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Abstract: A country can be well-comprehended through its core cities. Similarly, we can learn about
a city from its hotspots, as they manifest the concentration of urban infrastructures and human
activities. Following this philosophy, this paper studies the intra-urban form and function from a
complexity science perspective by exploring the power law distribution of hotspot sizes and related
socio-economic attributes. To detect hotspots, we rely on spatial clustering of geospatial big data sets,
including street data from OpenStreetMap platform and nighttime light (NTL) data from the visible
infrared imaging radiometer suite (VIIRS) imagery. Unlike conventional spatial units, which are
imposed by governments or authorities (such as census block), the delineation of hotspots is done in
a totally bottom-up manner and, more importantly, can help us examine precisely the scaling pattern
of urban morphological and functional aspects. This results in two types of urban hotspots—street-
based and NTL-based hotspots—being generated across 20 major cities in China. We find that Zipf’s
law of hotspot sizes (both types) holds remarkably well for each city, as do the city-size distributions
at the country level, indicating a statistically self-similar structure of geographic space. We further
find that the urban scaling law can be effectively detected when using NTL-based hotspots as basic
units. Furthermore, the comparison between two types of hotspots enables us to gain in-depth
insights of urban planning and urban economic development.

Keywords: urban hotspot delineation; Zipf’s law; intra-urban scaling; street nodes; VIIRS imagery

1. Introduction

As a result of urbanization or the continuous influx of people into cities, the number
of worldwide urbanites is predicted to be 6.9 billion by 2050, accounting for 68% of the
world’s population [1]. The urbanization in China has been unprecedentedly rapid as
well in the past few decades [2], reaching 60.6% nationally in 2019 [3]. Consequently, the
grasp of city form and function—that is, how cities look and work—has become the key to
our sustainable development. Given the circumstances, city-related research has attracted
scientists from a variety of subjects and has, inevitably, become cross-disciplinary, including
geography, economics, computer science, and physics, etc. To converge these disciplines,
scholars have called for a new science of cities in the past few decades, in which they view
cities as an organized complexity [4], for studying cities’ fractal shapes, complex structures,
and nonlinear dynamics (e.g., [5–11]).

One major aspect of urban complexity is its underlying scaling properties. The
scaling pattern of urban entities can be categorized into two perspectives: The power law
distribution of a single quantity, such as city sizes (Zipf’s law [12]), building heights [13],
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street lengths [14], and leisure venue densities [15], and the power relationship between
two quantities, such as populations versus innovations ([16,17]) or gross domestic product
(GDP) versus street fractality ([18,19]). This study uses the terms scaling and power law
interchangeably. Urban scaling is, to a great extent, a ubiquitous pattern across different
measures. Moreover, the theory developed by Bettencourt et al. [16], which is behind the
power relationship between urban populations and other socio-economic measures, has
been formulated as fundamental laws about cities: Universal scaling law. However, recent
studies have shown that the universal scaling law may not work as expected, as the scaling
exponent is sensitive to different city boundaries or ineffective urban areas [20,21]. This
controversy is likely to be bound with the top-down methods of defining geographic units
by governments and authorities, such as administrative city boundaries, census tracts, and
some equally partitioned cells, which are essentially for management purposes and hardly
consider the scaling pattern of urban morphological and functional entities.

The arrival of geospatial big data has triggered a new paradigm for urban analysis
since geospatial big data, such as remote sensing (RS) images and location-based social me-
dia data, has the capacity to offer fine-grained, massive-scale geographic information [22].
For instance, nighttime lights (NTL) data, also referred to as RS of human beings and
their activities [23], are globally downloadable and can manifest the development of urban
and regional areas. OpenStreetMap (OSM), a pioneering volunteered geospatial informa-
tion platform, provides street data across the globe for probably the first time in human
history [24]. Both NTL and OSM data help researchers construct alternative modeling
units for spatial analyses at both intercity and intracity levels, and remove the barriers of
inter-regional incomparability. The most recent relevant studies are so-called natural cities,
referring to the objectively defined cities based on different types of urban elements from
the open data, such as building footprints, street nodes, and points of interest (e.g., [25–29]).
However, most of these studies take the derived cities as a whole to understand the scaling
structure over a region or country, but seldom calibrate a “local” understanding of such
spatial configuration at the intracity level.

Thus, the present study attempts to investigate the intra-urban scaling properties
through the lens of city hotspots. A city is formed by highly concentrated areas of human
settlements or activities within a country extent [30]. Likewise, if we scale down our scope
from a country to one of its cities, such concentrations can be regarded as urban hotspots.
With the advance of geographic information system (GIS) technologies, urban hotspots
can be delineated more precisely on the support of geospatial big data and bottom-up
approaches. The study contributes to the current literature in three aspects. Firstly, we
followed the ideas of previous city delineation methods to derive two types of urban
hotspots across 20 Chinese cities: Street-based and NTL-based hotspots, from respectively
the spatial clustering of individual street nodes and NTL image pixels with the cutoff
determined by data’s inherent scaling properties (see details in Section 2.2). Secondly, we
found that Zipf’s law held remarkably well for both street-based and NTL-based hotspot
sizes per city, as do the city-size distributions on the national scale. The scaling exponents
derived based on NTL-based hotspots were also consistent with the established regimes,
implying that NTL-based hotspots can act as better spatial units for urban analysis. Thirdly,
we found that the spatial discrepancy between the street-based and NTL-based hotspots
can lead us to deep insights on urban planning and development.

