. The majority of the
GRNDVI values from 2012 to 2018 around the mining region were around 1.5 or above
1.5, thereby indicating that vegetation growth was mostly higher than the low level. After
expanding the range of bare land westward, in the eastern of the mining region, restoration
vegetation was implemented to expand the vegetation range. Therefore, the study region
was generally in a state of exploitation and reclamation from 2011 to 2018, in which the
ecosystem environment was better than the mining regions with only mining but without
reclamation [41].
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Table A1 and Figure 6 show that vegetation grew poorly (GRNDVI level: 1.22–1.50) in
2011, which accounts for 98.18% (31.301 km2). Vegetation growth was poor (GRNDVI level:
1.24–1.50) in 2012, accounting for 68.82% (21.941 km2). In 2013 and 2014, vegetation growth
was medium (GRNDVI level 1.50–1.75), accounting for 57.79% (18.427 km2) and 45.60%
(14.539 km2), respectively. Thus, the overall vegetation growth improved. Vegetation
growth was relatively uniform from 2015 to 2018 but was generally medium (GRNDVI
level: 1.50–1.75), accounting for more than 30%. Poor (GRNDVI level: 1.24–1.50) vegeta-
tion growth accounted for more than 40% in 2017. High (GRNDVI level: 1.75–2.00) and
remarkable vegetation growth (GRNDVI level: 2.00–4.00) had the high proportion in 2016
and 2018, accounting for 37.96% (12.103 km2), and 29.96% (9.552 km2), respectively. Some
factors, such as climate, soil, and topography, are critical to the changes for the inter-annual
vegetation growth [42–44]. The area of bare land increased from 0.414 km2 in 2011 to
6.236 km2 in 2018 and the area of bare land had been basically expanding.

The classification of years 2016 (Figure 5f) and 2018 (Figure 5h) were taken as examples
for checking the accuracy of the GRNDVI level results. Because we used historical images
and there was no field verification data, we used remote sensing images with higher
resolution than Landsat images for cross validation. The Sentinel 2 images were used as the
cross-validation image with a higher spatial resolution of 10m than Landsat images. Since
the Landsat images were mainly from April to October, this study selected three images in
spring, summer and autumn of Sentinel images to ensure inspection reliability of results
of the annual classification. A uniform sampling of 100 sample points for each Sentinel
image was used to calculate the overall accuracy [45], as shown in Figure 7. The overall
classification accuracy is the ratio of the total number of correctly classified vegetation and
bare soil pixels to the total number of category pixels. The overall accuracy results are
shown in Table 2, and the overall accuracy is greater than 90%, which represents that the
classification accuracy is reliable.
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Table 2. Accuracy evaluation of GRNDVI classification results in years 2016 and 2018.

Sentinal 2 Image Data Classification Result Date Overall Accuracy

19 May 2016 2016 93%
7 August 2016 2016 92%

26 October 2016 2016 94%
24 May 2018 2018 92%
28 June 2018 2018 93%

11 October 2018 2018 91%

4.2. Land Type Change Results

The GRNDVI data shown in Figure 6 indicate that a threshold value (i.e., 1.24) of
GRNDVI was used to distinguish vegetation (GRNDVI ≥ 1.22 for 2011(GRNDVI ≥ 1.24
for other years)) and bare land (GRNDVI < 1.22 for 2011(GRNDVI < 1.24 for other years)).
Moreover, the results of RGRNDVI were applied by Equation (2) to determine the growth
levels, with RGRNDVI < 0 and RGRNDVI > 0 meaning poor and good growth, respectively.

Thus, LTC in Equation (3) can be traced back to the category of the factor through the
result of the product to determine the LTC results as shown in Figure 8, and the statistics of
LTC results were shown in Figure 9 and Table A2.
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Figure 9. Percentage of different land type changes in two adjacent years from 2011 to 2018 in the study region.

In the LTC results, V-L-W stands for expanding the range of bare land in the mining re-
gion, L-V-B stands for restoration vegetation, V-V (V-V-B and V-V-W) stands for vegetation
growth, and L-L (L-L-B and L-L-W) means a place is consistently bare soil.

