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Abstract: An automated tool for pre-operational mapping of floods and inland waters using Sentinel-
1 data is presented. The acronym AUTOWADE (AUTOmatic Water Areas DEtector) is used to denote
it. The tool provides the end user (Italian Department of Civil Protection) with a continuous, near
real-time (NRT) monitoring of the extent of inland water surfaces (floodwater and permanent water).
It implements the following operations: downloading of Sentinel-1 products; preprocessing of the
products and storage of the resulting geocoded and calibrated data; generation of the intermediate
products, such as the exclusion mask; application of a floodwater/permanent water mapping
algorithm; generation of the output layer, i.e., a map of floodwater/permanent water; delivery
of the output layer to the end user. The open floodwater/permanent water mapping algorithm
implemented in AUTOWADE is based on a new approach, denoted as buffer-from-edge (BFE), which
combines different techniques, such as clustering, edge filtering, automatic thresholding and region
growing. AUTOWADE copes also with the typical presence of gaps in the flood maps caused by
undetected flooded vegetation. An attempt to partially fill these gaps by analyzing vegetated areas
adjacent to open water is performed by another algorithm implemented in the tool, based on the
fuzzy logic. The BFE approach has been validated offline using maps produced by the Copernicus
Emergency Management Service. Validation has given good results with a F1-score larger than 0.87
and a kappa coefficient larger than 0.80. The algorithm to detect flooded vegetation has been visually
compared with optical data and aerial photos; its capability to fill some of the gaps present in flood
maps has been confirmed.
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1. Introduction

Timely and continuous monitoring of the extent of surface water bodies is very
important in the management of the living environment. On the one hand, during periods
when precipitation is significantly lower than the average one, the consequent shortage
of water propagates through the hydrological system and may cause drought in the
different segments of the hydrological system itself, including surface water [1], whose
spatial distribution represents therefore a fundamental piece of information for drought
management. On the other hand, when heavy precipitation causes floods, near-real time
data about floodwater extent and duration are essential to support rescue and damage
recovery decisions and to facilitate rapid assessment of property loss and damage [2].

Several past studies (e.g., [3–5]) demonstrated that synthetic aperture radar (SAR) sys-
tems are suitable tools for surface water mapping. They combine a high spatial resolution
(from hundreds of meters to approximately 1 m, depending on the SAR acquisition mode)
with the capability, typical of microwaves, to provide data during day and night and even
in the presence of cloud cover. Moreover, there is a clear physical mechanism for radar
scattering from water, that is, specular reflection [6]. Unless strong wind is blowing above
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the water surface, the latter has a very low roughness, and most of the incident radar energy
is scattered towards the specular direction. Therefore, a water surface is generally charac-
terized by a low backscattering and appears dark in a SAR image. Conversely, the rough
non-flooded terrain exhibits a higher backscattering and a brighter image tone [7], because
it scatters the radar signal in many different directions, included the backscattering one.

Specular reflection is not always the prevailing effect of the radar scattering from
water. In urban and agricultural flooded areas (if plants emerge from water), a dihedral
effect involving water surface and vertical structures such as stems, shrubs, or walls can
take place, producing an increase of the backscattering. However, several unknowns (e.g.,
structure and geometry for vegetation, or height and orientation of buildings for urban
areas) influence the radar response from these targets [8]. Consequently, although new
insights were provided on detecting inundations in agricultural areas [9–13] and urban
settlements [8,14–17], this task is still very challenging. Not only missed detections (i.e.,
omission errors), but also commission errors may occur when mapping surface water. In
areas with complex topography, the shadowing effect strongly influences the radiometry
of SAR data and produces a low backscatter that can be confused with the backscatter
from water bodies. Low backscatter values are measured by SAR even in the presence
of heavy precipitation (especially when dealing with X-band data) and wet snow [18–21].
Furthermore, very smooth surfaces like asphalt (roads, airports, parking lots) and/or very
dry areas like deserts appear dark in SAR imagery and may be misclassified as water.

Despite the challenges previously discussed, many processing algorithms have been
proposed for mapping permanent water and floodwater using SAR data in a fully au-
tomated way (e.g., [11,17,22–26]). Therefore, this application can be considered mature
for operational/pre-operational implementation, at least for what concerns open water.
Currently, the Copernicus Emergency Management Service (CEMS) uses satellite imagery
to rapidly provide geospatial information about natural disasters. Regarding floods, SAR
data are very often used by CEMS for mapping purposes to overcome the limits of optical
data related to the presence of clouds and the impossibility to acquire data during nighttime
(e.g., [27]). CEMS is available 24 h a day, 365 days-a-year, but is an on-demand service,
which is triggered on request by authorized users. Hence, an automatic tool enabling
continuous and systematic monitoring of water surfaces by routinely producing medium-
high resolution maps of floodwater/permanent water can complement the rapid mapping
component of CEMS for what concerns flood management. In particular, it can cope with
the timeliness in the availability of maps because a continuous service does not require
any user activation. Moreover, it can contribute to the effectiveness of CEMS activation
through a better identification of the area of interest, when images with a very high spatial
resolution are required for an accurate delineation of the flood extent.

The regular acquisitions of Sentinel-1 (S1) images, performed in the framework of
the Copernicus program, guarantee a continuous streaming of C-band SAR data useful to
systematically produce maps of water surfaces at medium-high spatial resolution (S1 data
over land have a single-look resolution of 5 × 20 m2, Section 2.1). The availability of S1
data represents therefore the driver for the implementation of the aforementioned tool. A
systematic near real-time (NRT) surface water mapping service has been recently requested
by the Italian Department of Civil Protection (DCP) in the framework of its competences
assigned by law.

This paper presents an automatic processor, which does not need any supervision,
or user intervention, that performs a systematic daily mapping of water surfaces (both
floodwater and permanent water bodies) using S1 data. The acronym AUTOWADE
(AUTOmatic Water Areas DEtector) is used to denote this tool. AUTOWADE has been
designed in the framework of the agreement between DCP and CIMA Research Foundation,
which is one of the DCP competence centers. Therefore, it has been conceived to work on
a national (Italian) scale. The implementation of a service for fast mapping of floods and
inland waters using S1 data requires the design of a chain formed by different components.
The main component is obviously water detection, but other components must be included,
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like the automatic downloading of S1 images and their preprocessing to derive geocoded
and calibrated data, the generation of reference and exclusion masks, and the delivery of
the data to the end user. All these components must be sequentially executed in a fully
automated way. Despite the large number of studies dealing with NRT water mapping,
the problem of the creation of a tool that automates the various steps needed to set up a
daily service based on SAR data was rarely tackled in past studies. A fully automated
TerraSAR-X based flood service was developed in [25] and adapted to S1 data in [28].

Although the present release of AUTOWADE focuses on open water (i.e., open flood-
water and permanent water bodies), vegetated areas close to open water that are likely
inundated as well are searched for, despite the criticalities previously underlined; the
objective is to, at least partially, fill the gaps typically present in flood maps due to unde-
tected flooded vegetation. Conversely, urban areas are not considered because the related
methodologies require interferometric data (e.g., [8,15,16]), whose processing requires the
use of S1 orbit ephemerides data, available 20 days after the data acquisition.

The algorithms implemented in AUTOWADE use different image processing tech-
niques. Flooded vegetation is detected through a combined use of co- and cross-polarized
S1 data performed taking advantage of the fuzzy logic. Open water is mapped using a new
methodology, denoted as buffer-from-edge (BFE) approach, which combines clustering,
edge filtering, automatic thresholding, and region growing; it is applied to co-polarized
data only. At present, a combined use of different image processing techniques such
as image tiling [29], used to identify a threshold separating open water from the sur-
rounding land, and region growing is well-established for water mapping from SAR
(e.g., [18,24,26,30,31]). However, AUTOWADE works on the national scale and, for each
S1 pass over Italy, it must process a number of image slices (Section 2.1) between 2 and 7,
depending on the orbit. Hence, AUTOWADE does not use the approach proposed in [29] to
determine the threshold, mainly because image tiling might be time-consuming. Through
the BFE approach, AUTOWADE tackles the problem in a new way, taking advantage of the
availability of a reference water mask to directly analyze portions of a SAR image that likely
contain comparable amounts of water and non-water pixels. The open water mapping
algorithm implemented in AUTOWADE has been quantitatively validated considering
maps produced by the CEMS in the period 2019–2021 as a benchmark; for the method to
detect flooded vegetation close to open water, a qualitative comparison with optical data
and aerial photos has been carried out.