The remainder of this paper is organized as follows. Section 2 introduces the data
sets and the designed methods for urban hotspot delineation and related scaling analyses.
Section 3 presents the maps of the detected hotspots across the top 20 cities in China, as
well as the power law metrics of hotspot sizes and associated socio-economic attributes.
Section 4 further discusses the intra-urban scaling properties. Section 5 concludes the study
and points to future research directions.
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2. Data and Methods
2.1. Data and Data Processing

We selected 20 well-developed cities in China as study areas and primarily made
use of the following three data sets: (1) VIIRS imagery, (2) OSM street network, and (3)
socio-economic grid data (Figure 1a). All data sets are national coverage. The NTL data
was obtained from NOAA/NCEI [31]. We chose one monthly image at June 2020, of which
the resolution is 15-arc-s (about 500 m at the Equator). We reprojected and cleaned the
image to get rid of noises (lit spots) such as burning wildfires and oil drilling, based on
the method proposed by Elvidge et al. [32]. The national street network was downloaded
from OSM, including 4,419,603 segments from which we extracted 3,172,001 street nodes
based on the criterion that a node must intersect with three segments. The socio-economic
grid data include the GDP and population from the National Resources and Environment
Database of the Chinese Academy of Sciences [33] and environmental grid data include
CO2 emissions from the National Earth System Science Data Center [34]. Raster data
sets for GDP, population, and CO2 were collected in 2010 and had a 1 km resolution. To
perform the analysis, we clipped out both the vector and raster data using each of 20 city
administrative boundaries, then conducted zonal statistics of cells with socio-economic
attributes for each city, which were further joined with city hotspots (Figure 1b).

Figure 1. Cont.
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Figure 1. (Color online) The related datasets (a) and the methodological framework (b) in this
study. (Note: The units of raster datasets for population, GDP, CO2 emissions are 1 person/km2,
10,000 CNY/km2, and 10,000 ton/km2, respectively).

2.2. Urban Hotspot Detection

We adopted the spatial clustering method for urban hotspot calculation and delimi-
tation. As there were two types of data sets (street junction nodes and NTL pixels) to be
processed, we applied two rules for cluster detection of each data set: Point proximity and
lit pixel adjacency. The threshold (distance between points or pixel value) for clustering
was determined by the data’s inherent scaling properties uncovered by head/tail breaks
and power law detection methods.

2.2.1. Spatial Clustering of Street Nodes and NTL Pixels

Urban hotspots—that is, populated areas in a city—are the basic unit for the analysis
in this study. Traditional urban analysis uses pre-defined administrative units provided
by local authorities or grids with different resolutions. However, both spatial units cannot
represent the merit of “concentration” as they are defined either from a top-down or
arbitrary manner. To overcome this issue, we adopted a spatial clustering approach to
objectively delimit the boundary of a hotspot from the dense areas of street junctions or lit
pixels.

We chose two clustering approaches for each data set. For street junctions, we first
computed the triangulated irregular network (TIN) to get junction–junction proximities.
As Figure 2a–c shows, the area of urban hotspot can be directly obtained through the
conversion of short TIN edges between points. For NTL images, the first step is to vectorize
each raster pixel into a polygonal feature with the light value maintained (Figure 2e), then
the hotspot can be derived through grouping the adjacent lit pixels (Figure 2f).

The above procedures can be simply done using any mainstream GIS or RS image
processing software (such as ArcGIS and Erdas). The major difficulty lies in identifying
the cutoff value for the classification short/long edges and dim/lit pixels across a set of
urban areas. In other words, it lacks an objective criterion to make the linkage between the
morphological hotspot (the concentration of urban infrastructure) and a set of proximate
street junctions or the functional hotspot (the concentration of human activities) and a
group of lit pixels. The same issue occurs when delineating the city boundaries (regardless
of administrative boundaries) at the country or cross-country level, whereas prior studies
(e.g., [35]) have made use of the universal scaling property for finding the effective cutoff
value. In a similar spirit, the next section will introduce how to obtain the optimal cutoff
value for the accurate delimitation of urban hotspots.
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Figure 2. (Color online) The derivation of urban hotspots using the spatial clustering approach based on respectively street
nodes (a–c) and NTL image pixels (d–f).

2.2.2. Scaling Analytics for Identifying the Cutoff for Spatial Clustering

A vast body of literature has investigated city-size distributions in different countries.
Most of those studies have used the power law model to characterize the uneven spatial
distribution of cities, as well as their sizes, such as Zipf’s law [12]. Zipf’s law states that
there is an inverse relationship between the rank and the size of a city. In other words, the
largest city is twice as big as the second largest city, etc. Such a statistical distribution would
strikingly present the long-tail effect or scaling pattern of far more small cities than large
ones. In most cases, the scaling pattern recurs within the power-law distribution and leads
to an inherent hierarchy, which can be derived through the head/tail breaks classification
scheme. In this study, we change our perspective from a “country-to-city” relationship to
“city-to-hotspot” one. In this way, we can borrow the scaling analysis methods (power law
detection and head/tail breaks), which were previously used for finding the cutoff value of
city demarcation, to delineate hotspots. To start with, we shall first introduce briefly Zipf’s
Law, power law, and head/tail breaks.