The bare land in the mining region includes pits, pumping regions, roads, and other
places without vegetation coverage, and changes of these types are extremely compli-
cated [46]. Given the preceding reasons, the change of bare land is not the key point of the



Remote Sens. 2021, 13, 1350 14 of 23

current study that actually focuses on the current restoration vegetation. Thus, we only
specifically analyzed the changes related to vegetation and have to temporarily disregard
the results of the bare land (i.e., L-L-B and L-L-W).

The condition of vegetation cover is considerably affected by climate and human
factors [47]. Figure 8 shows that the mining activity started from 2011 to 2012, and vegeta-
tion was removed (V-L-W) in this period. The mining region gradually expanded on the
west side from 2012 to 2015, and vegetation was restored on the east side of the original
mining region. From 2015 to 2016, the scope of restoration (L-V-B) was expanded from its
mining region to the west. From 2016 to 2018, vegetation was gradually restored (L-V-B)
on the east side of the original mining region, and the mining region was expanded to the
west. Moreover, a vegetation covered region appeared in the middle area of the mining
region. Vegetation growth around the mining region improved annually from 2011 to 2014,
but its changes showed some fluctuations from 2014 to 2018. Moreover, the inter-annual
restoration vegetation and surrounding vegetation growth were generally consistent and
mainly affected by the climate factors rather than the mining activity in the study region.
The preceding results determined that the current coal mine was under expansion (V-L-W)
along with significant restoration vegetation (L-V-B) in the study period. That is, the
eastern area of the mine was gradually restored for vegetation, while the mining region
was continuously expanded in the west, thereby causing an increase in the mining region.
The mining region began to be mined in 2012, and formal restoration work began in 2013.

Table A2 shows that in 2011–2012, 2014–2015, 2015–2016, and 2017–2018, the areas
from vegetation to bare land (expanding the range of bare land, V-L-W) were relatively large
at 2.16, 1.84, 1.71, and 3.48 km2, respectively. The degree of expansion was also relatively
large (Figure 9). The expanding range of bare land areas (V-L-W) in 2012–2013, 2013–2014,
and 2016–2017 were smaller than those in 2011–2012, 2014–2015, 2016–2017, and 2017–2018
with 0.61, 0.98, and 1.26 km2, respectively. In terms of restoration vegetation in the mining
region, the areas from bare land to vegetation (restoration vegetation, L-V-B) were larger
in 2015–2016 and 2017–2018 with 1.28 and 2.26 km2, respectively. Restoration vegetation
(L-V-B) in 2011–2012, 2012–2013, 2013–2014, 2014–2015, and 2016–2017 is relatively smaller,
as 0.23, 0.92, 0.56, 0.53, and 0.45 km2, respectively. For the growth of vegetation around
the mining region, the overall vegetation in 2011–2012, 2012–2013, 2013–2014, 2015–2016,
and 2017–2018 was gradually improved (V-V-B) to 28.48, 28.04, 17.75, 21.88 and 21.85 km2,
respectively. Moreover, vegetation growth was generally better than that in the previous
reference year. The vegetation growth in the monitoring year was worse than that in the
reference year (V-V-W) in 2014–2015 and 2016–2017, and vegetation poorly grew with areas
of 20.71 and 25.43 km2, as shown in Figure 8. Changes in vegetation growth may be related
to climate [48–50]. In general, the restoration vegetation area was fluctuating, thereby
indicating that the mine management substantially focused on environmental governance.
Note that mining in 2012 began to be affected by a series of ecological and environmental
protection plans and measures of China’s government [51]. Moreover, Figure 9 illustrates
that the roads in the mining region in 2012 showed the information of plant vegetation and
restoration. The mining region has also been generally under restoration vegetation in 2018,
and the impact probably was influenced by the implementation of China’s 2018 policy [52].

4.3. Restoration Vegetation and Surrounding Natural Vegetation Growth

As reported previously [12–15], the remote sensing images are very helpful data
resource to monitor the biological status. It was found that formal restoration vegetation
started since 2013 in the mining region, and was implemented for the six years from 2013
to 2018. The surrounding areas of the mining region with vegetation cover during the
all periods from 2013 to 2018 (hereafter called natural vegetation), and the inter-annual
restoration vegetation of the mining region were compared. The inter-annual average
growth changes were analyzed as shown in Figure 10. It shows that the annual variation
line shapes are similar between the restoration vegetation and natural vegetation growth,
and the changes in restoration vegetation were consistent with natural vegetation growth.
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Figure 10. Comparison of the restoration and natural vegetation growths from 2013 to 2018 in the study region.