Section 2 introduces the data used by AUTOWADE, as well as the data used to validate
the AUTOWADE-derived product. Section 3 describes in detail the different modules that
make up AUTOWADE, with particular emphasis on the open water mapping performed
through the BFE approach. Section 4 presents the results that are discussed in Section 5,
while Section 6 draws the main conclusions.

2. Data

In the next sections, the data routinely processed by AUTOWADE are introduced,
together with those used for validation purposes.

2.1. Sentinel-1 Data

Sentinel-1 is a two-satellite constellation whose payload is a SAR working at C band
(5.4 GHz). It operates in the Interferometric Wide Swath (IWS) mode over land; in IWS
mode, S1 acquires data with a 250 km swath at a spatial resolution of 5× 20 m2 (single look).
S1 products are usually made available on the Copernicus Open Access Hub (also known
as Sentinel Data Hub System—DHuS) Hub in 3–4 h. Hence, these products are suitable for
a NRT service like that presented in this paper. AUTOWADE makes use of S1 Level-1 (L1)
Ground Range Detected (GRD) products, whose spatial resolution is about 20 × 20 m2; S1
data are available in dual polarization (VV + VH) for the IWS mode. Considering both
satellites of the S1 constellation, the repeat cycle of S1 is 6 days. Considering both ascending
and descending orbits and the overlap of the orbits, the average revisit time is 2–3 days.
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AUTOWADE has been conceived to work daily on the Italian territory, whose coverage
is performed by means of 7 descending orbits (morning passes) and 6 ascending orbits
(afternoon passes) as shown in Figure 1. For each orbit, the S1 GRD products are available
as image slices for the purpose of data manageability. Each slice is a stand-alone product
that can be processed independently. A total of 30 slices are included in the descending
orbits covering Italy, while 34 slices are included in the ascending orbits.
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2.2. Ancillary Data

In order to perform the geocoding of the S1 GRD data, the 1-arcsecond (30 m) Shuttle
Radar Topography Mission (SRTM) digital elevation model (DEM) is used by AUTOWADE.
Recently, new DEMs have been proposed such as the corrected SRTM [32] and the Coperni-
cus 30-m global DEM, referred to as GLO-30. The latter, open to the public since November
2020, will be tested in the following releases of AUTOWADE. A mosaicking of the SRTM
tiles covering Italy has been performed once and for all during the design phase of the tool
and, from this mosaic, a slope map has been extracted to be used in the generation of the
exclusion mask (set of pixels where water mapping is unfeasible).

Another static layer is used by AUTOWADE in the generation of the exclusion mask,
namely a land cover map produced by rasterizing the CORINE Land Cover (CLC) level 3
vector file at a spatial resolution of 20 × 20 m2 on the WGS84 reference ellipsoid (projection
LATLON-WGS84). The most recent version (2018) of the CLC data, released in the frame
of the Copernicus program and available through the catalog of the Copernicus Land
Monitoring Service (Pan-European component), has been chosen. The land cover map also
represents the master product used to generate the AUTOWADE-derived product and
consists of 66,000 × 58,500 pixels.

AUTOWADE also uses a reference water mask. It is a static layer derived from the
water and wetness (WAW) product available through the Copernicus Land Monitoring
Service (Pan-European component—high-resolution layers). WAW is a thematic map that
identifies permanent water, temporary water, permanent wetness, and temporary wetness.
Only the pixels labelled as permanent water have been included in the reference water
mask. For this class, the accuracy is expected to exceed 85% [33].

Not only static layers, but also constantly updated maps are included among the
ancillary data. These maps are produced by another processor, described in [34], which
works on Sentinel-2 (S2) level-2A (L2A) data. In particular, a map of Normalized Difference
Vegetation Index (NDVI) and a map of snow cover, both projected on the CLC reference
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grid, are used to search for flooded vegetation and to complement the exclusion mask.
For each of the 66,000 × 58,500 pixels, these data are derived from the most recent S2
observation performed under cloud-free conditions. If the most recent S2 observation is
older than one month, NDVI and snow cover data are not used, and flooded vegetation
is not searched for. An example of NDVI map is shown in Figure 2, while a summary
of the main characteristic of the ancillary layers is reported in Table 1. From Table 1, it
can be noted that the spatial resolution of the CLC data is coarser than that of S1 and the
other data. However, since AUTOWADE makes use of the CLC only to mask urban areas,
the impact of the use of this relatively low-resolution data on the accuracy of the maps of
floodwater/permanent water is expected to be quite small.
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Figure 2. NDVI map updated on 12 January 2021. Gaps correspond to pixels where no cloud-free S2
data were available in the last 30 days (i.e., since 12 December 2020), or to pixels covered by snow, or
water bodies.

Table 1. Spatial resolution and revisit frequency of the ancillary data.

Spatial Resolution Revisit Frequency

Static Layers

Shuttle Radar Topography Mission (SRTM) 30 m -
CORINE Land Cover (CLC) 100 m -
Water and Wetness (WAW) 20 m -

Dynamic Layers

Normalized Difference Vegetation Index
(NDVI) map from Sentinel 2 20 m 5 days

Snow cover map from Sentinel 2 20 m 5 days

2.3. Validation Data

CEMS-derived products have been mainly used to validate the open water mapping
algorithm implemented in AUTOWADE. They have been generated in the framework
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of the CEMS activations listed in Table 2. Usually, CEMS products are generated based
on automatic extraction procedures, followed by an important/crucial step of validation
based on visual interpretation by skilled operators. Within the CEMS portfolio, delineation
products, which provide an assessment of the event’s extent, have been selected. These
products also include hydrography data useful to assess the AUTOWADE capability to
map permanent water. For this latter purpose, hydrography data have been complemented
by open water maps generated by applying the algorithm proposed in [35] to S2 images
acquired under standard non-flooded conditions.

Table 2. Test cases considered in this study for open water mapping.

CEMS
Activation Code Time Period Location River Basin Type of Flood Area of

Interest [ha]
Estimated Flooded

Area [ha]

EMSR359 May 2019 Modena (Italy) Secchia Riverine flood 28,000 283
EMSR411 November 2019 Puget-sur-Argens (France) Argens Riverine flood 39,800 285

EMSR417 December 2019 Coimbra (Portugal) Mondego Riverine flood
& dike breaches 147,600 9460

EMSR429 February 2020 Springfield Clonara
(Ireland) Shannon Flash flood 7900 546

EMSR437 May 2020 Dax (France) Adour Riverine flood 40,668 1850
EMSR445 June 2020 Radauti-Prut (Romania) Prut Riverine flood 95,100 1358
EMSR492 January 2021 Mont De Marsan (France) Adour Flash flood 103,500 4899

EMSR496 January 2021 Rieti (Italy) Turano
Riverine flood

& dams
emptying

8400 307

EMSR501 February 2021 Shkoder (Albania) Buna Riverine flood 100,500 5039
EMSR502 February 2021 Mallow (Ireland) Blackwater Riverine flood 22,500 470

The test cases in Table 2 have been selected based on the following constraints: (1)
floods occurred in Europe, in order to take advantage of the Copernicus-derived ancillary
data; (2) floods mapped by CEMS using S1 data; (3) floods for which a (at least partially)
cloud free S2 image acquired close in time to the S1 one and under non-flooded conditions
was available. In addition, events occurring in environments very different from the
Italian one (like Scandinavia) have been neglected. Note that since the oldest Sentinel
data are removed from the Copernicus Open Access Hub, only recent events (2019–2021)
have been considered. The S1 slices used to generate the AUTOWADE-derived open
floodwater/permanent water maps are listed in Table 3. It can be noted that, for each test
case, even a pre-flood image has been used to generate the AUTOWADE-derived maps.

Table 3. S1-GRD slices used in this study for open water mapping.