Referring to the size n of each city relative to its rank number r, Zipf’s law is denoted
by Equation (1):

n ∝ r−b (1)

where b usually is equal to 1, indicating that the city size is equal to the reciprocal of its
rank.

Another way to describe Zipf’s law is the Pareto distribution (or power-law, which
is a derivative of Pareto distribution) [36]. To do this, it is equivalent to use the inverse
function of Equation (1) as r ∼ n−

1
b , where r is further treated as the proportion, Pr, to

the whole population by the cumulative distribution function (CDF), and it is relative to
how many of the cities are greater than the size, x, is defined as follows:

Pr[X >= x] ∝ x−k (2)
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where k > 0. For a specific point of x, the power-law is acquired by the derivative of Pareto
distribution by the probability density function (PDF) as:

Pr[X = x] ∝ −kx−k−1 ∝ Cx−α (3)

where C is a constant and α = k + 1. In practical terms, the power-law distribution could
only be discovered in one part of the whole dataset, where there must be some lower bound
denoted as xmin. A formal form of the power-law is given as follows proposed by Clauset
et al. [37]:

p(x) =
α− 1
xmin

(
x

xmin

)−α

(4)

With the fixed lower bound xmin, the power law exponent α is then derived from the
robust maximum likelihood estimation (MLE) method, noted as Equation (5):

α = 1 + n

[
n

∑
i=1

ln
xi

xmin

]−1

(5)

So far, we can remark that, for detecting Zipf’s law, the power law exponent should be
two rather than one. Furthermore, a modified Kolmogrov-Smirnov test [37,38], needs to be
performed to determine the extent of fitness for the data to an ideal power-law fitted model
using the derived xmin and α values. Every time we generate 1000 synthetic datasets that
follow a perfect power law above xmin but have the same non-power-law distribution as the
original dataset. Then, we check how many times the maximum difference between each
synthetic data and the fitted model are larger than the one between the original dataset and
the fitted model, the ratio of number of times to 1000 is the goodness-of-fit index p-value.
We set p-value ≥ 0.05 as the acceptance of data being a power law in this study, meaning
that at least 50 among the 1000 synthetic datasets are less “power-law-distributed” than
the original dataset.

Zipf’s law can be used as an effective assessment when performing city demarcations.
In other words, if the demarcated city sizes follow Zipf’s law, we think that the result is
valid. The question then narrows down to how to derive cities whose sizes follow Zipf’s
law from geospatial datasets, such as the TIN model and NTL imagery (Figure 3). Here,
we introduce the head/tail breaks method [39] to effectively locate the cutoff value. Put
simply, data with a power law distribution can be divided into a high percentage in the
tail (≥60%) and a low percentage in the head (≤40%) at the arithmetic mean. Therefore,
for TIN and image models, the head refers to long TIN edges and light pixels, and the tail
refers to short edges and dark pixels. The process then runs recursively for the head part
until the head percentage is no longer small (say, ≥40%). During the process, a series of
arithmetic means were iteratively computed, naturally forming a scaling hierarchy of the
data. The number of mean values, also known as the ht-index [40], can then characterize
the tendency of data being power-law-distributed. Namely, the larger the ht-index value,
the more likely it is that the data is a power-law. Prior studies have used these nested mean
values as cutoffs for extracting the so-called natural cities whose sizes obey Zipf’s law at
either national or cross-national levels (e.g., [41]). However, the use of those values for
hotspot derivation at the city level remains under-researched. The present study would
detect urban hotspots through a combination of head/tail breaks for locating the feasible
cutoff and MLE method for examining Zipf’s law.

2.3. Power Function Fitting for Intra-Urban Scaling Law Examination

The examination of urban scaling concerns two perspectives: The power law detection
of a single urban indicator (as mentioned in Section 2.2.2) and the power relationship
between two types of urban quantities (for example, urban areas versus populations).
The latter have been formulated as the universal scaling law [16] for most of the urban
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indicators, which uses the power function fitting between an urban indicator and the urban
population size across cities at time t, denoted as Equation (6):

Y(t) = kN(t)β (6)

where β is the scaling exponent and k is the constant.
The scaling exponent β can be further investigated by means of three categories: The

sub-linear (β < 1), linear (β ≈ 1), and super-linear (β > 1) scaling relationships between
urban measures [16]. To elaborate, for β < 1, it normally refers to the need of a city’s
infrastructure scales sub-linearly with its population size due to the economies of scale,
whereas the number of a city’s innovations and crimes scales super-linearly (β > 1) due
to the endogenous social interactions. The regime of β ≈ 1 describes the pattern that the
individual demands in a city is proportionate to the urban population size. In this study,
we use the detected hotspots as alternative spatial units to reexamine the urban scaling law.
To do so, we conduct the power function fitting between urban socio-economic metrics
(such as population, GDP, and CO2 emissions) that are within urban hotspots. To compute
the scaling exponent, we first take the logarithms on both axes and adopt the ordinary
least-squares linear regression for fitting. The scaling exponent is then the slope of the
fitting line.

