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Abstract: Object detection is a significant and challenging problem in the study of remote sensing.
Since remote sensing images are typically captured with a bird’s-eye view, the aspect ratios of objects
in the same category may obey a Gaussian distribution. Generally, existing object detection methods
ignore exploring the distribution character of aspect ratios for improving performance in remote
sensing tasks. In this paper, we propose a novel Self-Adaptive Aspect Ratio Anchor (SARA) to
explicitly explore aspect ratio variations of objects in remote sensing images. To be concrete, our
SARA can self-adaptively learn an appropriate aspect ratio for each category. In this way, we can only
utilize a simple squared anchor (related to the strides of feature maps in Feature Pyramid Networks)
to regress objects in various aspect ratios. Finally, we adopt an Oriented Box Decoder (OBD) to align
the feature maps and encode the orientation information of oriented objects. Our method achieves a
promising mAP value of 79.91% on the DOTA dataset.

Keywords: remote sensing images; object detection; aspect ratio; anchor

1. Introduction

In recent years, with the developing of spaceborne sensors, the resolution of remote
sensing images has greatly increased. This provides us a lot of high remote sensing images
for researching and understanding. Object (i.e., plane, baseball diamond, bridge) detection
in remote sensing images has become a hot research topic, and it is widely used in many
applications, such as urban planning, ship detection, traffic controlling, and resource
discovery [1,2].

Most of the existing object detection methods for remote sensing images are upon the
popular methods designed for natural scene images. However, objects in remote sensing
images (typically taken with a bird’s-eye view) are quite different from objects in natural
scene images [3] and are facing the following challenges [1,3–9]:

• Arbitrary orientations: Objects in natural scenes are observed from the horizontal
view and annotated in horizontal bounding boxes (HBBs). However, objects in remote
sensing images can appear in arbitrary orientations and are generally annotated in
oriented bounding boxes (OBBs).

• Background complexity: The complex background in remote sensing images often
contains noise or uninteresting objects which may lead to false positives.

• Scale variations: Due to the resolutions of spaceborne sensors are not completely
consistent, the ground sample distance (GSD) (the physical size of one image pixel
in meters, i.e. meter per pixel) of images is often in variation. Thus, the scales of the
same category of objects, such as vehicles, are often with different number pixels even
they are the same type of vehicles. This will cause scale variations in detection.

• Dense objects: Some objects in remote sensing images are always densely arranged,
such as vehicles in parking lots or ships in harbors. It is hard to separate dense and
small objects in images.

Remote Sens. 2021, 13, 1318. https://doi.org/10.3390/rs13071318 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-4632-0160
https://doi.org/10.3390/rs13071318
https://doi.org/10.3390/rs13071318
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13071318
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/13/7/1318?type=check_update&version=1


Remote Sens. 2021, 13, 1318 2 of 18

In general, object detection methods [10–12] for natural scenes images contain four pa-
rameters dimensions ([x, y, w, h]), such as Faster R-CNN [13], YOLO V3 [14], RetinaNet [15],
etc. However, due to arbitrary orientations, methods for remote sensing images usually
utilize five parameters dimensions ([x, y, w, h, θ]). Thus, most of existing methods for
remote sensing images, e.g., RRPN [16], SCRDet [4], S2A-Net [17], modified the object
detection methods and add the angle dimension. For the background complexity problem,
KARNET [18], SCRDet [4], and SCRDet++ [19] utilize attention mechanism to denoise.
For scale variations and dense objects problems, enhanced Feature Pyramid Networks
(OWSR [20], FFA [21], and RADet [22]) and novel anchor mechanism (A2S-Det [23] and
DAL [24]) are proposed. The above methods achieve excellent performance in remote
sensing images.

However, most of the existing methods lose sight of the distinguished features of
objects in remote sensing images. Objects in natural scene images can be taken 360◦ around,
the aspect ratios will change due to perspective transformation. However, remote sensing
images are typically taken with a bird’s-eye view, the aspect ratios of objects in the same
category may obey a Gaussian distribution which may be related to its category (as shown
in Figures 1f and 2). And as shown in Figure 2 and listed in Table 1, different categories
have different aspect ratio distributions. From this key observation, we fit category-wise
aspect ratios to benefit the regression of objects in remote sensing images.24 pixels   5.88 meters 8 pixels   2.24 meters
(a) GSD = 0.28 m/pixel; aspect ratio = 2.625.