Figure 10 shows that the restoration vegetation GRNDVI values in most of years were
less than the natural vegetation, meaning the restoration vegetation grew not well as the
natural vegetation, perhaps due to vegetation type, vegetation age and the potential influ-
ence of the mining activity on the background soil quality and soil moisture. Restoration
vegetation from 2014 and 2016 was better than natural vegetation in 2016 and 2018, and in
2018 respectively, and the average fluctuation range was large. Restoration vegetation from
2013 was generally inferior in growth, but its value range was relatively stable. Restoration
vegetation from 2014 and 2015 were in the middle, and that from 2017 and 2018 were poor.
Vegetation growth was affected by vegetation type, planting density and the surrounding
soil and topography [53]. In general, Figure 10 shows that the total growing trend of
restoration vegetation was substantially similar with that of the natural vegetation, and
mainly affected by climatic factors [54–56], which means that the restoration vegetation
grows normally. Fluctuation was the change in growth and corresponded to the results
in Figure 9. The inter-annual vegetation growth from 2013 to 2018 in the study region
completely fluctuated between long-term deterioration and growth.

4.4. Growth of Restoration Vegetation with Different Restoration Beginning Years

Long-term monitoring of vegetation growth can effectively reflect the changes in the
ecological environment of the mine [11,16–18]. The current study analyzed the inter-annual
dynamic changes of restoration vegetation in the mining region with different beginning
years in the study years 2013 to 2018. On the basis of the restoration region obtained in
Figure 8 and the eight-year GRNDVI spatial distribution images in Figure 5, this study
analyzed the growth trend of restoration vegetation with different restoration beginning
years to determine the inter-annual vegetation growth. The results are shown in Table A3
and Figure 11.
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Figure 11 and Table A3 show that restoration vegetation growth from 2013 was
generally low. Up to 2014, some of the restoration vegetation beginning from 2013 began
to change to bare land (GRNDVI level: 0.00–1.24), accounting for 9.59% (0.088 km2) by
2018. Restoration vegetation growth beginning from 2014 was within the low (GRNDVI
level: 1.24–1.5), medium (GRNDVI level: 1.5–1.75), and remarkable (GRNDVI level: 2.00–
4.00) conditions from 2014 to 2018. Up to 2015, the restoration vegetation beginning from
2014 also became bare land, and approximately 1.59% (0.009 km2) eventually changed to
bare land by 2018. Thus, the vitality of restoration vegetation beginning from 2014 was
tenacious, and the environment was suitable. Restoration vegetation growth beginning
from 2015 was mostly low in 2015. Eventually, restoration vegetation became bare land at
2.47% (0.013 km2) by 2018. Restoration vegetation growth beginning from 2016 was mostly
low in 2016. Up to 2017, vegetation beginning from 2016 grew moderately (GRNDVI level:
1.5–1.75) and poorly (GRNDVI level: 1.24–1.5), and eventually became 1.68% (0.021 km2)
of bare land by 2018. Restoration vegetation beginning from 2017 was also mostly low
in 2017, but growth was medium by 2018. Restoration vegetation in 2017 became 2.00%
(0.009 km2) of bare land by 2018, and the restoration vegetation beginning from 2018 was
low and medium by 2018. Overall, the results shown in Table A3 and Figure 11 show
that vegetation growth improved annually, and an increasing trend of vegetation growth
was observed.