CEMS Activation Code Sentinel-1 Data

EMSR359
S1B_IW_GRDH_1SDV_20190507T171356_20190507T171421_016141_01E5E8_5A61 pre-flood
S1A_IW_GRDH_1SDV_20190513T171426_20190513T171451_027212_031159_E494 flood image

EMSR411
S1B_IW_GRDH_1SDV_20191119T053524_20191119T053549_018992_023D59_A320 pre-flood
S1A_IW_GRDH_1SDV_20191125T053615_20191125T053640_030063_036EEE_FF7D flood image

EMSR417
S1A_IW_GRDH_1SDV_20191211T064251_20191211T064316_030297_03770D_7B8C pre-flood
S1A_IW_GRDH_1SDV_20191223T064251_20191223T064316_030472_037D16_1012 flood image

EMSR429
S1A_IW_GRDH_1SDV_20200217T182251_20200217T182316_031296_0399B6_DA09 pre-flood
S1B_IW_GRDH_1SDV_20200223T182202_20200223T182227_020400_026A63_888F flood image

EMSR437
S1A_IW_GRDH_1SDV_20200507T060905_20200507T060930_032455_03C224_66CF pre-flood
S1B_IW_GRDH_1SDV_20200513T060818_20200513T060843_021559_028EE8_45FA flood image

EMSR445
S1A_IW_GRDH_1SDV_20200620T160959_20200620T161024_033103_03D5BD_2501 pre-flood
S1B_IW_GRDH_1SDV_20200626T160915_20200626T160940_022207_02A256_2724 flood image

EMSR492
S1A_IW_GRDH_1SDV_20201221T060912_20201221T060937_035780_04301A_3C7A pre-flood
S1A_IW_GRDH_1SDV_20210102T060911_20210102T060936_035955_04362E_97BF flood image
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Table 3. Cont.

CEMS Activation Code Sentinel-1 Data

EMSR496
S1A_IW_GRDH_1SDV_20210115T051146_20210115T051211_036144_043CD9_7753 pre-flood
S1A_IW_GRDH_1SDV_20210127T051146_20210127T051211_036319_0442F1_EF15 flood image

EMSR501
S1B_IW_GRDH_1SDV_20201214T163224_20201214T163249_024701_02F011_8A13 pre-flood
S1B_IW_GRDH_1SDV_20210212T163221_20210212T163246_025576_030C3D_87F3 flood image

EMSR502
S1B_IW_GRDH_1SDV_20210217T182208_20210217T182233_025650_030EBA_FB05 pre-flood
S1A_IW_GRDH_1SDV_20210223T182257_20210223T182322_036721_0450DC_EC43 flood image

Generally, CEMS-derived products do not include flooded vegetation if they are pro-
duced using SAR data. To verify the AUTOWADE capability to detect flooded vegetation
adjacent to open water, two events recently that occurred in Italy have been considered as
test cases (Table 4). For the first event that occurred in October 2020 in the Vercelli district,
an S2 image acquired on the same day as the S1 flood image has been used as reference data.
For the flood that occurred in January 2021 (also mapped by CEMS: EMSR496 in Table 2),
aerial photos were available as reference. From Table 4, it can be noted that pre-flood S2
data have been utilized to estimate NDVI under non-flooded conditions (Section 2.2).

Table 4. S1-GRD slices and S2-L2A tiles used in this study for flooded vegetation mapping.

Instrument Data Location

Sentinel-1
S1B_IW_GRDH_1SDV_20200927T172230_20200927T172255_023564_02CC5D_1886 pre-flood

Vercelli (Italy)
S1A_IW_GRDH_1SDV_20201003T172311_20201003T172336_034635_040884_7989 flood image

Sentinel-2
S2A_MSIL2A_20200928T102031_N0214_R065_T32TMR_20200928T131819 pre-flood
S2B_MSIL2A_20201003T101759_N0214_R065_T32TMR_20201003T145325 flood image

Sentinel-1
S1A_IW_GRDH_1SDV_20210115T051146_20210115T051211_036144_043CD9_7753 pre-flood

Rieti (Italy)S1A_IW_GRDH_1SDV_20210127T051146_20210127T051211_036319_0442F1_EF15 flood image

Sentinel-2 S2A_MSIL2A_20201221T100431_N0214_R122_T33TUH_20201221T115632 pre-flood

3. Methods

In the following, the main functionalities of AUTOWADE, schematically shown in
Figure 3, are described in detail.
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3.1. Download and Preprocessing of Sentinel-1 Data

The first block of the AUTOWADE tool performs the operations of searching, down-
loading, and unzipping S1 L1 GRD data by using a script in Python language, as shown
in the left side of Figure 4. It takes advantage of the freely available Sentinelsat tool
(https://pypi.org/project/sentinelsat/, accessed on 31 March 2021) that enables users to
automatically search and download Sentinel-1/2/3/5p data. For the script, the following
Sentinelsat inputs are used: (1) URL of the Copernicus Open Access Hub; (2) start date; (3)
product type (GRD in this case); (4) Search polygon in GeoJSON format (corresponding to
Italy in this case).

The downloading script is scheduled to run every hour (365 days-a-year) to continu-
ously verify the availability of new S1 images; in this way, possible delays in the production
and delivery of L1 GRD products are managed.

Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 30 
 

 

 
Figure 3. Block diagram of the AUTOWADE’s main functionalities. 

3.1. Download and Preprocessing of Sentinel-1 Data 
The first block of the AUTOWADE tool performs the operations of searching, down-

loading, and unzipping S1 L1 GRD data by using a script in Python language, as shown 
in the left side of Figure 4. It takes advantage of the freely available Sentinelsat tool 
(https://pypi.org/project/sentinelsat/, accessed on 31 March 2021) that enables users to au-
tomatically search and download Sentinel-1/2/3/5p data. For the script, the following Sen-
tinelsat inputs are used: (1) URL of the Copernicus Open Access Hub; (2) start date; (3) 
product type (GRD in this case); (4) Search polygon in GeoJSON format (corresponding 
to Italy in this case). 

The downloading script is scheduled to run every hour (365 days-a-year) to continu-
ously verify the availability of new S1 images; in this way, possible delays in the produc-
tion and delivery of L1 GRD products are managed. 

 
Figure 4. Block diagram of the script for S1 data downloading and preprocessing implemented in AUTOWADE. Figure 4. Block diagram of the script for S1 data downloading and preprocessing implemented in AUTOWADE.

The preprocessing of S1 data is schematized in the right side of Figure 4; it is performed
using the SARscape COTS software, available as a tool of the IDL/ENVI commercial
software package. In particular, a SARscape batch script in IDL language has been created;
it is scheduled to be executed twice a day (at 02:00 AM for the afternoon passes of the
previous day and 06:00 PM for morning passes) 365 days-a-year, provided that new
GRD products are available. The S1 data are initially imported into SARscape and the
slices belonging to the same orbit are mosaicked. Then, the data are radiometrically
calibrated (backscattering coefficient σ0) according to the radar equation. The calibration
involves correction for the scattering area (each output pixel is normalized for the real
illuminated area of each resolution cell), the antenna gains pattern, and the sensor-to-
ground distance variation from near range to far range. Moreover, a correction factor based
on a modified cosine model [36] is applied to the backscattering coefficient to compensate
for range variations.

Calibrated data are geocoded using the SRTM DEM introduced in Section 2.2; a
pixel size of 15 × 15 m2 has been chosen for the geocoded data. To reduce the speckle
noise characteristic of any SAR image, the Enhanced Lee Filter [37] with a window size
of 5 × 5 pixels is applied. Finally, the backscattering data are converted in dB units. An
example of the output of the preprocessing phase is shown in Figure 5.

https://pypi.org/project/sentinelsat/
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In order to distinguish between floodwater and permanent water, AUTOWADE adopts
a change detection approach (Section 3.2.2) that analyzes pairs of S1 images acquired from
the same orbit; to this aim, the preprocessing step creates a data archive where calibrated,
geocoded, and filtered data acquired from different orbits are distinguished.
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and VV polarization).

3.2. The Floodwater/Permanent Water Mapping Algorithm

The execution of the floodwater/permanent water mapping algorithm follows imme-
diately the execution of the preprocessing batch script described above; thus, the algorithm
runs twice a day. It has been written in IDL language and takes advantage of the possibility
to launch ENVI routines through specific IDL instructions. The algorithm is divided in
four blocks; they are described hereafter.

3.2.1. Preliminary Operations

The preliminary operations carried out by the water mapping algorithm are shown
in Figure 6, where t2 indicates current time, while t1 indicates the time of the previous S1
acquisition from the same orbit (typically t2 − t1 = 6 days). The spatial subsetting divides
the S1 mosaicked data in frames (i.e., smaller rasters having a maximum number of lines
equal to 17,000) in order to avoid dealing with big rasters, which may require an excessive
use of memory. The operations described hereafter are referred to a single frame and are
sequentially performed until all the frames are processed.