3. Results
3.1. Derived Urban Hotspots in the Top 20 Chinese Cities

We applied the urban hotspot detection method on street nodes and NTL imagery,
respectively, across top 20 Chinese cities, ranked by GDP. To derive the hotspots from the
street nodes, we established big TIN models for each city, whose TIN edges range from tens
to hundreds of thousands (Table 1). The heavy-tailed distribution statistics were striking
for each TIN model, as the average edge length (the mean length of ledge is about 450 m)
was classified effectively between short and long TIN edges according to their imbalanced
ratios (around 80% versus 20%). The observation of 80/20 division, namely the scaling
pattern of far more short TIN edges than long ones, objectively reveals the uneven spatial
distribution of street node densities. The delineation of urban hotspots for each city was
then conducted by grouping and converting those short edges into many different-sized
hotspots. The area of resulting hotspots per city followed well with Zipf’s law, as the mean
value of 20 cities’ power-law exponents was 2.01 (for more details of the basic statistics and
related power-law metrics of hotspot size, see Section 3.2). Figure 3 presents the appearance
of hotspots across selected cities, clearly showing that a few largest patches were located in
the downtown and numerous smaller ones were spaced dispersedly in places other than
the city center.

Table 1. Statistics of street nodes, related triangulated irregular network (TIN) edges, and head/tail
division results among 20 cities. (Note: #: Number; ledge: Average edge length).

City #Nodes #TIN Edges ledge Head%/Tail%

Shanghai 88,701 266,076 217.03 31/69
Beijing 103,752 311,239 274.43 25/75
Tianjin 56,698 170,074 368.58 26/74

Guangzhou 70,655 211,945 242.94 27/73
Chongqing 34,416 103,229 552.53 19/81

Qingdao 49,945 149,816 415.87 23/77
Shenzhen 47,954 143,841 183.35 28/72
Chengdu 53,151 159,439 348.79 25/75
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Table 1. Cont.

City #Nodes #TIN Edges ledge Head%/Tail%

Changsha 22,203 66,590 487.60 20/80
Hangzhou 62,346 187,017 363.57 23/77

Wuhan 32,981 98,928 365.61 25/75
Nanjing 36,282 108,824 343.24 26/74

Shenyang 16,433 49,278 595.23 20/80
Zhengzhou 20,209 60,610 436.42 23/77

Dalian 18,063 54,165 684.15 22/78
Fuzhou 21,215 63,631 649.26 24/76

Xian 34,363 103,070 395.22 26/74
Harbin 15,260 45,763 1031.37 16/84
Jinan 19,405 58,199 412.84 19/81

Kunming 19,308 57,906 624.11 17/83

Figure 3. (Color online) Urban hotspots based on the density of street junctions throughout the top 20 Chinese cities.
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The urban hotspot extraction from NTL data went through experiments with a series of
“candidate” mean values along with the head/tail breaking process on each image. To start
with, the number of pixels for each image ranged widely, from 9397 (Shenzhen) to 353,344
(Harbin) and, interestingly, also followed the fat-tailed distribution. More specifically,
among 20 city NTL images, most of the images (14) contain fewer than 78,045 pixels, some
(five) between 78,045 and 141,623 pixels, while only one image has more than 141,623
pixels, resulting in a ht-index value of 3, meaning that there are three hierarchical levels
of images regarding the number of pixels. Moreover, the ht-index for the pixel values of
each city image was even higher. Figure 4 shows clearly that each image contains far more
dark pixels than light ones, and such a scaling pattern recurs at least five times, indicating
that there were no fewer than five average lightness values of each image achieved as
candidate threshold values for a single city’s hotspot delineation (see Appendix A for
more details of the head/tail breaks method applied to the pixel values of each city’s
NTL data). Therefore, for every image we merged the vectorized pixels whose values
above each derived candidate thresholds based on head/tail breaks to extract the urban
hotspots, ensued with power law detection for each set of the hotspot results. The summary
of statistical results for varying thresholds is presented in Table 2, which shows that the
optimal cutoff value resided in the third level, since its power-law exponent was closest to 2,
leading to hotspots being most akin to the Zipf’s law configuration. It should be noted that
the average of the cutoff values across 20 cities (33.086) largely echoes the optimal threshold
(33.14) based on the VIIRS NTL data in 2013 for Chinese city demarcation [35]. Following
the located cutoffs for each image, the layout of extracted urban hotspots exhibited a
picture that was overall similar to that from street nodes in terms of the imbalanced spatial
distribution from city center to periphery (Figure 4).

