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Abstract: The Ms 7.0 Jiuzhaigou earthquake that occurred on 8 August 2017 triggered hundreds of
landslides in the Jiuzhaigou valley scenic and historic-interest area in Sichuan, China, causing heavy
casualties and serious property losses. Quick and accurate mapping of post-disaster landslide distri-
bution is of paramount importance for earthquake emergency rescue and the analysis of post-seismic
landslides distribution characteristics. The automatic identification of landslides is mostly based on
medium- and low-resolution satellite-borne optical remote-sensing imageries, and the high-accuracy
interpretation of earthquake-triggered landslides still relies on time-consuming manual interpre-
tation. This paper describes a methodology based on the use of 1 m high-resolution unmanned
aerial vehicle (UAV) imagery acquired after the earthquake, and proposes a support vector machine
(SVM) classification method combining the roads and villages mask from pre-seismic remote sensing
imagery to accurately and automatically map the landslide inventory. Compared with the results
of manual visual interpretation, the automatic recognition accuracy could reach 99.89%, and the
Kappa coefficient was higher than 0.9, suggesting that the proposed method and 1 m high-resolution
UAV imagery greatly improved the mapping accuracy of the landslide area. We also analyzed the
spatial-distribution characteristics of earthquake-triggered landslides with the influenced factors of
altitude, slope gradient, slope aspect, and the nearest faults, which provided important support for
the further study of post-disaster landslide distribution characteristics, susceptibility prediction, and
risk assessment.

Keywords: Jiuzhaigou earthquake; landslide mapping; unmanned aerial vehicle imagery; support
vector machine; landslide-distribution analysis

1. Introduction

On 8 August 2017, an Ms 7.0 earthquake struck Jiuzhaigou County, Sichuan Province,
China, with a focal depth of 20 km. The earthquake triggered more than 1000 geological
disasters in the Jiuzhaigou valley scenic and historic-interest area, most of which were
landslide disasters [1,2]. Although many landslides did not directly threaten the safety of
residents’ lives and property, they led to serious road damage [3], hindering earthquake
emergency rescue work. The rapid and automatic identification of earthquake-triggered
landslides is not only helpful for post-seismic emergency-response analysis, but also
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of great significance to realize the distribution characteristics of earthquake-triggered
landslide disasters for future landslide-susceptibility analysis and disaster reduction [4–6].

Different types of remote-sensing imagery are increasingly used to monitor and iden-
tify landslides [7–9]. At present, earthquake-triggered landslides are mainly identified
using satellite-borne optical remote-sensing imagery [10,11]. Although satellite-borne opti-
cal remote-sensing imagery provides wide coverage and a large spectral range, there are
problems such as the long time interval of imagery acquisition, the influence of clouds
and fog, and the low spatial resolution, which limit the absolute accuracy of landslide
mapping [12,13]. Among them, low spatial resolution is one of the most important condi-
tions restricting the accurate identification of landslides. Unmanned aerial vehicle (UAV)
remote-sensing technology, which can quickly obtain high-resolution imageries and pro-
vide important data support to analyze the spatial distribution of landslides, is widely
used in the mapping of earthquake-triggered landslides [10–21].

From the methodological point of view, the conventional landslide-interpretation meth-
ods are mainly based on visual interpretation. Although these types of methods have a high
accuracy, they are time-consuming and labor-intensive when interpreting a wide range and
large number of earthquake-triggered landslides, and cannot meet the timeliness require-
ments of earthquake emergency response and rapid assessment [22,23]. In recent years,
some scholars have tried to improve the identification efficiency of landslides by using semi-
automatic/automatic identification methods, and to establish interpretation signs according
to the differences in morphology, texture, and tone of the landslide body to achieve rapid
extraction of landslides [24–27]. In the in-depth research on landslide extraction, scholars
have found that texture features such as roads and villages are very similar to landslide
bodies in remote-sensing imageries, which severely restricts the interpretation results of
landslides [4,20]. In order to overcome the above problems, researchers have carried out
a number of explorations. Chen et al. [28] introduced three basic shapes commonly seen
in landslides as a screening for landslide bodies, so that the classification accuracy of land-
slides was improved. Liu et al. [29] added three new layers (i.e., digital surface model,
slope gradient, and slope aspect) to limit the distribution of landslides based on the original
three RGB bands, so as to better distinguish the impact of roads and villages on landslides.
These methods have achieved results that are certain and promoted the development of
accurate landslide-identification research. However, these kinds of methods still require
human intervention and do not completely achieve automatic identification. The accuracy
of landslide identification is about 90%, and the results are still affected by roads and villages.
With the development of ultrahigh-resolution UAV imagery, the high-precision automatic
identification of landslides based on UAV imagery at a high-resolution scale of one meter or
less is worthy of further studying.