42 pixels   5.88 meters 16 pixels   2.24 meters
(b) GSD = 0.14 m/pixel; aspect ratio = 2.625.

(c) GSD. (d) Width in pixels. (e) Width in meters. (f) Aspect ratio.

Figure 1. GSD, width in pixel, width in meter, and aspect ratio of small-vehicle.

Table 1. Statistical results of aspect ratios, visualization are shown in Figure 2. “Var” represents Variance, “Std” represents
Standard Deviation, and “CV” represents Coefficient of Variation.

PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC

Mean 1.26 1.10 3.15 1.97 2.16 3.93 2.91 2.80 1.78 1.09 1.65 1.10 4.39 1.69 2.93
Var 0.04 0.01 12.85 0.10 0.09 1.44 0.65 0.01 0.04 0.05 0.06 0.02 17.35 0.24 0.65
Std 0.20 0.12 3.59 0.31 0.30 1.20 0.81 0.12 0.19 0.22 0.24 0.16 4.17 0.49 0.81
CV 0.16 0.11 1.14 0.16 0.14 0.31 0.28 0.06 0.11 0.21 0.15 0.14 0.95 0.29 0.28
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(a) basketball-court.

(b) plane.

(c) ground-track-field.

Figure 2. The GSD, width in pixel, and width in meters of basketball-court, plane, and ground-track-field. The width in
meter of basketball-court is close to Gaussian distribution. However, the width in meters of plane and ground-track-field
are close to mixed Gaussian distribution.

Ground sample distance (GSD) is another specific property of remote sensing images;
it is one of the causes for scale variations (GSD means how many meters per pixel), and
object widths in pixels can be variable (Figure 1d, but could be more cohesive in meters
(Figure 1e). GSD of the other two categories are shown in Figure 2, some categories,
such as plane and ground-track-field, may still suffer from scale variations in meters, so
we focus on aspect ratio and do not lucubrate GSD in this work. Anchor mechanism
with several pre-defined ratios is one way to deal with ratio variations, e.g., RRPN [16],
utilizes three ratios and totally defines 54 rotated-anchors. But the predefined coefficients
may not meet the various shapes of different datasets, and different categories may obey
different distributions.

In this paper, we propose a novel framework for oriented object detection in remote
sensing images. Our method mainly consists of two components: Self-Adaptive Aspect
Ratio Anchor Mechanism (SARA) and Oriented Box Decoder (OBD). We propose a novel
Self-Adaptive Aspect Ratio Anchor (SARA) for matching the aspect ratio variations of
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objects in remote sensing images, which can self-adaptively learn the appropriate aspect
ratio for each category (i.e, category-wise aspect ratios). Specifically, SARA learns one
aspect ratio value for each category, then utilizes the predicted classification scores as
attention weights, i.e., the category-wise aspect ratios multiply by the classification scores,
then the weighted sum of them generate the aspect ratio of a given sample. Then, our
method can regress the oriented bounding boxes for objects by the reference of aspect ratio
and a simple squared anchor (related to the stride of feature maps in Feature Pyramid
Networks). In OBD, for better oriented boxes regression, we adopt Alignment Convolution
Layer (ACL) [17] and active rotating filters (ARF) [25] to align the feature maps and encode
the orientation information, respectively.

• We propose a novel Self-Adaptive Aspect Ratio Anchor (SARA) for matching the
aspect ratio variations of objects in remote sensing images.

• Our SARA can be Plug-and-Play for methods with anchor-free or simple squared
anchor without considering the information of aspect ratio.

• Our method achieves state-of-the-art on the DOTA dataset.