Table 2. The candidate cutoff values for the NTL image and the resulting power law exponents
at different levels based on the head/tail breaks method. (Note: light: The average of lightness
thresholds at each level for 20 images; α: The average of power-law exponent of hotspot area for
20 cities).

light α

1st Level 5.376 1.812
2nd Level 18.192 1.769
3rd Level 33.086 1.921
4th Level 48.092 2.442
5th Level 67.799 3.076

By comparing Figure 3 with Figure 4, it is clear that two types of patches overlapped,
but in varying degrees, with each other, indicating there were similarities and differences
between urban physical and functional extents. Here, we applied the intersection over
union (IoU) metric to compute the overlapping ratio between two types of hotspots for
each city, the average ratio for 20 cities was around 0.27 (see more details in Appendix B).
It appeared that inland cities were inclined to have larger ratios, such as Shenyang, Xian,
and Zhengzhou had most overlays (around 0.4), whereas coastal cities such as Shenzhen
and Qingdao held much less (e.g., only 0.11 for Qingdao). We further opted to map the
overlay between two types of hotspots among the top four representative cities in China:
Beijing, Shanghai, Guangzhou, and Shenzhen (Figure 5), whose IoU metrics are all smaller
than the average, i.e., 0.26, 0.17, 0.21, 0.18, respectively. Moreover, it is intriguing to note
that detailed disparities can be found with respect to the extent of dispersive patches. In
other words, with similar power-law exponents (around 2), the sizes of NTL hotspots in
top cities seemed to be more even and the spatial distribution were more dispersed than
those of street hotspots.
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Figure 4. (Color online) Urban hotspots based on NTL imagery using the third mean value as the cutoff value.
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Figure 5. (Color online) Comparison between two types of urban hotspots in four Chinese first-tier cities.

3.2. Intra-Urban Scaling Properties Based on Derived Urban Hotspots

We applied the robust power law detection based on the MLE method to two types
of hotspots in 20 cities. For each city, we listed the power-law fitting metrics regarding its
hotspot areas detected using the cutoffs derived from head/tail breaks (Table 3). We can
see that Zipf’s law held remarkably well for both types of urban hotspots. As stated, the
power-law exponents for street hotspots were centered at 2.01 ± 0.15, while the averaged
exponent value for NTL hotspots was slightly smaller, 1.921 ± 0.19, due to the exception
of Chengdu (1.46). Most of the p-values were above 0.05 and readers can cross-check the
results in Table 3. In addition to the hotspot sizes, we also examined the power law fit of
the socio-economic status within the hotspots in the top four cities. As Figure 6 shows, the
power-law distribution still holds for GDP, population, and the amount of CO2 emissions
per hotspot, respectively. However, the values of exponents for each city performed slightly
differently. Specifically, the exponents of three urban metrics inside the hotspots remained
relatively stable with the hotspot size in Guangzhou and Shanghai, but less so in Beijing
(up-and-downs around αArea) and Shenzhen (all smaller than αArea).
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Table 3. Power law metrics of detected urban hotspot areas. (Note: αArea: Power-law exponent; p:
The goodness-of-fit index; Areamin: The minimum area above which the power-law holds).

Street Hotspots NTL Hotspots
City αArea p Areamin αArea p Areamin

Shanghai 2.20 0.62 0.31 2.38 1.00 6.29
Beijing 2.16 0.33 0.16 2.07 0.98 3.83
Tianjin 2.21 0.71 0.50 1.80 0.63 1.01

Guangzhou 2.32 1.00 0.25 1.93 0.30 0.80
Chongqing 1.79 0.30 0.12 2.09 0.88 1.89

Qingdao 2.21 0.75 0.78 1.76 0.26 0.70
Shenzhen 2.09 0.83 0.08 1.96 0.70 1.80
Chengdu 1.91 0.17 0.13 1.46 0.00 0.37
Changsha 1.91 0.08 0.18 1.88 0.57 0.57
Hangzhou 1.93 0.90 0.09 1.93 0.91 1.31

Wuhan 1.86 0.97 0.11 1.73 0.07 0.56
Nanjing 1.81 0.03 0.11 1.93 0.90 1.10

Shenyang 1.95 0.43 0.21 1.89 0.27 0.49
Zhengzhou 1.93 0.83 0.12 1.97 0.24 0.53

Dalian 1.83 0.49 0.18 1.70 0.11 0.34
Fuzhou 1.97 0.10 0.19 2.19 0.96 3.30

Xian 2.11 0.78 0.62 1.88 0.80 0.72
Harbin 2.09 0.80 3.26 1.93 0.74 1.06
Jinan 2.02 0.94 0.24 2.17 0.94 0.87

Kunming 1.95 0.42 0.24 1.77 0.43 0.59

1 
 

 
Figure 6. (Color online) Power law distribution of NTL-based hotspot sizes (a), GDP (b), population (c), and CO2 emissions
(d) among the top four cities in China.



Remote Sens. 2021, 13, 1322 13 of 19

We further investigated how these extracted hotspots worked as cores of each city.
Ideally, there should be a disproportionate relationship between hotspot areas and the
amount of pertained resources. Consequently, 3% of the city area, constituting either type
of hotspot, accommodates, on average, around 15% of GDP, 25% of population, and 20% of
CO2 emissions (Table 4). Extreme cases such as Shenyang, Wuhan, and Kunming showed
that derived hotspots could even account for more than 40% of the city’s total population
or GDP. Such imbalanced ratios enabled us to make use of those urban indicators within
the hotspots for exploring the intra-urban scaling law. After correlating the total areas,
GDP, and CO2 emissions with the population, based on two types of hotspots for each
city in double logarithm scales, we were intrigued by two findings. Firstly, there were
no scaling relationships between the area/GDP/CO2 emissions and population based on
the street hotspots, indicated by the very low R2 values (below 0.01), while significant
scaling relationships existed when using NTL hotspots (R2 values above 0.4). Secondly, the
relationships of area- and CO2 emissions-population were sub-linear (0.84 and 0.68; Figure
7a,c), whereas the GDP–population relationship was super-linear (1.13; Figure 7b), wherein
the corresponding scaling exponent values, computed among the chosen 20 cities, were
very consistent with values from the recent study based on 287 Chinese prefecture-level
cities [17].