This study uses high-resolution UAV remote-sensing imagery and proposes a sup-
port vector machine/UAV imagery method for automatic landslide identification that
incorporates pre-seismic image-recognition results for masking. This method selects roads,
villages, and landslides as the feature vectors of the samples; constructs a support vector
machine automatic-recognition method that mixes imagery features such as spectrum,
color tone, and texture, etc.; extracts distribution information through imagery comparison
before and after earthquake; eliminates the extraction errors caused by the interpretation
results of roads and villages; and then realizes the accurate identification of landslides.
At the same time, high-resolution digital elevation model (DEM) data and fault data are
introduced to carry out statistical research on the spatial distribution characteristics of
earthquake-triggered landslides, which provides important support for susceptibility and
risk assessment.

2. Study Area and Data Sets

The Jiuzhaigou valley scenic and historic-interest area is located in Zhangzha Town,
Jiuzhaigou County, in the northwestern Sichuan Province, in the northeast side of Gonggan-
ling in the southern section of Minshan Mountai, more than 400 km away from Chengdu.



Remote Sens. 2021, 13, 1330 3 of 17

The altitude of the north edge is 2000 m above sea level, while the altitude of the south edge is
more than 3700 m above sea level (Figure 1). Due to the deep valleys and the large difference
in altitude, the main landform types are high mountains and deep valleys. Several faults
(i.e., Tazang Fault, Minjiang Fault, Dongmengou Fault, Huya Fault, and Yifu Fault [16,30–32])
are located near the study area. Affected by the Ms 7.0 earthquake on 8 August 2017, the loose
materials on the surface of the slope in the study area have a large sliding component along
the contact surface, and the poor stability of the slope facilitated the development of many
earthquake-triggered landslides [33]. According to data from the China Earthquake Network
Center, this earthquake caused 25 deaths, 525 injuries, and 6 disappearances; 176,492 people
were affected, and 73,671 houses were damaged to varying degrees [34]. This not only caused
great damage to the tourist resources and ecological environment of the scenic area, but also
caused a great impact on the local residents.
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The satellite-borne optical remote-sensing imageries obtained after the earthquake
in the Jiuzhaigou valley scenic and historic-interest area were greatly affected by clouds
and fog, and did not enable full interpretation of the damage. UAV imageries have the
advantages of strong maneuverability and high spatial resolution, which can make up for
the lack of effective imaging of spaceborne imageries, and cover places unreachable by
people. They have been widely used in geological environment and disaster investigation,
post-seismic emergency response and disaster assessment, and other fields [35,36]. On
12 August 2017, four days after the earthquake, our research team carried out a UAV
flight (Huaao X-UAV) to obtain optical imagery and high-resolution DEM data after the
earthquake in the Jiuzhaigou valley scenic and historic-interest area (Figure 2B). The imagery
covered 4.03 × 107 m2, and the spatial resolution sampling was 1 m (Figure 2B). A SPOT5
remote-sensing imagery acquired on 21 October 2015, with a resolution of 2.5 m was also
used (Figure 2A). Some photos (Figure 3) were taken during our field investigation on 5 July
2019, in which the wide-distribution landslides were confirmed. From the comparison of
the satellite-borne remote-sensing imagery before the earthquake and the UAV imagery
after the earthquake (Figure 2), it can be seen that there were a large number of landslides
in the study area, and their distribution was wide and dense in some areas, but the scale of
landslides was mainly small and medium, and there was no large-scale damage.
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Figure 3. (A–D) Onsite photos of some areas affected by landslides taken during our field investigation of the Jiuzhaigou
valley scenic and historic-interest area on 5 July 2019.