The ancillary data and the map produced using the data acquired at t1 are resampled
and reprojected onto the spatial grid of the current frame. Then, the exclusion mask
is derived from the ancillary data to exclude from the classification areas where radar
backscatter is insensitive to the presence of surface water, such as urban areas (identified
through the CLC data), dense vegetation (pixels where NDVI is larger than a threshold
equal to 0.7), and areas with complex topography (pixels having a slope larger than 7◦).
The last preliminary operation is the application of a difference operator (corresponding
to the log-ratio operator because the data are in dB units), which allows AUTOWADE to
compare pixel by pixel the S1 images acquired at t1 and at t2 on the geographical area
corresponding to the current frame.
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3.2.2. The Buffer-from-Edge (BFE) Approach to Map Open Water

The core of the AUTOWADE tool is represented by the algorithm designed to map
open floodwater and permanent water; its flowchart is shown in Figure 7. The algorithm is
organized in two phases. In the first phase, open water is detected by processing the S1
data at time t2 (left side of Figure 7). In the second phase, the same operations performed on
σ0

VV(t2) are applied to the image difference to distinguish open floodwater from permanent
water (right side of Figure 7). Only co-polarized data are used here, while VH data are
successively used to identify flooded vegetation (Section 3.2.4).

The algorithm is based on the BFE approach, which has been derived from the buffer-
from-cluster approach proposed in [35] for optical data. The BFE approach takes advantage
of the availability of the reference water mask derived from the WAW product and com-
bines different image processing techniques, such as the Iterative Self-Organizing Data
Analysis Technique Algorithm (ISODATA) [38], the Roberts edge filter [39], the Otsu’s
thresholding [40], and the region growing (RG) [41,42].

The first step of the BFE approach consists of the application of the ISODATA, which
is an unsupervised clustering algorithm that separates groups of objects in a scene (more
details on the ISODATA can be found in Appendix A). The optimum number of clusters is
not known, so it is generally chosen to be conservatively high [38]. Hence, although in this
case the goal is to distinguish water from non-water, a maximum number of 10 clusters has
been chosen. Since backscattering from open water is very low (see the Introduction), the
objects belonging to the cluster presenting the lowest median of the values of σ0

VV(t2) are
selected and labelled as the clustering-derived water area (CDWA). Median value is used
instead of mean value being less sensitive to outliers. Then, a reliable threshold separating
water pixels from non-water ones is determined.
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A fully automated algorithm requires to compute the threshold in an automatic way
by using methods such as that proposed by Otsu [40]. However, automatic thresholding
works well only if the fraction of water pixels is large enough to give rise to a detectable
mode (i.e., the population composed of water and non-water pixels exhibits a bimodal
distribution). To identify a subset of a S1 image whose histogram is characterized by two
distinguishable modes, the CDWA is firstly combined with the reference water mask to
include only the objects that contain permanent water bodies. In this way, the modified
clustering-derived water area (MCDWA), which contains only open water detected by
S1, is created. Then, a Roberts edge filter [39] is applied to the MCDWA to identify the
water-land edge. Note that the Roberts filter is not directly applied to the reference mask
because it may not represent the current water-land edge (for instance in case of river
overflow). Successively, two buffer zones, whose buffering distance may be iteratively
enlarged, are created around the edge. One buffer zone is included in the MCDWA (and is
likely composed by water pixels); the other one is included neither in the MCDWA, nor in
the CDWA (and is likely composed by non-water pixels).

An example illustrating the location of the edge identified by the Roberts filter and
the buffer zones is shown in Figure 8c. Looking at Figure 8, it can be noted that the pixels
appearing red in panel (a), likely flooded because σ0

VV(t2) is much smaller than σ0
VV(t1), are

not comprised in the cyan buffer zone in panel (c) because of the intersection between the
original CDWA and the reference water mask, performed to be sure that the cyan buffer
zone contains only water pixels.
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Figure 8. Panel (a): RGB false color images created using the S1 data gathered to produce the
floodwater/permanent water map for the EMSR359 case study and zooming on the area affected
by the flood; red: pre-flood image (at t1), green/blue: flood image (at t2). Panel (b): output of
the ISODATA applied to the flood image (CDWA in red). Panel (c): same as panel (a), but with
superimposed the land-permanent water edge (yellow), the buffer zone included in the MCDWA
(cyan) and the buffer zone included neither in the MCDWA, nor in the CDWA (green).

The creation of the two buffer zones (cyan and green in Figure 8c) aims at selecting a
set of pixels containing a comparable amount of water and non-water pixels. To verify the
bimodality of the histogram of the backscatter values of this set of pixels, a Gaussian mixture
model (GMM) is assumed. The population formed by the pixels included in the buffer
zones is therefore considered as represented by two normally distributed subpopulations
(water and non-water pixels). The rationale is that, with an increasing equivalent number
of looks, the PDF of the log-transformed σ0 can be modeled as a Gaussian distribution [24].
Then, a non-linear least square fit to a Gaussian function is computed for the histograms of
the two buffer zones. Figure 9 shows, for the same case study considered in Figure 8, the
histograms of the pixel values of the two buffer zones, and the Gaussian functions fitting
the histograms.



Remote Sens. 2021, 13, 1342 13 of 29

Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 30 
 

 

(a), but with superimposed the land-permanent water edge (yellow), the buffer zone included in the MCDWA (cyan) and 
the buffer zone included neither in the MCDWA, nor in the CDWA (green). 

The creation of the two buffer zones (cyan and green in Figure 8c) aims at selecting a 
set of pixels containing a comparable amount of water and non-water pixels. To verify the 
bimodality of the histogram of the backscatter values of this set of pixels, a Gaussian mix-
ture model (GMM) is assumed. The population formed by the pixels included in the buffer 
zones is therefore considered as represented by two normally distributed subpopulations 
(water and non-water pixels). The rationale is that, with an increasing equivalent number 
of looks, the PDF of the log-transformed ߪ଴can be modeled as a Gaussian distribution 
[24]. Then, a non-linear least square fit to a Gaussian function is computed for the histo-
grams of the two buffer zones. Figure 9 shows, for the same case study considered in Fig-
ure 8, the histograms of the pixel values of the two buffer zones, and the Gaussian func-
tions fitting the histograms. 

 
Figure 9. Histogram of the ߪ଴values of the subpopulations composed of the pixels belonging to 
the buffer zone included in the MCDWA (cyan dashed lines) and the buffer zone included neither 
in the MCDWA, nor in the CDWA (green dashed lines). Solid lines represent the Gaussian func-
tions fitting the histograms. The EMSR359 case study is considered. 

The bimodality of the overall histogram is tested by evaluating the Ashman’s D co-
efficient [43], the bimodality coefficient [44,45], and the ratio between the modes. If these 
quantities are larger than threshold values determined in previous literature (see Appen-
dix B for details), the bimodality test is considered as passed. Otherwise, the buffer zone 
containing the smallest number of pixels is enlarged and the bimodality test is repeated. 
This iterative process stops when the bimodality test is passed or a maximum number of 
100 repetitions is reached. 

If the bimodality check is passed, the Otsu’s automatic method [40] is used to com-
pute a threshold value (ThOtsu_w). Then, RG is applied, as done in [18,26,46], in order to 
account for the spatial context that is not considered if changed pixels are simply identi-
fied based on a threshold value, without any tolerance. RG analyses neighboring pixels of 
a set of seed points and determines whether the pixel neighbors should be added to the 

Figure 9. Histogram of the σ0 values of the subpopulations composed of the pixels belonging to the
buffer zone included in the MCDWA (cyan dashed lines) and the buffer zone included neither in the
MCDWA, nor in the CDWA (green dashed lines). Solid lines represent the Gaussian functions fitting
the histograms. The EMSR359 case study is considered.

The bimodality of the overall histogram is tested by evaluating the Ashman’s D
coefficient [43], the bimodality coefficient [44,45], and the ratio between the modes. If
these quantities are larger than threshold values determined in previous literature (see
Appendix B for details), the bimodality test is considered as passed. Otherwise, the
buffer zone containing the smallest number of pixels is enlarged and the bimodality test is
repeated. This iterative process stops when the bimodality test is passed or a maximum
number of 100 repetitions is reached.

If the bimodality check is passed, the Otsu’s automatic method [40] is used to compute
a threshold value (ThOtsu_w). Then, RG is applied, as done in [18,26,46], in order to account
for the spatial context that is not considered if changed pixels are simply identified based
on a threshold value, without any tolerance. RG analyses neighboring pixels of a set of seed
points and determines whether the pixel neighbors should be added to the seed region
based on a tolerance criterion [41,42]. The following relationships are used to determine
the seed region and the tolerance:

i ∈ seed region =⇒ σ0
VV(i) < σ0

VV_seed = 0.5·(ThOtsu_w + µw) (1)

σ0
VV_Tolerance = (µw + 2sw) (2)

where i is a pixel of the processed frame, µw and sw are the mean value and standard
deviation of the Gaussian distribution fitting the histogram of the σ0

VV values of the pixels
in the buffer zone included in the MCDWA (cyan solid line in Figure 9). From Equation (1),
it can be deduced that the seed region is formed by the pixels whose backscattering is
less than the mean value between the mode of the aforementioned Gaussian distribution
(corresponding to the mean) and ThOtsu_w.