Table 4. Percentages of area, gross domestic product (GDP), population, and CO2 emissions inside
urban hotspots to those of the entire city. (Note: Pop: Population; CO2: CO2 emissions).

Street Hotspots NTL Hotspots
City Area% GDP% Pop% CO2% Area% GDP% Pop% CO2%

Shanghai 2.73% 3.61% 12.61% 4.62% 2.44% 3.64% 8.94% 4.35%
Beijing 3.18% 10.58% 30.87% 13.74% 1.37% 5.75% 13.33% 6.90%
Tianjin 3.64% 10.58% 32.96% 13.75% 3.44% 5.22% 24.57% 17.40%
Guangzhou 2.40% 6.67% 24.42% 9.50% 3.99% 10.63% 29.28% 16.46%
Chongqing 2.56% 23.39% 20.50% 27.08% 0.76% 20.35% 12.71% 17.79%
Qingdao 3.54% 14.67% 22.52% 21.56% 0.81% 4.86% 7.95% 6.44%
Shenzhen 6.68% 6.71% 16.82% 9.56% 14.11% 9.22% 7.93% 20.57%
Chengdu 4.26% 26.00% 30.10% 26.72% 4.46% 25.71% 28.55% 29.16%
Changsha 2.75% 20.30% 28.76% 33.42% 1.00% 22.67% 43.94% 35.25%
Hangzhou 2.82% 16.91% 12.34% 20.60% 1.18% 7.79% 5.99% 11.67%
Wuhan 3.26% 27.04% 22.84% 17.44% 4.10% 42.02% 62.71% 19.57%
Nanjing 4.56% 12.20% 28.80% 17.05% 2.30% 6.04% 15.14% 9.48%
Shenyang 2.62% 12.11% 40.28% 25.86% 1.97% 13.42% 49.08% 7.50%
Zhengzhou 3.62% 20.06% 28.76% 20.03% 2.74% 3.37% 6.97% 9.32%
Dalian 3.31% 22.45% 39.21% 34.73% 1.13% 9.41% 19.79% 16.54%
Fuzhou 3.93% 26.50% 27.31% 32.73% 1.83% 16.91% 20.22% 25.72%

Xian 4.19% 16.52% 40.15% 33.90% 3.85% 14.88% 26.83% 39.59%
Harbin 0.82% 21.78% 25.13% 28.53% 0.24% 11.20% 11.33% 11.90%
Jinan 1.50% 7.72% 12.51% 13.00% 1.41% 7.79% 11.47% 13.57%

Kunming 1.86% 30.31% 34.93% 31.00% 0.83% 13.68% 11.34% 14.11%
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Figure 7. (Color online) Scaling relations and exponents for urban indicators reflected by NTL-based
hotspots (Note: Panels (a,c)show sub-linear scaling law for area/CO2 emissions versus population;
Panel (b) shows super-linear scaling law of GDP and population; all metrics for each city are
calculated based on the extent of contained NTL-based hotspots).

4. Discussion

Cities have long been treated as complex systems. The formation of cities can be
described as a dynamic, self-organized, and nonlinear process of human settlements [5],
demonstrating highly-heterogenous patterns in both its spatial and aspatial aspects [42].
The spatial aspect can refer to the fractal urban form and the aspatial aspect can refer to the
long-tailed distribution of city-related metrics. However, such heterogeneities cannot be
revealed effectively since conventional urban data, formed normally through top-down
approaches, lack sufficient geographic scope and granularity. In the current geospatial
big data era, we can easily conquer this constraint by acquiring fine-grained open data
regarding the city form and function at countrywide coverage. Big data is not only big,
but also possesses significant fractal and nonlinear properties [43], based on which we
can model and analyze a city in a bottom-up manner. That is, delimiting city boundary
at the country level or delineating hotspot area at the city scale by agglomeration of
individual-based locations.

By adopting the fractal and nonlinear ways of thinking and doing, the cutoff for
hotspot boundary derivation was located effectively. Specifically, drawing the border of
hotspots is similar to measuring the length of a coastline—a commonality between the
two is that, in reality, there is no ground truth for them. The father of fractal geometry,
Benoit Mandelbrot [44], has made it clear that the length of a coastline is immeasurable,
while the nonlinearity or scaling property is always measurable. In the present study, we
characterized the data’s nonlinearity in its inherent scaling hierarchy (by head/tail breaks)
and power-law or Zipf’s law distribution (by the MLE method), by which we obtained
the cutoff guiding the spatial clustering. Taking the NTL image as an example, the nested
mean values enable us to quickly classify pixels iteratively into a minority of light ones and
a majority of dark ones, without exhausting all pixel values by increasing the threshold one
at a time. Accordingly, only a few times of experiments on grouping-light-pixel operations
for each city led us to generate hotspot polygons whose sizes follow Zipf’s law.