4.5. Evaluation of Restoration Vegetation Effects

Based on Equation (4), the annual restoration effect was calculated. The annual
restoration vegetation effect was studied separately by comparing the results of E with
the GRNDVI reclassification values in Section 4.1. Moreover, the results of E were divided
into 5 levels, which were set to the level values of 0, 1, 2, 3, and 4, which represent poor,
inferior, medium, good, and excellent restoration effects, respectively. Figure 12 shows the
percentage statistics of restoration vegetation effects of each year. Table A4 indicates the
statistical area and percentage of each level of effects of restoration vegetation annually.
Figure 13 displays the color expression of the restoration vegetation effects using a high-
resolution image as the base image, and the transparency of the level layers was not 100%
to view the surface categories of the image.
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Table A4 and Figure 12 show that among the overall restoration vegetation effects in
2013, 2017, and 2018, inferior effects (level 1) reached 64.00% (0.590 km2), 78.64% (0.352 km2)
and 76.40% (1.726 km2), respectively. The overall restoration vegetation effect in 2014, 2015,
and 2016 was generally inferior and medium (level 2) and accounted for 78.17% (0.441 km2),
76.31% (0.405 km2) and 77.44% (0.99 km2), respectively. The overall restoration vegetation
in 2013–2018 shows that the restoration effect of the middle area was mostly medium
(level 2) and good (level 3), the surrounding part of the restoration effect was mostly inferior
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(level 1), and the remainder had a small amount of restoration vegetation with poor (level
0) and excellent (level 4) effects (Figure 13). The inter-annual variation of the restoration
vegetation area was generally increased. The growth of the restoration vegetation should
be related to the soil environment, restoration vegetation type and climate.

The total EAA restoration vegetation annually was determined using Equation (5),
and the values of 2013, 2014, 2015, 2016, 2017, and 2018 are 936.87, 1871.72, 1534.78, 1751.85,
1303.89, and 1399.02, respectively. The restored area in 2014 was not the largest, with
0.56km2 (Table A2). The overall vegetation growth in 2014 was mostly medium (GRNDVI
level: 1.50–1.75), accounting for 45.60% (14.539 km2) (Table A1). The restoration area in
2013 was 0.92 km2, and the vegetation growth was mostly medium, accounting for 57.79%
(18.427 km2). According to EAA, the best restoration was determined in 2014, followed
by 2016, 2015, 2018, and 2017. The worst restoration was obtained in 2013, which may
be related to factors, such as the type of restoration vegetation, planting density, and
surrounding environment. For the analysis of restoration effects, it is not enough to analyze
the overall vegetation growth.

The calculated comprehensive restoration effect is 1.31 using Equation (6). That is,
the overall effect was the second levels, and the restoration effect was inferior. The overall
effect was inclined to the medium growth state. As the restoration vegetation growth
throughout the growing season, the overall effect of restoration vegetation continued to
be ordinary.

5. Conclusions and Discussions

Previous studies of vegetation have used extensive vegetation coverage and NDVI,
even though vegetation coverage and NDVI are susceptible to soil background. The current
research calculated GRNDVI (growth root normalized differential vegetation index) and
LTC (land type change) factor to conduct restoration vegetation monitoring using Landsat
5/TM, Landsat 7/ETM+, and Landsat 8/OLI data from 2011 to 2018 of a coal mine in
Inner Mongolia of China. This study constructed the LTC factor, which can immediately
and simultaneously obtain the changes of land type and vegetation growth in the study
region, and results show the dynamic changes of expansion and restoration in the coal
mine. Moreover, different from previous studies, we also compared the growth trend
of the natural vegetation with the restoration vegetation, in order to check whether the
restoration vegetation was growing normally. In addition, we constructed the EAA (effect
of area-average) factor using vegetation index data to obtain the inter-annual restoration
vegetation effects. Thereafter, we compared the restoration results of different years and
found that the years 2014 and 2016 had highest restoration vegetation effects while the
year 2013 captured the lowest effects. Finally, we used the weighted evaluation method
to determine the comprehensive restoration vegetation effect and checked the overall
restoration results of coal mining.

This study aims to use the multiple-year vegetation index GRNDVI to monitor the
variation of restoration vegetation and mining area in the coal mine. Although only
one coal mine was analyzed, but this study tried to provide an effective way for the
reader and local government to help them operate the restoration vegetation monitoring in
mining regions using remote sensing data like Landsat or even higher spatial resolution
images. Besides, this study also provides data support for ecological protection and mine
development supervision.