If the bimodality test is not passed after 100 repetitions of the iterative process de-
scribed above, default values derived from the analysis of the test cases reported in Table 2
are used to identify the seed region and the tolerance, namely σ0

VV_seed = −17 dB and
σ0

VV_Tolerance = −14 dB.
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The set of pixels selected through Equations (1) and (2) is denoted as the thresholding-
derived water area (TDWA). The BFE approach combines the original CDWA and the
TDWA to obtain the map of open water based on the following scheme:

• pixels belonging to both the CDWA and the TDWA are classified as open water;
• pixels belonging only to the TDWA are classified as open water if they are located in

a buffer zone of buffering distance 1 km created around the water area determined
according to the previous point.

3.2.3. Discrimination between Open Floodwater and Permanent Water

To identify floodwater, the BFE approach is applied to the difference image, i.e., to
the map of ∆σ0

VV = σ0
VV (t2)− σ0

VV(t1), as schematized in the right panel of Figure 7. In
this case, the objects belonging to the cluster presenting the lowest median of the values
of ∆σ0

VV are selected and labelled as the clustering-derived flooded area (CDFA). The
latter is then modified to include only the objects that contain open water according to the
classification applied to σ0

VV(t2), but do not contain permanent water bodies according
to the reference water mask. In this way the modified clustering-derived flooded area
(MCDFA) likely contains only flooded pixels, i.e., pixels whose backscattering coefficient
significantly decreased with respect to that measured at time t1. The Roberts filter is then
applied to detect the floodwater-land edge and two buffer zones are created around the
edge to select a set of pixels exhibiting a bimodal histogram of the ∆σ0

VV values. For the
same example considered in Figure 8, Figure 10 shows the floodwater-land edge and the
buffer zones created around it.

A GMM has been assumed for the distribution of flooded and non-flooded pixels in
the difference image (even the distribution of the log-ratio SAR image is expected to follow
the Gaussian model [24]). For the population of pixels included in the two buffer zones, the
bimodality test is performed in a similar way to that described in the previous paragraph.
If the bimodality check is passed, a threshold value (ThOtsu_f) is computed through the
Otsu’s method. Then, the following relationships are used to derive the seed region and
the tolerance:

i ∈ seed region =⇒ ∆σ0
VV(i) < ∆σ0

VV_seed = 0.5·
(

ThOtsu_ f + µ f

)
(3)

∆σ0
VV_Tolerance =

(
µ f + 2s f

)
(4)

where µ f and s f are the mean value and standard deviation of the Gaussian distribution
fitting the histogram of the ∆σ0

VV values of the pixels in the buffer zone included in the
MCDFA. Through Equations (3) and (4), the thresholding-derived flooded area (TDFA) is
identified.
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The original CDFA and the TDFA are combined to obtain the map of flooded pixels
based on the following scheme:

• pixels belonging to both the CDFA and the TDFA are assigned to the class of flooded
pixels;

• pixels belonging only to the TDFA are assigned to the class of flooded pixels if they
are located in a buffer zone of buffering distance 1 km created around the flooded area
determined according to previous point.

The outputs of the two BFE procedures are finally combined to perform the discrimi-
nation between open floodwater and permanent water (final classification box in Figure 7).
The following scheme is used by AUTOWADE:

• pixels belonging to class of open water are finally classified as open floodwater if
they also belong to the class of flooded pixels, or if they have been classified as open
floodwater at time t1 (old map, see Figure 7);

• pixels belonging to class of open water are finally classified as permanent water if they
also belong to the reference water mask, or if they are adjacent to the reference water
mask and do not belong to the class of flooded pixels, or if they have been classified
as permanent water at time t1 (old map at the bottom of Figure 7).

All the flooded pixels grouped in patches smaller than 20,000 m2 (50 pixels) are filtered
out, thus assuming 20,000 m2 as minimum mapping unit. Obviously, pixels comprised in
the exclusion mask cannot be classified as open floodwater or permanent water.

3.2.4. Flooded Vegetation

The key to detect flooded vegetation using backscattering data is the double bounce
backscattering. It occurs when the portion of the radar energy that is specularly reflected
by the ground hits the plant stalks that act like dihedral corner reflectors and return the
incoming energy back to the radar sensor [7]. If calm water covers the ground, most of
the incoming radar energy is specularly reflected and the intensity of the double-bounce
effect increases; this may imply a significant increase of the backscatter with respect to that
measured under non-flooded conditions, i.e., large values of ∆σ0

VV .
However, flooded vegetation does not generally have a clear and unique radar signa-

ture that can be easily detected. First of all, the double bounce is the prevailing effect of
flooded vegetation if the penetration into the canopy is sufficient [8]. In dense vegetation,
volume scattering hampers the detection of floodwater. This is the reason why pixels with
NDVI > 0.7 are comprised in the exclusion mask. Moreover, even an increase of soil
moisture and/or soil roughness (caused for instance by ploughing activities) produces
large values of ∆σ0

VV . Hence, simply searching for increases of the backscatter may cause
commission errors. Recently, the use of cross-polarized data has been suggested to better
detect the double bounce [11,47,48] considering that, in principle, the double bounce does
not give rise to depolarization, so that small values of ∆σ0

VH = σ0
VH (t2) − σ0

VH (t1) are
expected in flooded vegetation.

The procedure adopted to identify flooded vegetation in AUTOWADE is shown
in Figure 11. The output of the ISODATA applied to ∆σ0

VV is analyzed and the objects
belonging to the cluster presenting the highest median of the values of ∆σ0

VV are selected.
Then, to reduce the risk of making commission errors, only objects adjacent to areas
classified as flooded are maintained, also considering that, as discussed in the Introduction,
the objective is to fill the gaps typically present in flood maps. In practice, an object is
maintained if it is connected to a buffer zone of two pixels arounds floodwater, created to
account for imprecisions in the identification of the objects in the scene (e.g., due to residual
spackle). Successively, the mean values of NDVI (denoted as NDVI), ∆σ0

VV (∆σ0
VV) and

∆σ0
VH (∆σ0

VH) are computed for each selected object. Objects having NDVI ≤ 0.2 are
removed since in this case the backscatter increase is ascribed to an increase of soil moisture
and/or roughness. Remaining objects are assigned to the class of flooded vegetation
according to a fuzzy logic-based approach. Through a standard S fuzzy membership
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function (see Appendix C for more details about fuzzy logic), a degree of membership to
the class of flooded vegetation is assigned, depending on the values of ∆σ0

VV , ∆σ0
VH , and

the percentage (p) of the object’s edge pixels connected to open water in the following way:

d1 = S
(

x = ∆σ0
VV , x1 = 0 dB, x2 = 4 dB

)
(5)

d2 = S
(

x = ∆σ0
VV − ∆σ0

VH , x1 = 0 dB, x2 = 6 dB
)

(6)

d3 = S(x = p, x1 = 0%, x2 = 100%) (7)

where d1, d2, and d3 are degrees of membership, x is the independent variable, x1 and x2
are the parameters of the S function (see Figure 11). Through Equations (5)–(7), maximum
membership (equal to 1) to the class of flooded vegetation is given to objects having
∆σ0

VV > 4 dB, ∆σ0
VV −∆σ0

VH > 6 dB and totally surrounded by open water. The combination
of the membership’s degrees is carried out by computing their average and if the average is
larger than 0.5, an object is labelled as flooded vegetation (defuzzification box in Figure 11).
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3.3. Validation

To quantitatively represent the results of the comparison between CEMS-derived maps
and AUTOWADE-derived open floodwater/permanent water maps, a confusion matrix
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has been computed for each case study listed in Table 2, assuming the CEMS-derived
maps as reference data. A confusion matrix summarizes the performance of a classification
algorithm; three thematic classes have been considered: (1) non-water, (2) open floodwater,
(3) permanent water. From the confusion matrices, the following accuracy metrics have
been derived: overall accuracy (OA), kappa coefficient (κ), F1-score (computed as the
arithmetic mean of the per-class F1-scores [49]), errors of commission (εcomm) and omission
(εom) for the classes of open floodwater and permanent water.

It must be considered that the classes of water pixels are often underrepresented
compared to the non-water class. This implies that very high values of OA can be easily
obtained. To tackle this problem at least partially, limited geographic areas have been
considered to derive the confusion matrices. The boundaries of the geographic areas have
been determined using the “area of interest” shapefile included in the CEMS data (see [34]
for more details), whose size is reported in Table 2 (6th column).