2. Related Work
2.1. Anchor-Based Methods

An Illustration of anchor-based methods is shown in Figure 3. Faster R-CNN [13]
is the first method that introduces the novel “anchor” boxes that serve as references at
multiple pre-defined scales and aspect ratios. Anchors enumerate the possible locations
and shapes of objects in a sliding-window fashion. A classical anchor can be defined as
A = (xa, ya, wa, ha), where xa, ya is the position of anchor’s center point, wa, ha represent the
width and height of anchor, respectively. For oriented object detection, rotated anchors [16]
Ar = (xa, ya, wa, ha, θa) can be adopted for better performance, where θa denotes the angle
of anchor. Anchors are enumerated in each position of feature maps, if the intersection-
over-union (IoU) between one sample’s target bounding box and the pre-defined anchor is
greater than the threshold, it is assigned as a positive sample, and the regression targets
is related to the corresponding anchor. With the help of pre-defined anchors, objects can
be classified into different scales and ratios, and the networks can be optimized stably.
Anchor-based methods can also be roughly divided into two categories, i.e., one-stage
methods and two-stage methods.

anchor

(a) Anchor-based method.

Predicted

box

(b) One-stage method.

RoI  pooling

Proposal

Predicted
box

(c) Two-stage method.

Figure 3. Illustration of Anchor-based methods. (a) anchor-based methods regression target box
(blue box) based on the predefined anchor (green dotted box); (b) one-stage methods directly regress
the bounding boxes based on the anchors; (c) two-stage methods firstly generate proposals based on
anchors, then refine proposals through RoI pooling layer.

Two-stage methods usually utilize Region Proposal Networks (RPN) [13] to generate
rough region proposals based on anchors at the first stage, then refines the final predicted
boxes through an RoI Pooling layer which resize the cropped feature maps into the same
shape. Faster R-CNN [13] is a standard and the first two-stage method. RRPN [16] adds
the third dimension angle (θ) to anchor, to generate rotated 50 anchors (3 scales, 3 ratios,
and 6 angles) for detecting oriented objects. RoITransformer [26] utilizes a learn-able
module to transform horizontal RoIs into rotated RoIs, which can avoid a large number
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of rotated anchors. However, RoITransformer still needs pre-defined horizontal anchors
and complex RoI operations. RoITransformer, SCRDet [4], and Azimi et al. [53] are
representative methods that mainly focus on the perspective of feature extraction. Mask
OBB [6] proposes a mask-oriented bounding box representation, it adopts RoI Align [27]
to extract feature maps from proposals, and then it utilizes the segmentation method, i.e.,
pixel-level classification for detecting oriented objects.

One-stage methods can be regarded as two-stage methods without RoI Pooling, they
predict results directly. SSD [11], YOLO [14,28], and RetinaNet [15] are representative one-
stage methods, and further improves detection speed. Especially the proposed Focal Loss
in RetinaNet [15], which tries to address foreground-background class imbalance problem,
and improves the performance of one-stage methods even surpassing the accuracy of
two-stage. Focal Loss is still widely used in state-of-the-art detectors. TextBoxes++ [29] is
designed for arbitrary-oriented scene text detection, it is modified from SSD and regresses
the offsets of the rotated targets to the four points of horizontal anchors. R3Det [30] samples
features from five locations (center and four corner points) of the corresponding anchor
box to balance the trade-off of accuracy and speed.

Anchors are widely utilized in many detectors, however, the design of anchors is
complex especially in the rotated object detection task. Two-stage methods need complex
RoI operations, which often cost a lot of time, while one-stage methods can balance the
trade-off of accuracy and speed by ingenious design, such as Focal Loss.

2.2. Anchor-Free Methods

Due to the complexity of pre-defined anchors, many anchor-free methods have be-
come popular in recent years, they can be roughly divided into three categories: directly
regression methods, corner-based methods, and segmentation-based methods.