3. Methodology

This paper proposes a support vector machine automatic-recognition method that
mixes imagery features such as spectrum, tone, texture, etc., and extracts landslide distri-
bution information by comparing imageries before and after earthquakes. The support
vector machine classification method is a classic machine-learning classification technique
based on Vapnick–Chervonenkis (VC) dimensional theory and structural-risk minimization,
which have important applications in imagery processing and target recognition [37,38].
This is a supervised learning method that uses the category information of known training
points to find the correspondence between the points to be verified and the types, separates
the training set by category, and predicts the relationship corresponding to the new training
point [39]. It can largely solve the shortcomings of traditional methods (such as neural
networks) without causing the Hughes phenomenon, which indicates that for limited train-
ing samples, the classification accuracy decreases as the feature dimension increases [40].
Since the spectral values of the various categories in UAV imageries are relatively close,
the use of a support vector machine classification method to identify landslides can avoid
the phenomenon of “same objects with different spectrum, different objects with same
spectrum”, and improve the classification accuracy of remote-sensing imageries [41].

The support vector machine classification method captures the target through the
difference of spectrum, tone, and texture; and converts the recognition of the sample target
in the imagery into the optimal hyperplane problem in the high-dimensional feature space,
which is equivalent to solving the following equation:

minϕ(ω) =
1
2
(ω·ω) + C(

l

∑
i=1

ξi) (1)

s.t.yi[(ω·xi)− b] ≥ 1 − ξi, i = 1, 2, l (2)
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The RGB value in the panchromatic band, yi = (−1, 1), is the sample classification
label; C is the multiplication coefficient; and ξ = (ξ1, ξ2, · · · , ξl) is the slack variable.
Solving Equations (1) and (2), we can get the discriminant function of the support vector
machine classification:

f (x) = sgn(
l

∑
i=1

yiα
0
i K(x, xi)− b0) (3)

Among these, K(·) is the kernel function that satisfies the Mercer’s condition.
Because of roads, villages and fresh landslides have similar texture features, so direct

classification of them will cause inevitable misclassification, which is also the current
difficulty in earthquake-triggered landslides identification. Therefore, this study uses pre-
seismic remote-sensing imagery as auxiliary data, selects road and villages as the feature
vectors of the samples, and constructs a support vector machine classification method to
train and classify the samples. The classification result is restricted by the model type, kernel
function, and loss function, and the reliability of the result is judged by calculating the
model prediction error, and the result with larger error is reclassified. When the result error
is relatively reliable, the classification result at this time is converted into vector data for
output (Figure 4A).

In the space-borne optical remote-sensing imagery before the earthquake, it can be
seen that the vegetation in the Jiuzhaigou valley scenic and historic-interest area is densely
covered, a small amount of rock avalanches are distributed at the northern end of the study
area, and there are almost no clear landslides (Figure 5A). It can be seen in the detailed
map (Figure 5B–E) that the road and villages in the study area are well identified by the
space-borne optical remote-sensing imagery before the earthquake, laying the foundation
for the identification of landslides after the earthquake. The existence of villages can be seen
in the images of areas B and E, and there are no traces of landslides and rock avalanches
around. However, there are small-rock avalanches in areas C and D (Figure 5C,D), which
may be related to the occurrence of the previous earthquake.

Next, the proposed procedure masks the pre-seismic classification results of road
and villages on the UAV imagery (acquired after the earthquake). Thus, after excluding
road and villages, the post-seismic imagery was used for landslides extraction. Due to
the destruction of vegetation on the surface by the landslides, the rock and soil below are
exposed, and the imagery appears as light tones and off-white tones. Landslide bodies that
are still occurring or have just occurred exhibit strong reflectivity to the spectrum because
their exposed parts are mostly fresh structural surfaces. This makes the imagery appear
light-toned, and the contrast with surrounding objects is obvious. Therefore, the landslide
samples were selected based on the above landslide characteristics, using the support
vector machine classification method to train the samples again, extract the landslide
classification results after the earthquake, and perform error analysis. When the error is
small, the landslide results at that time will be considered as the final result (Figure 4B).