To further evaluate the quality of the AUTOWADE-derived maps, for each test case,
the total extent (in ha) of the area classified as open floodwater has been calculated to be
compared with the total flooded surface estimated by CEMS (Table 2, last column). The
percentage of the flooded surface with respect to the size of the area of interest (AOI) has
been computed too.

4. Results
4.1. Results of the BFE Approach Implemented in AUTOWADE

The intermediate results of the various steps of the BFE approach and the final map
are shown in Figure 12 for the Modena test site (EMSR359, Table 2). It can be noted that
the output map (panel d) is basically derived from the maps of TDWA (panel e) and TDFA
(panel f). The maps of CDWA and CDFA, derived from the ISODATA, correspond to the
red pixels in panels b,c. As expected, the maps of CDWA and CDFA are very noisy. Hence
the need to combine the CDWA with the reference water mask to select the objects actually
corresponding to water bodies (MCDWA). Similarly, the CDFA is modified to select the
objects that contain open water, but do not contain permanent water bodies (MCDFA).

4.2. Results of the Flooded Vegetation Mapping Method Implemented in AUTOWADE

A full example of the results of the flooded vegetation algorithm for the Vercelli test
case (Table 4) is shown in Figure 13. Many objects belong to the cluster of high ∆σ0

VV , most
of them because of the increase of soil moisture due to rain; hence the need to focus on
objects adjacent to open water having NDVI > 0.2 to limit confusion between backscatter
increases due to soil moisture variations and the presence of a double bounce structure
formed by the horizontal water surface and vertical stems. The AUTOWADE-derived
floodwater map (panel e) underestimates floodwater mapped using S2 (red line in panel a).
This is partially due to the water receding, considering that S2 data were acquired in the
morning of 3 October 2020, i.e., few hours after the peak of the Vercelli event; conversely, S1
data were acquired in the afternoon (about 7 h later than S2 data). Nevertheless, including
flooded vegetation in the AUTOWADE-derived classification, the omission error reduces
from 45% to about 40%, with a negligible increase of the commission error (around 5%).
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Figure 12. Full example of the results of the BFE approach implemented in AUTOWADE for the EMSR359 test case. Panel
(a): RGB false color image produced using the S1 data (red: pre-flood image, green/blue: flood image); panel (b): output of
the ISODATA applied to σ0

VV (CDWA in red); panel (c): output of the ISODATA applied to ∆σ0
VV (CDFA in red); panel (d):

map of open floodwater (cyan)/permanent water (blue); panel (e): TDWA (in red); panel (f): TDFA (in red). All the maps
are zoomed on the area affected by the flood.

4.3. Accuracy Metrics and Extent of the Flooded Area

The results of the comparison between AUTOWADE-derived and CEMS-derived
maps, expressed in terms of κ and F1-score, are reported in Table 5. The former metric is
in the range [0.80–0.90] with an average value (over the 10 case studies) of 0.85, while the
F1-score is in the range [0.87–0.94] with an average value of 0.90. Table 5 also includes the
F1-score computed as the average of the F1-scores of the two water classes only. In this
case, it ranges between 0.80 and 0.92 with an average value of 0.85. For what concerns
the errors, they are reported in Table 6 for the class of permanent water and Table 7 for
the class of open floodwater. Regarding εcomm, it ranges between 0.6% and 21.4% with
an average value (over the 10 case studies) of 9% for the class of permanent water, and
between 8.5% and 25.3% with an average value of 17.5% for the class of open floodwater.
For what concerns εom, it is in the range [2.5–32%] with an average value equal to 17.8%
for permanent water, and in the range [1.7–21.2%] with an average value equal to 13.6%
for floodwater.
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Figure 13. Example of the results of the method to map flooded vegetation implemented in AU-
TOWADE for the Vercelli test case. Panel (a): RGB false color image produced using the S1 data (red:
pre-flood image, green/blue: flood image) with, superimposed in red, the boundaries of the flooded
area detected using S2 data; panel (c): output of the ISODATA applied to ∆σ0

VV (green: cluster of the
objects with high ∆σ0

VV ); panel (e): map of open floodwater (cyan), flooded vegetation (sea green)
and permanent water (blue); panels (b,d,f): zooms on flooded vegetation.

Table 5. Comparison between CEMS-derived and AUTOWADE-derived open floodwa-
ter/permanent water maps in terms of kappa coefficient and F1-score. The latter has been computed
as the arithmetic mean over individual F1-scores considering all the classes (3rd column), or only the
two water classes (4th column).

CEMS Activation Code κ F1-Score F1-score for Water Classes

EMSR359 0.87 0.91 0.87
EMSR411 0.84 0.90 0.85
EMSR417 0.90 0.91 0.86
EMSR429 0.84 0.90 0.85
EMSR437 0.80 0.88 0.83
EMSR445 0.87 0.90 0.86
EMSR492 0.84 0.87 0.80
EMSR496 0.87 0.94 0.92
EMSR501 0.83 0.89 0.84
EMSR502 0.86 0.89 0.84
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Table 6. Commission and omission errors for the class of permanent water.

CEMS Activation Code Commission Error [%] Omission Error [%]

EMSR359 0.6 19.9
EMSR411 5.6 20.8
EMSR417 12.7 18.7
EMSR429 13.7 3.7
EMSR437 11.7 16.2
EMSR445 8.1 11.2
EMSR492 21.4 30.5
EMSR496 1.3 2.5
EMSR501 1.6 32.0
EMSR502 13.8 22.3

Table 7. Commission and omission errors for the class of open floodwater.

CEMS Activation Code Commission Error [%] Omission Error [%]

EMSR359 14.2 14.7
EMSR411 23.9 8.3
EMSR417 10.6 13.7
EMSR429 20.6 21.2
EMSR437 23.3 17.4
EMSR445 25.3 10.9
EMSR492 14.3 13.8
EMSR496 24.4 1.7
EMSR501 10.1 15.1
EMSR502 8.5 19.4

A second exercise has been carried out by calculating the errors for all the pixels
included in the 10 areas of interest. The quite low values of the errors confirm the efficiency
of AUTOWADE: εcomm = 9.4%, εom = 25.6%, for permanent water and εcomm = 14.8%,
εom = 13.9% for floodwater.

Table 8 reports, for each test case, the total extent of the flooded area estimated by
CEMS and by AUTOWADE. The extent is expressed in ha and in percentage with respect
to the size of the AOI.

Table 8. Comparison between CEMS-derived and AUTOWADE-derived open floodwater maps in terms of extent of the
flooded area in ha and in percentage with respect to the size of the AOI (6th column of Table 2).

CEMS Activation
Code

Total Flooded Surface
Estimated by CEMS

[ha]

Total Flooded Surface
Estimated by

AUTOWADE [ha]

Total Flooded Surface
Estimated by CEMS

[%]

Total Flooded Surface
Estimated by

AUTOWADE [%]

EMSR359 283 244 1.0 0.9
EMSR411 285 330 0.7 0.8
EMSR417 9460 8602 6.4 5.8
EMSR429 546 553 6.9 7.0
EMSR437 1850 1408 4.5 3.5
EMSR445 1358 1607 1.4 1.7
EMSR492 4899 4410 4.7 4.3
EMSR496 307 499 3.7 5.9
EMSR501 5039 4756 5.0 4.7
EMSR502 470 382 2.1 1.7

4.4. Delivery of the Flood/Permanent Water Map to the End User

After having processed all the tiles in which the S1 data acquired from one orbit are
divided, the corresponding maps of flood/permanent water are resampled and reprojected
to the reference spatial grid (Section 2.2). Then, they are mosaicked by merging them in
one unique map, having pixel size of 20 × 20 m2, ready to be delivered to the end-user. By
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performing the operations of resampling, reprojection, and mosaicking, the daily map of
floodwater/permanent water on a national (Italian) scale is created and made available
on a web-portal of the Italian DCP developed by CIMA Research Foundation named
MyDewetra [50].

To make available the maps on MyDewetra, they are transformed in a vector file whose
size in MB is considerably smaller than that of the original raster. This file is automatically
delivered to MyDewetra to be visualized.