Directly regression methods usually contain two branches: classification branch
and regression branch. The classification branch often adopts Fully Convolutional Net-
works (FCN) [31] for pixel-wise classification, while the regression branch regresses the
offsets of the current position to the four points of rotated or horizontal bounding box
directly without anchor references as shown in Figure 4. DenseBox [32] is the first di-
rectly regression method for face detection, and it is designed for horizontal bounding box
detection. EAST [33] is a popular arbitrary-oriented scene text detection method, it adopts
IoU Loss [34] for regressing boxes and regresses an angle for rotated boxes in addition.
EAST also designs another regression way, i.e., regress the offset of each positive point to
the four points of bounding boxes. DDR [35,36] is another arbitrary-oriented scene text
detection method, which is similar to EAST. FCOS [37] proposes a centerness branch to help
suppress the low-quality detected bounding boxes and improves the overall performance
by a large margin. Zhou et al. [38] utilizes a point to represent one object, which predicts
the center point of an object and then regress the width and height of the bounding box.
FASF [39] automatically assigns objects into different levels of Feature Pyramid Networks
(FPN) [40] rather than based on areas of objects.

(a) Directly regression methods.. (b) Corner-based methods. (c) Segmentation-based methods.

Figure 4. Illustration of Anchor-free methods. (a) directly regression methods usually directly regress
the offset of each positive point to the four points of bounding boxes without anchor references.
(b) Corner based methods predict the corners of bounding box (some methods contain center point),
then pair the top-left point and bottom-right point to generate the bounding box. (c) segmentation-
based methods regard detection task as segmentation task, them get the minimum bounding rectangle
as the final predictions.



Remote Sens. 2021, 13, 1318 6 of 18

Corner-based methods focus on predicting the keypoints of objects. CornerNet [41],
CenterNet [42], and ExtremeNet [43] try to predict some key points of objects, such as
corners, centers, or extreme points of objects, and then pair them into bounding boxes for
detection. There are also some detectors inspired by them for object detection in remote
sensing tasks [3,44].

Segmentation-based methods are widely used in arbitrary-oriented scene text detec-
tion task. They usually adopt an FCN for foreground/background classification, and try to
group target regions by other information, such as embedding. PixelLink [45] learns the
eight-neighbors linkage of each pixel and then links pixels into targets through a disjoint-set
data structure. TextField [46] predicts the direction field of each point in the text, each
direction is the nearest boundary point points to the current text point. Tian et al. [47]
utilizes embedding maps to cluster text points into text instances. PSENet [48] shrinks
the original target with different scales and then expands the minimal scale kernel to the
complete target gradually. HeadHeadHeadHead W×H×256 clsW×H×CW×H×5reg category-wise aspect ratio1×1×C× ACLSARA ARF clsW×H×CW×H×5regOBDW×H×5anchorprediction
Figure 5. The pipeline of proposed method, which contains two parts: Self-Adaptive Aspect Ratio
Anchor Mechanism (SARA) and Oriented Box Decoder (OBD). The SARA can be regarded as high-
quality anchor generator, which products anchor prediction map for the following OBD, details are
illustrated in Figure 7. The OBD adopts Alignment Convolution Layer (ACL) [17] and Active Rotating
Filters (ARF) [25] to align the feature maps and encode the orientation information, respectively.

3. Our Method
3.1. Overall Structure

As shown in Figure 5, our method contains two parts: Self-Adaptive Aspect Ratio
Anchor Mechanism (SARA) and Oriented Box Decoder (OBD). The SARA can be regarded
as a high-quality anchor generator, which products anchor prediction map for the following
OBD. The OBD adopts Alignment Convolution Layer (ACL) [17] and Active Rotating Filters
(ARF) [25] to align the feature maps and encode the orientation information, respectively.
In this way, the feature maps can benefit from the oriented bounding box regression task.

3.2. HBB and OBB

Most of the existing methods for object detection are designed for horizontal bounding
boxes (HBB). However, we focus on the oriented bounding boxes (OBB) task of DOTA in
this work. As shown in Figure 6a, HBB contains four dimensions (x, y, w, h), which means
the center point position (x, y), the width, and the height, respectively. Figure 6b shows
that OBB contains five dimensions (x, y, w, h, θ), which means the center point position
(x, y), the width (the longest side), the height (the shortest side), and θ denote the angle
of OBB. Here, θ ∈ [−π

4 , 3π
4 ]. HBB is a particular case of OBB, i.e., θ = 0.
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wh x, y
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(b) OBB.