The last step consists of the development of the statistical analysis of the landslide-
classification results. First, area statistics for the extraction results of the landslide are
determined; then the accuracy of this method combined with visual interpretation of the
landslide results is evaluated; finally, the high-resolution DEM and fault data are considered
to analyze the current status of the landslides distribution after the earthquake. This paper
selects four common topographical factors: elevation, slope gradient, slope aspect, and
distance from faults, to obtain the topographic characteristics of the landslides by statistics
to find the law of the spatial distribution of earthquake-triggered landslides in the terrain,
and to provide an important reference for earthquake-triggered landslide susceptibility and
risk evaluation (Figure 4C).
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4. Mapping the Post-Disaster Landslides

Using the method proposed in this study, the errors caused by roads and villages were
eliminated based on the comparison of the remote-sensing imageries before and after the
earthquake. Automatic extraction of the earthquake-triggered landslides was achieved. An
accumulated landslide volume of 2.17 × 106 m2 was identified in the Jiuzhaigou valley
scenic and historic-interest area. The landslides were widely and unevenly distributed in the
study area with local concentration. The slopes near the Panda Sea received the most serious
damage (Figure 6A). In order to further illustrate the advantages and disadvantages of this
method, four typical areas were selected for detailed description. The selection of typical
areas follows the principle of being close to road and villages, and was evenly distributed in
the identification area to better illustrate the extraction of landslides at different locations.
The test area B (Figure 6B) is located at the northwest of the study area, at the lower right
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of the Heye Village, where the landslides can be well distinguished. However, due to
the presence of landslide mass deposition, some non-landslide parts were also circled by
the classifier, appearing as dots distributed around the landslide body. The test area C
(Figure 6C) is located at the west of the study area, at the bottom left of the Shuzheng
Village. The landslides in this area were distributed in multiple blocks. The roads were
masked by the pre-seismic imagery-recognition results, which can be well distinguished
from the landslide body. The test area D (Figure 6D) is located at the southwest of the study
area, near the Panda Sea. Landslides were concentrated and distributed in this area, with a
large number covering a wide area. Part of the slide sediment facies slipped into the Panda
Sea Lake; these were also identified by the classifier as landslides. The test area E (Figure 6E)
is located at the southeast of the study area, to the left of the Zachawa Village. The landslides
were less distributed in this area, and most of them were the traces of debris flows.
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The reliability of disaster identification results is very important for earthquake emer-
gency rescue. In order to quantify the comparison of the accuracy of landslide identification,
visual interpretation was used to accurately identify earthquake-triggered landslides as a
comparison to verify the true value. This paper introduces a confusion matrix to calculate
user’s accuracy (UA), commission error (CE), omission error (OE), producer’s accuracy (PA),
overall accuracy (OA), and the Kappa coefficient to evaluate the accuracy of this method
(Table 1). Among them, overall accuracy and the Kappa coefficient are global indicators
to measure the accuracy of the classification. The former is defined as the percentage of
correct samples, including background and objects; the latter is an evaluation indicator for
measuring good or bad, used to measure classification accuracy [42]. Commission error
refers to being classified into a class of interest, which actually belongs to another type
of pixel; omission error refers to a true classification of the ground surface, but not being
classified into the corresponding class by the classifier.

Table 1. Accuracy analysis of landslide-identification results.

Class PA% UA% OA% Kappa CE% OE%

Landslide 99.89 69.17 99.89 0.9117 30.83 0.11

The overall accuracy of automatically extracting landslides in the study area using
the support vector machine classification method was 99.89%, which is high. Verification
based on visual interpretation results confirmed that this method could eliminate the
misclassification caused by the collapse of the landslide body and the similar tones of the
road, the village, and the landslide body, and improved the landslide-recognition results.
However, there were still some landslides that fell into the lake to form a barrier lake,
which led to misclassification of the lake part during the identification process, resulting in
an increased commission error. At the same time, this method eliminated all road areas,
which made it impossible to identify the parts of the roads that were concealed after the
earthquake landslide, resulting in an increase in the omission error.