The successfully detected Zipf’s law of street- and NTL-based hotspots across 20 cities
further strengthen the fractal structure of geographic space. It is well-known that a part of
a fractal is similar geometrically or statistically to the whole, termed as self-similarity. Since
there has been a good agreement among scholars that Zipf’s law holds for cities at the
country scale [36,45], such a repeated statistical regularity for hotspots at the city scale in
the present study can be considered evidence of the self-similarity of geographic space. The
self-similarity across multiple scales makes us connect the system of geographic space with
that of biology, where similar power law statistics appear across multiple layers in a human
body from organs, to tissues, and further to cells [46,47]. Therefore, we believe that Zipf’s
law can hold within even smaller sub-units than city hotspots (such as neighborhoods),
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and thus more refined urban center areas could be further identified with the proposed
methods. This certainly warrants further study as long as the data granularity allows.

The detected hotspots in both types constituted only a small part of the city area,
but accounted for a considerable portion of the urban population, wealth, and energy.
This imbalanced ratio between hotspot sizes and the associated socio-economic statistics
sheds light on the fact that not all city areas for people live or perform activities. This
is also known as the potential problem of the administrative city boundary for urban
analysis [21]. Without an accurate capture of human urban activities, the urban scaling
estimations may be subjected to unexpected variations. We also examined the power
relationship between selected urban measures within the entire administrative boundary
among 20 cities, and failed to achieve expected scaling exponents (small R2 values or in
wrong regimes), similar to the case when using the street-based hotspots. By contrast,
through the NTL-based hotspots, the derived scaling relationships of area/GDP/CO2
to population were consistent with the established regimes (e.g., [17,48]). The obtained
scaling exponents, shown in Figure 7, indicated that due to a more concentrated settlement
and use of infrastructure, the growth of urban economy paced quicker than that of the
population (super-linear regime), while the demands of urban areas and the related energy
consumption accelerates slower than the population growth (sub-linear regime). The
presence of scaling law further implied that the NTL-based hotspots could work as a new,
effective instrument for exploring the system of cities.

The hotspots identified by both street and NTL data, by and large, tally with the
locations of central urban areas of these 20 cities in China. As noted, street-based hotspots
can represent a city’s morphological aspects, whereas NTL-based hotspots can accurately
reflect a city’s functional aspects. The comparison between the two can give us a compre-
hensive image of how people utilized the urban space. It is noteworthy that the disparity
occurs in their spatial distributions. Given that NTL-based hotspots illustrate the aggrega-
tion of human activities, we refer that the NTL-based hotspots better manifest the actual
urban populous areas than the street-based hotspots, in the context that the street network
constructed or traffic planning normally show a time lag. This discrepancy normally hints
the evolution of urban centers. That is, these regions are preferred by humans, but apt to
be neglected by the municipal authorities or urban scholars. Thus, the planning authorities
should at least pay attention to these regions and other urban infrastructure should be
strengthened in order to keep pace with real human needs, as well.

By computing IoU metrics, we are able to find that two types of hotspots have less
overlays in coastal cities than in inland cities, while coastal cities in China normally have
better economic status. Meanwhile, it is worth mentioning that the NTL-based hotspots
are very dispersed in the four headmost metropolises, indicating that well-developed
cities tend to exhibit a balanced distribution of human activities. It is further referred
that cities with higher economic status shift to a more decentralized structure upon urban
autonomous development. On this basis, the governments need to take more measures
to promote urban justice (including the even distribution of urban resources, etc.) on the
process of urban development.

5. Conclusions

The ultimate goal of city science is closely related to urban smart growth and sustain-
able development. In natural and societal phenomena, it has been widely adopted that the
scaling pattern and power-law statistics are signs of sustainability [49]. This paper provides
an intra-urban perspective to study the underlying scaling structure of urban space through
novel spatial units: Urban hotspots, detected from geospatial big data including OSM
street data and VIIRS imagery. In contrast to conventional spatial units that were imposed
by local authorities, the present study adopted the objectively delineated concentration
areas as hotspots using the spatial clustering approach. This is mainly motivated by the
instability of urban scaling exponents affected by different cities and its sub-unit demarca-
tions. In sum, we found (1) that Zipf’s law also holds strikingly at the intra-urban level;
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and (2) that NTL-based hotspots can be good proxies for city populous areas, by which the
urban scaling relationship can be correctly maintained.

The method for hotspot detection acts as a promising tool and could supplement
innovative urban planning toolboxes in the big data era. Despite the strengths of urban
hotspot in this work, there is still room for improvement in terms of the following. Firstly,
whether the intra-urban scaling law exists in other countries remains to be verified from
a global view, in addition to these 20 cities in China. Secondly, it is important to add
NTL images before 2020 to check whether and how the intra-urban scaling exponents
change or evolve. Further, the updated raster data sets of GDP, population, and CO2
emissions after 2010 will be combined once they are available, for eliminating possible
biases or inaccuracies that occurred due to the difference in data time acquisition. Thirdly,
the multiscale effect of scaling analytics (e.g., detecting a more refined spatial unit and
related power law statistics) within one city needs to be further conducted. Fourthly, the
underlying mechanism of this scaling law has not been revealed yet, concerning policy,
landform or demographic traits, etc. Future work will point to these directions.
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Appendix A

This appendix supplements Section 3.1 by showing average pixel values derived along
with the head/tail breaks process of each nighttime image and the resulting power law
metrics on hotspot sizes, by city.
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Table A1. The candidate cutoffs for spatial clustering of light pixels for hotspot detection and their corresponding power law metrics. (Note: NA: Not available; for most of cities, the
number of scaling hierarchies of NTL image pixel lightness ≥5, meaning that there were at least 5 iteratively-averaged pixel values leading to an imbalanced ratio between dark-to-light
pixels per city image. Among those five candidate cutoffs, the third one appeared to be the most suitable for urban hotspot delineation, as the almost related α values of hotspot areas were
closest to 2 and with an acceptable p).