Figure 6. Horizontal bounding boxes (HBB) and oriented bounding boxes (OBB). (a) HBB is widely
utilized in object detection task, it contains four dimensions (x, y, w, h), which means the center point
position (x, y), the width, and the height, respectively. (b) OBB contains five dimensions (x, y, w, h, θ),
which means the center point position (x, y), the width (the longest side), the height (the shortest
side), and θ denote the angle of OBB. HBB is a particular case of OBB, i.e., θ = 0.

3.3. Self-Adaptive Aspect Ratio Anchor Mechanism

The Self-Adaptive Aspect Ratio Anchor Mechanism (SARA) can be regarded as a
high-quality anchor generator. As shown in Figure 7, the inputs of SARA are two branches:
classification (W × H × C) and regression (W × H × 5). W and H represent the width and
height of the feature maps, C means there are C categories. The outputs of SARA are
predicted initiatory oriented boxes. In SARA, each category has a self-adaptive aspect ratio
value (i.e., category-wise aspect ratios), these category-wise aspect ratios are unsupervised
updated with the gradient of the following anchor prediction. Notably, the predicted
category-wise aspect ratios of SARA only contribute to the regression reference rather
generates real anchors for matching samples. The output anchor predictions for the
following OBB are also for regression reference only.clsW×H×CW×H×5reg category-wise aspect ratio1×1×C× W×H×1x y w h+ W×H×5anchorpredictionΣ squaredanchoraspect ratio map
Figure 7. Category-wise aspect ratios are self-adaptive aspect ratio for each category. The category-
wise aspect ratios firstly multiply by the classification probabilities, then the weighted sum of them
generate the aspect ratio map. The w (width) channel adds the values of aspect ratio map to generate
the war in Equation (2). After converting with the simple squared anchor, the final anchor prediction
is generated.

The predicted classification probabilities (W × H × C) can be regarded as attention
weights for the category-wise aspect ratios. For each position in classification, it has C
channels to represent the probabilities of the C categories. The category-wise aspect ratios
multiply by the classification probabilities, then the weighted sum of them generate the
aspect ratio of a given sample. The predicted aspect ratios of all positions (W × H × 1)
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compose the aspect ratio map. The regression maps contains 5 channels, i.e., (x, y, w, h, θ),
the w (width) channel add the aspect ratio map then generates the regression results
benefited aspect ratio. After converting with the simple squared anchor (related to the
strides of feature maps in Feature Pyramid Networks), the final oriented boxes of SARA is
predicted. The details of one position are mathematically described as following:

AR = (
C

∑
i=1

Pcls
i · Car)/(

C

∑
i=1

Pcls
i ), (1)

war = w + AR, (2)

where AR denotes predicted aspect ratio of current position; Pcls
i means the probability of

i-th category; Car represents the category-wise aspect ratios; w denotes the predicted width;
and war means sum of predicted width and predicted aspect ratio.

Following previous works for OBB (such as S2A-Net [17]), the regression targets of
SARA and the following OBB is defined as

∆x = R(θ)
(xg − xa)R(θ)

wa
,

∆y = R(θ)
(yg − ya)R(θ)

ha
,

∆w = log(wg)− log(wa),

∆h = log(hg)− log(ha),

∆θ =
θg − θa + kπ

π
,

(3)

where ∆x, xg, and xa represent the regression target x, the ground-truth x, and the anchor
center x, respectively (likewise for y, w, h, θ), and R(θ) denotes the transformational relation
between θ and width/height. Combining the Equation (2), the origin task of baseline if to
regress the w to the target ∆w. When we add our SARA, the task will change to regress the
war (i.e., w + AR) to the target ∆w.