This paper selected four typical areas as the research test areas (Figure 7), quantitatively
compared the difference in the area of landslide identified by the two methods (i.e., the
proposed automatic method and visual interpretation) in the test areas, and analyzed the
results. Test area A (Figure 7A) is located at the northwest of the study area, below the
Heye Village, and was affected by small-scale slides covering most of the area. The area of
landslide automatically identified by this method in this test area was 8.12 × 104 m2, and
the area of landslide identified by visual interpretation was 9.39 × 104 m2; the difference
was 1.27 × 103 m2 and the accuracy was 86.44%. Test area B (Figure 7B) is located at the
west of the study area, below the Shuzheng Village. This zone was mainly affected by
small-scale slides. There were fewer landslides in this area, but one of them was large. The
area covered by the landslides identified by this method in test area B was 2.83 × 104 m2,
and the area of landslide identified by visual interpretation was 1.80× 104 m2; the difference
was 1.03 × 104 m2 and the accuracy was 63.59%. Test area C (Figure 7C) is located at the
southwest corner of the study area, near the Panda Sea. The main type of landslides in
this area were medium-sized. The large number of landslides were distributed in blocks,
covering a large area, making it one of the most severely affected areas in the earthquake.
The area of landslide identified by this method in test area C was 3.29 × 105 m2, and the
area of landslide identified by visual interpretation was 3.21 × 105 m2; the difference was
8.16 × 103 m2 and the accuracy was 97.52%. Test area D (Figure 7D) is located at the left
side of the Zechawa Village, to the southeast of the study area. The main type was small-
size slides, and landslides were scattered in this area. The area of landslide identified by
the automatic method and by visual interpretation in test area D were 2.11 × 103 m2 and
1.96 × 103 m2, respectively. The difference was 1.52 × 102 m2 and the accuracy was 92.77%.
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The differences observed in the estimation of the landslide identified by the two
methods were mainly due to the presence of small-rock avalanches. The occurrence of
earthquake-triggered landslides was accompanied by the generation of rock avalanches,
which moved from a high altitude to the valley area, leaving a grayish-white tone similar to
the landslide body on the UAV imagery, which made it impossible to remove the landslide
during the extraction process, and increased the extraction area of the landslide. According
to the high-resolution imageries of the four typical areas, it can be seen that although the
texture features of road and villages were similar to the landslide body, the confusing areas
could be eliminated well by introducing pre-earthquake data as the mask. The accuracy of
the landslide recognition result was high, which verified the feasibility of this method.

5. Landslide-Distribution Analysis

Earthquake-triggered landslide disasters are mainly controlled by three types of fac-
tors: inducing (earthquake), geological, and topographic [43]. Among these, the inducing
factors are mainly due to the deformation of the ground surface and the loosening of moun-
tain deposits caused by seismic motion; the inertial force of the slope body changes, which
destroys the original balance of the landslide body, thereby causing the landslide body to
slide down or flow. In terms of geological factors, the strength of the seismic wave exceeds
the strength of the rock mass or the soil during the propagation process, causing the failure
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of the rock mass or soil in the slope. The fallen and accumulated material adheres to the
loose deposits below and pushes the loose deposits down, thereby forming a landslide [44].
Topographic factors are important conditions for gestation of landslides. Statistical analysis
of topographic factors can obtain the topographic characteristics of landslides, and then dig
out its distribution law. The results can provide important reference and guiding signifi-
cance for secondary earthquake disaster-risk assessment, urban zoning, disaster prevention
and mitigation, etc. [45]. The first two factors are well explained by other scholars. This
study mainly analyzed the influence of topographic factors on earthquake-triggered land-
slides, and carried out statistical research on the spatial distribution of earthquake-triggered
landslides.

Based on geographic information system (GIS) technology, and according to the high-
resolution DEM data obtained by a UAV aerial survey and existing fault data as the data
source, the spatial-analysis function of GIS is used to calculate the statistical relationship
between elevation, slope gradient, slope aspect, and distance from fault, as well as landslide
distribution.

The statistical histogram obtained using the cross analysis of elevation, derived from the
DEM, and induced landslides is shown in Figures 8A and 9A. The earthquake-triggered land-
slides were mainly distributed in the range of 2400–3000 m above sea level. The landslides
area in this zone was 1.32 × 106 m2, accounting for 60.83% of the total landslide disaster
area. Among them, the area density was the highest in the elevation range of 2400–2600 m
above sea level, and the landslide area was 5.02 × 105 m2, accounting for 23.13% of the
total landslide disaster area. The earthquake-triggered landslides area outside this range
were significantly reduced. The reason for the distribution of this landslide was due to the
large difference in elevation in the area, the steep and gentle boundary of the slope, and the
special topographical conditions that were conducive to the generation of the mountain’s free
surfaces. The action of the earthquake made the sliding component of the free surface larger,
which made the slope unstable and aided the formation of earthquake-triggered landslides.
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Slope gradient is an important factor affecting the occurrence of landslides. Previous
statistical studies have shown that earthquake-induced geological disasters mostly occur in
the range of 20~50◦ [43]. For example, the landslide disasters induced by the Eastern Iburi
earthquake in Hokkaido, Japan, mostly occurred in the range of 20~30◦ [46,47]. As shown
in Figures 8B and 9B, the slope gradient of the landslides in the study area were mainly
distributed in 35~40◦, and the area of the landslides for this range was 4.54× 105 m2, which
accounts for 20.92% of the total landslide area. The main reasons for the landslides in this
area were inseparable from the influence of the steep topography. The research results
were in line with the range of slope gradients that are prone to geological disasters, and
corresponded with the existing research results.