An example of how a daily map is presented to the end-user through MyDewetra is
shown in Figure 14. Panel (a) shows what appears to the end-user when he/she opens
MyDewetra and chooses a day of interest (9 December 2020, in this case, when a flood event
affected Northern Italy). Panels (b) and (c) are two zooms on the areas mostly affected by
the flood.
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5. Discussion

This paper presents the AUTOWADE tool, which has been conceived to provide
the Italian DCP with a product that daily monitors floods and inland waters in a fully
automatic way using S1 data. The service implemented by AUTOWADE is tested in pre-
operational mode since early 2020 and has been extensively used to monitor the location
and the extent of the floods that hit Italy in autumn 2020 (e.g., the events considered in
Figures 13 and 14). AUTOWADE utilizes not only S1 data, but also S2 ones generated by
a processor described in a previous paper [34], as well as ancillary data provided by the
Copernicus Land Monitoring Service.

With respect to a previous paper dealing with an automated S1-based flood service [28],
AUTOWADE monitors not only floods, but also permanent water bodies and searches for
flooded vegetation in the gaps present in the open floodwater map. Moreover, it is tested
on a quite large number of case studies.

With respect to previous studies on flood mapping from SAR data, this paper considers
all the aspects related to the provision of an automated, national flood/water monitoring
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product to an end-user, such as the automatic procurement of satellite data and the delivery
of the product to the end-user. As for the algorithmic aspect, a new method is proposed,
which does not use an image tile-based approach to determine a threshold that separates
water from non-water, as commonly done in the literature (see the Introduction). The BFE
approach implemented in AUTOWADE takes advantage of the availability of a reference
water mask to identify the edges separating land from open water, also using a clustering
method as the ISODATA. Focusing directly on the portion of a SAR image where standing
water is present, instead of searching for it by iteratively diving the image in tiles of
different sizes, represents a simple method that improves computational efficiency. From
this point of view, the application of a despeckling filter, performed in the preprocessing
step, is the task with the higher computational burden, as pointed out also in [23], while
neither the ISODATA, nor the histogram fitting are very time-consuming.

The combined use of an edge-filter and an automatic thresholding method was per-
formed also in [51], where the filter was applied directly on a spectral index, derived from
multispectral data, sensitive to the presence of water (Modified Normalized Difference
Water Index [52]). In AUTOWADE, considering that SAR images are affected by speckle
noise (despite of the application of a despeckling filter, some noise still remains in the
images), it has been chosen to preliminarily use a clustering algorithm to make the data
more immune to noise, as done in [53].

Regarding accuracy, for permanent water and open floodwater, it has been evaluated
considering a set of test cases presenting large differences in terms of total flooded surface,
ranging from 280 ha to 9460 ha (Table 2, last column and Table 8, 2nd column). Even the
ratio between the flooded surface and the size of the AOI presents large differences ranging
from less than 1% (EMSR411) to about 7% (EMSR429). The maximum discrepancy between
CEMS-derived and AUTOWADE-derived maps in terms of total flooded surface is 858 ha
(EMSR417; AUTOWADE: 8602 ha, CEMS: 9460 ha, see Table 8). However, in terms of
percentage with respect to the size of the AOI, this discrepancy corresponds only to 0.6%
(AUTOWADE: 5.8%, CEMS: 6.4%). The maximum percentage difference is 2.2% (EMSR496;
AUTOWADE: 5.9%, CEMS: 3.7%).

Fairly good results have been obtained for all the case studies, especially considering
κ and the F1-score. Almost equal values of the F1-score (0.90–0.91) have been obtained
for the biggest flood (EMSR417) and the smallest ones (EMSR359-411). The same applies
considering the F1-score computed as the average of the F1-scores of the two water classes
only (0.85–0.87).

As for the errors of omission and commission, even better results were obtained
in the literature (e.g., [23,31,54]), but it must be considered that in this study, 3 classes
are considered, while in previous studies, only non-water and floodwater were gener-
ally distinguished. It has been found that the major source of disagreement between
AUTOWADE-derived maps and reference maps is the misclassification between perma-
nent water and floodwater. On the one hand, this happens because CEMS does not use
a pre-flood image, while AUTOWADE labels as permanent water the pixels classified as
open water in the flood image and in the pre-flood one. On the other hand, the misclas-
sification is also due to differences between the hydrography data included in the CEMS
products and the reference water mask. This has nothing to do with the accuracy of the
AUTOWADE-derived maps.

For what concerns permanent water, the high value of εom obtained for the EMSR492
case study (30.5%, Table 6) is mostly due to a small water course whose delineation with
S1 was partially hampered by the presence of many mixed land-water pixels (data with
higher spatial resolution would have been necessary for a more precise delineation). The
high value of εom obtained for the EMSR501 case study (32%, Table 6) is mostly due to a
water body (Drin River) whose detection was missed because of unexpected high values of
backscattering likely due to the presence of wind blowing above the water surface.

The extent of the objects labelled as open floodwater is the major cause of misclassifica-
tion between open floodwater and non-water. An example of this kind of misclassification
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is shown in Figure 15 for the Springfield Clonara test site (EMSR429). For the class of open
floodwater, εcomm and εom are equal to about 20%, in this case. Looking at Figure 15, it can
be seen that, although there is a substantial agreement between CEMS and AUTOWADE
classifications, the size of the floodwater objects is slightly different. This is due to the
differences in the flood detection methods; in particular, the BFE approach uses RG and
uncertainties in the determination of the tolerance of the RG may imply uncertainties in the
extent of the floodwater objects. The red pixels in the lower left part of Figure 15 correspond
to omission errors due to small differences between the σ0 values measured by S1 under
non-flooded and flooded conditions, considering that the BFE approach applies change
detection. Note that for this test case commission and omission errors are of the same
order of magnitude (around 20%); thus, the difference between the total flooded surface
estimated by CEMS and that estimated by AUTOWADE is quite small (7 ha, Table 8).
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case study (EMSR 429). Blue: floodwater in both CEMS-derived and AUTOWADE-derived maps;
red: floodwater only in the CEMS-derived map; yellow floodwater only in the AUTOWADE-derived
map.

Thanks to the availability of some aerial photos, it has been verified that the quite
high value of εcomm obtained for the EMSR496 case study (24.4%, class of open floodwater),
is due to the presence of ponding water not detected by CEMS. This can be inferred by
looking at Figure 16 that compares the maps with two photos of the area affected by the
flood. In the areas highlighted by the ellipses, CEMS seems to underestimate water, while
in the AUTOWADE-derived map, the underestimation is significantly reduced (especially
in the magenta ellipse). The photos were taken on 26 January 2021 at 11:00 UTC, i.e.,
about 17 h before the S1 acquisition, but, reportedly, water did not recede. Hence, the
disagreement with respect to the reference data in terms of ratio between the extent of
the flooded area and the size of the AOI highlighted above for this case study (2.2%) is
probably not due to an overestimation of the flooded area done by AUTOWADE.

It was not possible to robustly validate the method designed to map flooded vege-
tation, because CEMS products do not map this target when they are derived from SAR
data. Nonetheless, by comparing the AUTOWADE-derived map with that derived from
a S2 image acquired on the same day, it has been found that the image objects marked
as flooded vegetation allowed us to fill some gaps present in the floodwater map that
are not realistic from a hydrological point of view (Vercelli test case, Figure 13f), because
the area affected by the flood has a quite uniform surface elevation. Several gaps are still
present in the map and it is likely that flooded vegetation is underestimated. However,
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it must be considered that, when dense vegetation is present, SAR is not sensitive to the
presence of floodwater beneath the canopy (we remind again that pixels with NDVI > 0.7
are masked by AUTOWADE). Moreover, double bounce is the prevailing effect caused by
flooded vegetation for stem-dominated vegetation, while, for leaf-dominated vegetation,
volume scattering generally prevails [12] and surface water detection is complicated. Even
in Figure 16, the presence of flooded vegetation is evident (red ellipse in panel d); while
this target is not detected by the CEMS-derived map, in the AUTOWADE derived map
the presence of gaps is reduced, and the area highlighted by the red ellipses is correctly
labelled as flooded vegetation.
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Figure 16. Comparison, for the Rieti flood (EMSR496), among the CEMS-derived map (panel b), the AUTOWADE-derived
map (panel c), and a couple of aerial photos taken on 26 January 2021, at 11:00 UTC (d,e). Panel (a) is the reference
Google-Hybrid map. Same colors of the ellipses correspond to the same zone in the maps and the photos. In panels (b,c),
cyan represents open floodwater; in panel (c), sea-green represents flooded vegetation.