Compare with Other Anchor Mechanism

As shown in Figure 8, different from complex pre-defined anchors, i.e., rotated anchors
(RRPN [16]) or anchors with several pre-defined ratios (Faster R-CNN [13]), our SARA
only utilize one simple squared anchor. The scale (4× S) of the squared anchor we utilized
is related to the strides (S) of feature maps in Feature Pyramid Networks. As described
in Section 3.3, our SARA utilizes the category-wise self-adaptive aspect ratio to generate
anchor references with various aspect ratios.

(a) Rotated anchors. (b) Anchors with predefined ratios. (c) Proposed Self-Adaptive Aspect Ratio Anchor.

Figure 8. Comparison with other anchors. (a) rotated anchors such as RRPN [16]; (b) Anchors with several predefined
aspect ratios such as Faster R-CNN [13]; (c) proposed Self-Adaptive Aspect Ratio Anchor (SARA), SARA utilize one simple
squared anchor and category-wise self-adaptive aspect ratio to generate anchor references with various aspect ratios.
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3.4. Oriented Box Decoder

The predicted oriented bounding boxes by SARA can be regarded as predicted high-
quality anchors (anchor prediction in Figure 7), we utilize an Oriented Box Decoder (OBD)
to refine the oriented bounding boxes based on these predicted anchors. Inspired by S2A-
Net [17], we adopt Alignment Convolution Layer (ACL) [17] and Active Rotating Filters
(ARF) [25] to align the feature maps and encode the orientation information, respectively.
In this way, the feature maps can benefit from the oriented bounding box regression task.
The regression targets of OBB are the same as SARA in Equation (3).

3.4.1. Feature Alignment

Feature Alignment is important for oriented object detection, we utilize the Align-
Conv [17] (shown in Figure 9c) to adaptively align the feature maps based on the predicted
oriented bounding boxes. AlignConv can alleviate the misalignment between axis-aligned
feature maps and oriented objects in a fully convolutional way. Alignment Convolution
Layer (ACL) [17] is a layer adopt AlignConv to extract aligned features by the predicted
oriented bounding boxes (anchor prediction in Figure 7).

(a) (b) (c)

Figure 9. Examples of the sampling locations in different methods with 3× 3 convolution kernel.
(a) Standard 2D convolution; (b) the sampling locations of Deformable Convolution [49] are pre-
dicted for each point; (c) the sampling locations of AlignConv [17] are the corresponding oriented
bounding box.

3.4.2. Feature Orientation Information

Since we need to detect oriented bounding boxes (OBB) of objects, we adopt Active
Rotating Filters (ARF) [25] to encode the orientation information, which can benefit the
oriented bounding box regression task. An ARF is defined as a W ×W × N filter that
rotates N-1 times for convolution to generate N orientation feature maps. With an ARF (F),
for an input feature map X, the k-th orientation output feature map Y(k) is defined as

Y(k) =
N−1

∑
n=0

F(n)
θk
∗ X(n), θk = k

2π

N
, k = 0, ..., N − 1, (4)

where Fθk is the clockwise θk-rotated version of F, and F(n)
θk

and X(n) are the n-th orientation
channel of Fθk and X, respectively.

4. Loss Function

The loss function of our method contains two parts: loss of SARA and loss of OBD.
The loss function of SARA and OBD are the same, the both utilize Focal loss [15] (Lc) for
classification and Smooth-L1 loss (Lr) for regression.

Lc_r =
1
N
( ∑

i∈Ωc

Lc(Fc
i , Gc

i ) + ∑
i∈Ωr

Lr(Fr
i , Gr

i )) (5)



Remote Sens. 2021, 13, 1318 10 of 18

L = LSARA + LOBD, (6)

where Ωc and Ωr denote all the samples in feature maps for classification and all the positive
samples for regression, respectively; Fc

i and Gc
i mean the i-th predicted classification result

and ground-truth, respectively; Fr
i and Gr

i represent the i-th predicted regression result and
ground-truth, respectively; Lc_r denote the sum of classification and regression loss; and
LSARA and LOBD represent loss for SARA and OBD, respectively. They both use Lc_r.