However, some points should be paid attention to improve the work in the future.
Firstly, the resolution of Landsat is 30 m. In the future higher spatial-resolution images
from different satellites, such as Sentinel-2 and Chinese Gaofen (high-resolution) satellite
series [57], can be used to classify the types of restored vegetation. Combining the growth
results of different types of vegetation will get more accurate evaluation results. Secondly,
based on the principle of unified consideration, the GRNDVI threshold value used in
this study was basically fixed as 1.24, and the method of adaptive threshold value may
improve the accuracy of ground object classification monitoring [58]. Moreover, the annual
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best-available-pixel (BAP) composite method proposed by White et al. [59] can also be
considered to generate more reliable reflectance image and vegetation index from time-
series Landsat images for a better application of monitoring vegetation growth status.
Lastly, this study only used the vegetation index GRNDVI for monitoring because GRNDVI
was reported to reduce the influence of soil background and dense vegetation saturation.
Actually, the combination of various vegetation indices like NDVI, NBR (normalized burn
ratio) [60], and SAVI (soil adjusted vegetation index) [61] to make the monitoring result
more robust.
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Appendix A

Table A1. The areas and percentages of different GRNDVI levels from 2011 to 2018 in the study region (1.22 is the threshold
for 2011, and 1.24 is the threshold for other years.).

GRNDVI Level Year 2011 2012 2013 2014 2015 2016 2017 2018

(0.00–1.22 for 2011
(0.00–1.24 for other years))

(Bare land)

Area/km2 0.414 2.365 2.059 2.471 3.778 4.206 5.017 6.236

Percentage 1.30% 7.42% 6.46% 7.75% 11.85% 13.19% 15.74% 19.56%

(1.22–1.50 for 2011
(1.24–1.50 for other years))

(Low-level vegetation growth)

Area/km2 31.301 21.941 3.210 3.884 8.745 3.575 12.795 5.685

Percentage 98.18% 68.82% 10.07% 12.18% 27.43% 11.21% 40.13% 17.83%

1.50–1.75
(Medium-level vegetation growth)

Area/km2 0.162 7.337 18.427 14.539 12.411 11.999 11.427 10.410

Percentage 0.51% 23.01% 57.79% 45.60% 38.93% 37.63% 35.84% 32.65%

1.75–2.00
(High-level vegetation growth)

Area/km2 0.006 0.236 7.534 8.546 4.848 8.490 2.260 6.185

Percentage 0.02% 0.74% 23.63% 26.80% 15.21% 26.63% 7.09% 19.40%

2.00–4.00
(Remarkably dense-level vegetation

growth)

Area/km2 0.000 0.004 0.654 2.443 2.100 3.613 0.384 3.367

Percentage 0.00% 0.01% 2.05% 7.66% 6.59% 11.33% 1.21% 10.56%

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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Table A2. Areas and percentages of different land type changes in two adjacent years from 2011 to 2018 in the study region.

LTC Year 2011–2012 2012–2013 2013–2014 2014–2015 2015–2016 2016–2017 2017–2018

L-L-W
Area/km2 0.11 0.12 1.18 1.08 1.62 1.29 0.79
Percentage 0.34% 0.38% 3.69% 3.38% 5.09% 4.03% 2.48%

V-L-W
Area/km2 2.16 0.61 0.98 1.84 1.71 1.26 3.48
Percentage 6.78% 1.93% 3.06% 5.77% 5.35% 3.95% 10.91%

V-V-W
Area/km2 0.82 0.86 11.10 20.71 4.51 25.43 1.53
Percentage 2.58% 2.71% 34.82% 64.95% 14.16% 79.77% 4.81%

L-L-B
Area/km2 0.07 1.32 0.32 0.86 0.88 2.47 1.97
Percentage 0.22% 4.15% 1.00% 2.71% 2.75% 7.76% 6.17%

L-V-B
Area/km2 0.23 0.92 0.56 0.53 1.28 0.45 2.26
Percentage 0.73% 2.89% 1.77% 1.66% 4.01% 1.40% 7.09%

V-V-B
Area/km2 28.48 28.04 17.75 6.87 21.88 0.99 21.85
Percentage 89.34% 87.94% 55.66% 21.54% 68.64% 3.09% 68.55%

(L-V-B)-
(V-L-W) Area/km2 −1.93 0.31 −0.41 −1.31 −0.43 −0.81 −1.22

Table A3. Interannual vegetation growth of restoration vegetation of each year from 2013 to 2018 in the study region.