Flooded vegetation mapping builds on the results of a previous study regarding
the combined use of VV and VH polarizations [47] (confirmed in [11,48]), based on the
consideration that the dihedral effect, generated by an horizontal surface (water) and a
vertical one (plants’ stems), keeps the same polarization throughout the radar scattering
path. Note that it has been demonstrated that in the presence of slanted vegetation, the
double bounce scattering also generates a cross-polarized signal [55]. However, plants
having a slanted root structure like saltwater mangroves are typical of tropical areas rather
than temperate ones like Italy.

The major limitation of AUTOWADE and of the BFE method implemented in AU-
TOWADE to map open water is related to the processing of a S1 frame where big water
bodies are missing, and a reference water mask cannot be derived. In this case, the MCDWA
cannot be created from the CDWA. This problem can be at least partially overcome using
the edge between the original CDWA and the other areas to identify, through the buffer
zones created around it, a subset of image pixels characterized by a bimodal histogram (as
done in [35]). Although AUTOWADE has been conceived to work on a national (Italian)
scale, the results of the validation (Section 4.3) demonstrate that the BFE can be applied
in other European countries. In principle, nothing prevents a user from applying the BFE
method outside Europe, but the reference mask derived from the WAW product is currently
available only for Europe.
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The other constraints are related to the SAR ability to detect water in some landscapes,
like areas of high relief or dense vegetation and to the possibility to confuse some targets
like melting snow, frozen soil, or desert areas with water surfaces. These constraints
are common to any automatic algorithm that does not use any amount of supervision.
However, the presence of water is very unlikely in steep slope areas. Moreover, melting
snow is mapped using ancillary S2 data if cloud cover does not hamper snow detection,
whereas desert areas are not present in Italy.

The use of a buffer zone of fixed buffering distance (1 km), done to classify pixels
belonging only to the TDWA/TDFA and not to the CDWA/CDFA (Sections 3.2.2 and 3.2.3),
can be considered as a critical aspect, because the choice of 1 km, done based on our
previous experience with SAR images of inundations, is subjective and may be questioned.
However, this situation generally regards a few pixels (often forming objects smaller than
the minimum mapping unit), as demonstrated in Figure 12, and does not have a significant
impact on the final map.

6. Conclusions

The AUTOWADE tool designed for a fully automated service of floodwater/permanent
water mapping using Sentinel-1 data has been presented. Although several studies avail-
able in the literature dealt with the problem of flood mapping using SAR data, the creation
of a processing chain that automates the various steps needed to set up an operational
service was rarely tackled. These steps include not only the processing of the SAR images,
but also the data procurement and the delivery of the maps to the end-user.

The service implemented by AUTOWADE daily generates a map of floodwater/permanent
water on a national scale (Italy) with a spatial resolution of 20 × 20 m2 in order to provide
the Italian Department of Civil Protection with a systematic detection and monitoring of
any event occurring in Italy without requiring any activation. For a given location, the
average revisit frequency of the maps is 2–3 days (considering both ascending and descend-
ing orbits and orbit overlap). AUTOWADE has been tested in fully pre-operational mode
since early 2020. Its daily products are automatically delivered to the Italian Department of
Civil Protection and can be visualized through a web portal.

AUTOWADE includes an algorithm to map open water, based on the new buffer-
form-edge (BFE) approach. The BFE approach combines different techniques such as
clustering, edge filtering, thresholding, and region growing. Nonetheless, it is quite simple
in computation and effective in identifying bare/scarcely vegetated surfaces covered by
water. It is therefore suitable for real-time applications, especially if a large amount of
SAR data has to be processed, as necessary for a service working on a national scale. The
comparison with maps produced by the Copernicus Emergency Management Service has
shown that the BFE approach performs quite well. Moreover, vegetated areas adjacent to
those classified as flooded are analyzed in order to fill a portion of the gaps present in the
maps likely due to undetected flooded vegetation.

Future work will concern the inclusion in the AUTOWADE-derived product of an
evaluation of the classification uncertainty. An uncertainty map complementing the water
map will be made available to the end user. Moreover, future releases of AUTOWADE will
take advantage of more accurate ancillary data, such as the Copernicus DEM and a refined
land cover map obtained by complementing the Corine Land Cover product with data
provided by the Global Human Settlement Layer to better identify urban areas.
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Appendix A. The ISODATA

The ISODATA is an unsupervised clustering algorithm that separates groups of
objects in a scene. A typical scene consists of regular and/or irregular regions arranged in
a patchwork manner, each containing one class of surface cover type (e.g., flooded areas,
croplands, forests, manmade structures, etc.); these homogeneous regions are the objects in
the scene. Objects within each cluster should be as close to each other as possible and as far
from other objects in other clusters as possible. The ISODATA begins with arbitrary cluster
means and then clusters the pixels according to the minimum spectral distance technique.
It is an iterative procedure, in which each iteration recalculates means and reclassifies
pixels with respect to the new means. The process ends when a maximum number of
iterations has been performed, or a maximum percentage of unchanged pixels between
two iterations has been reached. The ISODATA does not keep a fixed number of clusters.
In particular, clusters having a very large number of members are split, while if two cluster
means are very close in terms of spectral distance (e.g., they represent an unnecessary or an
injudicious division of the data), they are merged [38]. Clusters that contain so few points
as to be meaningless (e.g., that they would not give acceptable statistics estimates if used in
training a maximum likelihood classifier) are discarded and their members are reassigned
to other clusters.

Since the ISODATA splits and merges clusters, it just requires specifying a range for
the number of clusters. The optimum number of clusters is not known, so it is generally
chosen to be conservatively high [38].

Appendix B. Bimodality Check

AUTOWADE checks the bimodality of the histogram of the pixel values by evaluating
the Ashman’s D coefficient [43], the bimodality coefficient [44,45], and the ratio between
the modes of the distribution.

The Ashman’s D coefficient quantifies how well two Gaussian distributions are sepa-
rated, thus assuming a Gaussian mixture model for the distribution of the corresponding
populations. It is defined as [56]:

D =
√2
|µ1 − µ2|√

σ2
1 + σ2

2

(A1)

where µ1 and µ2 are the mean values of the distributions and σ1 and σ2 are the correspond-
ing standard deviations. A distribution has two peaks if D > 2.

https://scihub.copernicus.eu/dhus/#/home
https://scihub.copernicus.eu/dhus/#/home
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The bimodality coefficient is defined as:

BC =
γ2 + 1

k + 3(P−1)2

(P−2)(P−3)

(A2)

where P is the population size, k is the kurtosis, and γ is the skewness of the distribution.
Values of BC greater than 5/9 (∼0.555) indicate a bimodal distribution.

A further check assumes that a minimum percentage of the total data should be in
each mode of a bimodal distribution. This constraint is made explicit by introducing the
weight ratio defined as [56]:

W = min
i,j

(
Mi
Mj

)
i, j = 1 : 2 (A3)

where Mi,j are the modes of the distributions.
The bimodality test is assumed as passed if D > 2 [43], W > 0.2 (each mode should

contain at least 10% of the total population of pixels), BC > 0.4. Note that a conservative
choice has been done for W because in [24,56] a value of 0.1 is suggested. Conversely,
although a threshold value of 5/9 is commonly suggested for BC (corresponding to the
value of BC for a uniform distribution), this constraint has been relaxed considering that
a Gaussian mixture model has been assumed and that the value of BC for a Gaussian
distribution is around 0.33. Note that D, W and BC are evaluated considering the Gaussian
functions fitting the histograms of water/flooded and non-water/non-flooded pixels
(Section 3.2.2).

Appendix C. Fuzzy Logic

The fuzzy sets basically represent an extension of the classical notion of set. While in
classical set theory, an element either belongs or does not belong to the set, elements of
a fuzzy set have degrees of membership. The degrees are defined through membership
functions whose values are real numbers in the interval [0, 1]. The application of the
membership functions represents the so-called fuzzification, which in AUTOWADE is
simply performed using the S membership function shown in one of the boxes of Figure 11
and defined as S(x, x1, x2) where x is the independent variable and x1, x2 are the parameters
of the function. For x ≤ x1, S = 0, while for x ≥ x1, S = 1. For x values within the interval
between x1 and x2, the membership degree depends on the position in the interval itself.
Note that an object-based application of the fuzzy logic is performed by AUTOWADE
(Section 3.2.4).

The final operation of any fuzzy-based approach is the defuzzification that assigns
each element of a fuzzy set to a class, according to the final membership degree. In
AUTOWADE, the final membership degree is computed as the average of the degrees
resulting from the application of the S function to ∆σ0

VV , ∆σ0
VV −∆σ0

VH and p (Section 3.2.4).
A simple threshold-based defuzzification is carried out by labelling a flooded vegetation
an object whose final membership degree is larger than 0.5.
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