5. Experiments
5.1. Dataset Description

DOTA [50] is one of the largest remote sensing datasets for object detection which
contains 15 categories: plane (PL), baseball diamond (BD), bridge (BR), ground field
track (GTF), small vehicle (SV), large vehicle (LV), ship (SH), tennis court (TC), basket-
ball court (BC), storage tank (ST), soccer ball field (SBF), roundabout (RA), harbor (HA),
swimming pool (SP), and helicopter (HC). It contains 2806 images collected from differ-
ent sensors and platforms, has been divided into a training set (1411 images), validation
set (458 images), and testing set (937 images). These images are with size ranges from
800× 800 to 4000× 4000. There are 188,282 annotated object instances, which are labeled
by arbitrary quadrilaterals, and it contains two detection tasks: horizontal bounding boxes
(HBB) and oriented bounding boxes (OBB). We focus on OBB task in this paper.

Following most of the other state-of-the-art methods, such as Reference [6,17,23], our
method is trained on the training and validation set, and evaluated on the testing set. In
the training phase, we randomly flip and rotate the images as data augmentation, we also
crop a series of 1024× 1024 patches from original images with a stride of 824 following
Reference [17,50]. In the testing phase, we crop testing images into 1024× 1024 patches
with a stride of 512. And for multi-scale testing, we resize original images into three scales
(i.e., 0.5, 1.0, and 1.5).

5.2. Implementation Details
5.2.1. Training and Inference

We utilize ResNet-101/ResNet-50 [51] with Feature Pyramid Networks (FPN) [40] as
our backbone. Following Reference [17], we adopt one simple squared anchor for each
level of FPN, and the scale (4× S) of the squared anchor is related to the strides (S, i.e.,
32, 64, 128, 256, 512) in FPN. Our method is trained with a total batch size of 16 for 12
epochs on the DOTA dataset, using 4 GTX 1080Ti GUPs. The learning rate, momentum,
and weight decay are 001, 0.9, and 0.001, respectively. At the testing phase, NMS is utilized
as the post-processing step.

5.2.2. Evaluation Indicators

AP is a popular evaluation indicators, which is the average precision of the target in
the range of recall=[0, 1], and is generally the area under precision-recall curve (PRC). PRC
can be calculated by recall and precision. Recall (R) and precision (P) are defined as

R =
TP

TP + FN
, (7)

P =
TP

TP + FP
, (8)

AP =
∫ 1

0
P(R)dR, (9)

where true positive (TP), false positive (FP), and false-negative (FN) represent the number
of correctly detected targets, the number of incorrectly detected targets, and the number of
non-detected targets, respectively. mAP is adopted for multi-class evaluation, which is the
average value of AP values for all classes,
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mAP =
∑i=1

N APi
N

, (10)

where N denotes the number of class. The larger the mAP value, the better the object
detection performance. The evaluation of mAP on DOTA is reported by submitting the
results to the official DOTA evaluation server.

5.3. Ablation Study

To verify the effectiveness of the proposed SARA, we compare our SARA and baseline
in this Section. Our SARA can be Plug-and-Play for methods with anchor-free or simple
squared anchor without aspect ratio. Thus, we adopt S2A-Net [17] as the baseline in our
work, which achieves state-of-the-art and only adopts one simple squared anchor.

Baseline: The baseline network is S2A-Net [17] which is a state-of-the-art method
for oriented object detection on DOTA dataset. In Table 2, † means S2A-Net [17] does not
report the performance, and we re-evaluate and re-inference them based on the provided
models and code https://github.com/csuhan/s2anet (accessed on 26 March 2021).

Table 2. Ablation study. † means Baseline [17] does not report the performance, we re-evaluate and re-inference them base
on the provided model of the Baseline[17]. R-101 represents ResNet-101 with FPN (so does R-50). The short names of the
categories are plane (PL), baseball diamond (BD), bridge (BR), ground field track (GTF), small vehicle (SV), large vehicle
(LV), ship (SH), tennis court (TC), basketball court (BC), storage tank (ST), soccer ball field (SBF), roundabout (RA), harbor
(HA), swimming pool (SP) and helicopter (HC), respectively. Note that the FPS is a relative FPS calculated by the overall
inference time and the number of chip images.