Restoration
Beginning

Year
Analysis

Year

0.00–1.24
(Bare Land)

1.24–1.75
(Low-Level Vegetation

Growth)

1.50–1.75
(Medium-Level

Vegetation Growth)

1.75–2.00
(High-Level Vegetation

Growth)

2.00–4.00
(Remarkably
Dense-Level

Vegetation Growth)

Area/km2 Percentage Area/km2 Percentage Area/km2 Percentage Area/km2 Percentage Area/km2 Percentage

2013

2013 0.000 0.00% 0.885 96.03% 0.035 3.82% 0.001 0.15% 0.000 0.00%
2014 0.113 12.26% 0.694 75.30% 0.058 6.30% 0.028 3.00% 0.029 3.15%
2015 0.160 17.37% 0.637 69.08% 0.097 10.55% 0.027 2.92% 0.001 0.07%
2016 0.128 13.94% 0.545 59.17% 0.156 16.92% 0.026 2.85% 0.066 7.12%
2017 0.161 17.46% 0.647 70.17% 0.108 11.69% 0.006 0.67% 0.000 0.00%
2018 0.088 9.59% 0.516 56.02% 0.200 21.72% 0.044 4.72% 0.073 7.95%

2014

2014 0.000 0.00% 0.335 59.26% 0.094 16.64% 0.084 14.93% 0.052 9.18%
2015 0.016 2.75% 0.283 50.03% 0.240 42.57% 0.023 4.16% 0.003 0.49%
2016 0.010 1.71% 0.145 25.62% 0.094 16.64% 0.084 14.80% 0.233 41.23%
2017 0.015 2.60% 0.283 50.06% 0.256 45.39% 0.011 1.96% 0.000 0.00%
2018 0.009 1.59% 0.103 18.28% 0.140 24.83% 0.105 18.60% 0.207 36.70%

2015

2015 0.000 0.00% 0.460 86.73% 0.070 13.27% 0.000 0.00% 0.000 0.00%
2016 0.043 8.07% 0.235 44.30% 0.071 13.40% 0.054 10.15% 0.128 24.07%
2017 0.043 8.07% 0.295 55.50% 0.175 32.92% 0.019 3.51% 0.000 0.00%
2018 0.013 2.47% 0.208 39.23% 0.103 19.39% 0.053 10.02% 0.153 28.89%

2016
2016 0.000 0.00% 0.858 67.19% 0.211 16.54% 0.126 9.89% 0.082 6.38%
2017 0.098 7.63% 0.597 46.74% 0.565 44.22% 0.017 1.30% 0.001 0.11%
2018 0.021 1.68% 0.224 17.51% 0.202 15.84% 0.393 30.76% 0.437 34.22%

2017
2017 0.000 0.00% 0.448 100.00% 0.000 0.00% 0.000 0.00% 0.000 0.00%
2018 0.009 2.00% 0.128 28.52% 0.224 50.12% 0.082 18.28% 0.005 1.08%

2018 2018 0.000 0.00% 1.726 76.40% 0.481 21.30% 0.052 2.31% 0.000 0.00%

Table A4. Statistics on the effects of restoration vegetation from 2013 to 2018 in the study region.

Effect Level Year 2013 2014 2015 2016 2017 2018

0 (Poor effect) Area/km2 0.247 0.022 0.059 0.091 0.009 0.000
Percentage 26.85% 3.97% 11.19% 7.09% 2.00% 0.00%

1 (Inferior
effect)

Area/km2 0.590 0.234 0.276 0.559 0.352 1.726
Percentage 64.00% 41.47% 51.98% 43.71% 78.64% 76.40%

2 (Medium
effect)

Area/km2 0.066 0.207 0.129 0.431 0.087 0.481
Percentage 7.12% 36.70% 24.33% 33.73% 19.35% 21.30%

3 (Good
effect)

Area/km2 0.019 0.101 0.066 0.196 0.000 0.052
Percentage 2.02% 17.86% 12.49% 15.35% 0.00% 2.31%

4 (Excellent
effect)

Area/km2 0.000 0.000 0.000 0.001 0.000 0.000
Percentage 0.00% 0.00% 0.00% 0.11% 0.00% 0.00%

The total area/km2 0.921 0.565 0.531 1.278 0.448 2.259
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