1st Mean α p 2nd Mean α p 3rd Mean α p 4th Mean α p 5th Mean α p

Chengdu 5.45 2.68 0.65 22.81 1.36 0.00 40.12 1.46 0.00 55.94 4.94 0.46 73.61 2.53 0.00
Dalian 1.65 1.69 0.27 12.74 1.67 0.97 32.90 1.70 0.11 57.31 3.66 0.72 101.36 13.52 0.69
Fuzhou 2.96 1.70 0.71 13.93 1.90 1.00 30.92 2.19 0.96 47.98 1.67 0.58 61.96 2.27 0.23
Harbin 0.42 1.62 0.05 3.81 1.93 0.92 17.64 1.93 0.74 35.20 1.88 0.24 52.37 1.58 0.01

Hangzhou 2.47 1.77 0.17 12.78 1.70 0.47 25.18 1.93 0.91 36.08 2.28 0.61 47.26 NA NA
Jinan 2.86 1.80 0.93 12.93 1.77 0.71 24.88 2.17 0.94 35.18 2.61 0.89 44.83 NA NA

Kunming 1.32 1.81 0.98 12.44 1.80 0.81 29.13 1.77 0.43 45.05 2.74 0.35 64.17 2.95 0.19
Nanjing 5.55 1.90 0.51 19.08 1.55 0.11 32.64 1.93 0.90 50.25 2.84 0.86 88.34 2.15 0.71
Qingdao 2.44 1.63 0.96 12.21 1.71 0.34 23.53 1.76 0.26 34.10 2.97 0.71 45.80 NA NA
Shanghai 18.70 1.60 0.98 33.94 1.72 0.93 47.39 2.38 1.00 69.08 2.58 0.68 113.40 2.23 0.31
Shenzhen 25.28 1.57 0.60 46.04 1.61 0.97 61.94 1.96 0.94 76.91 1.61 0.70 96.40 2.18 0.42
Shenyang 2.36 1.89 0.85 16.90 1.89 0.15 34.82 1.89 0.27 50.86 1.93 0.96 66.10 1.98 0.98

Tianjin 5.58 1.72 0.75 18.98 1.72 0.91 32.71 1.80 0.63 44.99 2.32 0.88 59.59 1.97 0.21
Wuhan 5.28 2.15 0.01 22.72 2.00 0.88 40.42 1.73 0.07 58.95 2.40 1.00 81.18 2.55 0.86

Xian 3.72 1.70 1.00 22.12 1.88 0.14 40.78 1.88 0.80 54.78 1.74 0.21 70.79 2.51 0.85
Changsha 2.07 1.81 0.77 14.04 1.87 0.97 27.55 1.88 0.57 40.50 2.22 0.53 54.86 3.60 0.85
Zhengzhou 4.83 1.81 0.10 16.52 1.60 0.41 30.53 1.97 0.24 43.27 1.75 0.25 58.97 3.18 0.38
Chongqing 1.93 1.71 0.00 10.58 1.96 0.98 24.07 2.09 0.88 37.50 2.20 0.02 51.31 2.90 0.15

Beijing 4.33 1.73 0.84 16.23 1.83 1.00 27.75 2.07 0.98 37.95 1.94 0.91 52.87 2.07 0.94
Guangzhou 8.31 1.96 0.06 23.02 1.90 0.17 36.83 1.93 0.30 49.98 2.57 0.63 70.81 2.15 0.61
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Appendix B

This appendix supplements Section 3.1 by presenting the overlapping ratios between
street- and NTL-based hotspots among 20 cities. We adopted IoU for assessing how much
one type of hotspot overlaps another in a city. The IoU metric between two types of
hotspots can be denoted by the following equation:

IoU =
Areas ∩ Arean

Areas ∪ Arean

where Areas is the total area of street-based hotspots, Arean is the total area of NTL-based
hotspots. The results of IoU for each city is shown in Table A2.

Table A2. The intersection over union (IoU) metrics between two types of hotspots among 20 cities.

City IoU City IoU

Beijing 0.26 Nanjing 0.19
Shanghai 0.17 Changsha 0.24

Guangzhou 0.21 Zhengzhou 0.38
Shenzhen 0.18 Qingdao 0.11
Chengdu 0.38 Shenyang 0.45

Hangzhou 0.28 Dalian 0.21
Chongqing 0.21 Fuzhou 0.33

Wuhan 0.22 Harbin 0.26
Xian 0.42 Jinan 0.34

Tianjin 0.33 Kunming 0.28
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