The slope aspect effect of an earthquake-triggered landslides is determined by seismic
factors [2]. Xu and Lie [48] found in their study of the Wenchuan earthquake disaster
that the distribution of landslides in the slope direction was affected by the seismic wave
propagation and the faulty action of the fault zone, which manifested as “backslope effect”
and “dislocation”. To a certain extent, this discovery can provide a basis for the location
of the seismogenic fault to a certain extent. Landslide disasters in the study area were
concentrated in the northern slope direction (Figures 8C and 9C), with an area as high as
4.57× 105 m2, accounting for 21.06% of the total landslide area. Through further research, a
relationship between the spatial distribution of the landslides and the slope aspect was not
found. It was speculated that it was the reason why the study area was far away from the
earthquake fault, and it may also have been affected by the smaller number of landslides.

Earthquake-triggered landslides are controlled by active faults, and the spatial distri-
bution of landslides has a certain relationship with the distance from seismogenic faults.
Dai et al. [16] found that most of the earthquake-triggered landslides in the study area were
distributed along the northwest–southeast directions, and their number increased with the
decrease of the distance from the fault, which had an obvious fault effect. The geological
structure of the study area is complex, and there are two faults passing through the scenic
spot, and two other faults are located nearby. The dense faults caused the development of
earthquake-triggered landslides in the study area [30]. Therefore, this study used the ArcGIS
spatial-analysis function to analyze the Euclidean distance of the fault data to calculate the
area of earthquake-triggered landslides within different distances (Figures 8D and 9D). The
results showed that the landslide area was the highest within 1 km of the fault, reaching
1.09 × 106 m2, accounting for 50.23% of the total landslide area. With the increase of the
distance from the fault, the area of the landslide showed a decreasing trend, and almost no
landslides occurred outside the range of 5 km from the fault.

6. Conclusions

Based on the 1 m high-definition UAV imagery after the Jiuzhaigou earthquake, this
study proposed a support vector machine classification method to map the earthquake-
triggered landslides accurately and automatically. By extracting road and villages from
pre-seismic remote sensing imagery, the main error source in them was effectively eliminated.
The landslides, roads, villages, and vegetations were clearly classified. Compared with the
visual-interpretation results, the overall recognition accuracy of this method reached 99.89%.
An accumulated landslide volume of 2.17 × 106 m2 was identified in the Jiuzhaigou valley
scenic and historic-interest area, owing to the use of UAV imagery with a resolution of 1 m.
Finally, topographic factors were introduced to evaluate the spatial distribution of landslides.

The results showed that earthquake-triggered landslides were mainly distributed in the
range of 2400–3000 m above sea level, in which the area density was highest in the range of
2400–2600 m above sea level. The area of earthquake-triggered landslides was significantly
reduced outside this range. The slope gradient of the terrain where the landslides are located
was mainly distributed in 35~40◦, which was in agreement with the existing research results.
In terms of slope aspect, earthquake-triggered landslides were concentrated in the range of
the northern slope, but no clear relationship between the spatial distribution of the landslide
body and the slope aspect was found. The landslides in the study area had an obvious
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fault effect. As the distance from the fault increased, the number of the landslides showed a
decreasing trend.

This study also demonstrated that high-resolution UAV imagery acquired in time after
an earthquake can provide strong support to promptly acquire the landslide inventory
map, and can become an effective means for an automatic and quasi-real-time mapping
of landslides in the future, which would provide information support for subsequent
landslide-risk assessment and a landslide-susceptibility study.
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