Method Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP FPS

Baseline † R-50 88.94 83.77 57.49 72.62 80.14 81.76 88.72 90.83 85.36 86.98 64.33 68.75 78.10 73.45 69.18 78.02 11.6
Baseline+SARA R-50 89.13 85.81 54.88 73.39 80.31 81.84 89.07 90.78 87.45 87.02 65.02 66.52 78.38 80.08 70.13 78.65 10.9

Baseline [17] R-101 88.70 81.41 54.28 69.75 78.04 80.54 88.04 90.69 84.75 86.22 65.03 65.81 76.16 73.37 58.86 76.11 12.7
Baseline † R-101 88.96 84.65 56.96 73.21 80.06 81.71 88.71 90.78 84.80 86.13 62.39 70.44 78.58 73.96 63.77 77.67 9.3

Baseline+SARA R-101 89.20 84.60 55.94 73.71 79.77 82.03 88.99 90.75 85.70 87.25 62.36 66.61 78.94 75.57 67.60 77.93 8.8

Effect of proposed SARA: Representative results are shown in Figure 10. We can
figure out that our SARA performs better than baseline, especially in objects with big aspect
ratios. We train and test our method on the DOTA dataset with both ResNet-50/ResNet-
101 as backbone, and our SARA can outperforms baseline in both of these backbone with
small degradation in speed (FPS). Quantitative results are listed in Table 2. When we
adopt ResNet-50 as backbone, our method (baseline+SARA) improves 0.63% in terms
of mAP (78.65% versus 78.02%) compared with the baseline †. Specifically, our method
achieves improvement in many categories: 89.13% versus 88.94% for PL, 85.81% versus
83.77% for BD, 73.39% versus 72.62% for GTF, 80.31% versus 80.14% for SV, 81.84% versus
81.76% for LV, 89.01% versus 88.72% for SH, 87.45% versus 85.36% for BC, 87.02% versus
86.98% for ST, 65.52% versus 64.33% for SBF, 78.38% versus 78.10% for HA, 80.08% versus
73.45% for SP, and 70.13% versus 69.18% for HC. As for ResNet-101 as backbone, our
method outperforms 1.82% in terms of mAP (77.93% versus 76.11%) compared with the
baseline [17] (84.60% versus 81.41% for BD, 73.71% versus 69.75% for GTF, 75.57% versus
73.37% for SP, and 67.60% versus 58.86% for HC). We also compare our method with
baseline †, i.e., 77.93% versus 77.67%, which improves 0.26% in terms of mAP.

https://github.com/csuhan/s2anet
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Figure 10. Representative results of ablation study. The first row of each subfigure shows detected
results of baseline, and the second row shows results of our SARA. Blue ellipses hight the significant
differences. Notably, we only show the detect boxes whose score is higher than a threshold of 0.5.

5.4. Comparisons with the State-of-the-Arts

Representative results are shown in Figure 11. Table 3 shows a comparison of our
method (SARA) with state-of-the-art methods, including one-stage methods (RetinaNet [15],
A2S-Det [23], DRN [52], R3Det [30], and S2A-Net [17]) and two-stage methods (FR-O [50],
Azimi et al. [53], RoITransformer [26], CAD-Net [54], SCRDet [4], GLS-Net [5], Xu et al. [55],
Mask OBB [6], and F3-Net [1]). Our SARA surpassed all the state-of-the-art methods and is
only a slightly slower than S2A-Net (10.9 FPS vs 11.6 FPS on Titan 1080 Ti GPU), demon-
strating the effectiveness of proposed SARA in oriented object detection in remote sensing
images. As listed in Table 3, our SARA achieves the best performance in many categories:
82.29% in GTF, 80.49% in SV, 83.54% in LV, 89.37% in SH, 88.07% in ST, 78.94% in HA,
80.98% in SP, and 70.13% in HC. The results show that our method performs better with
ResNet-50 than ResNet-101, which is similar to S2A-Net [17]. Compare with state-of-the-art
methods, for single scale testing, our method achieves 78.65% in terms of mAP, outperforms
F3-Net [1] (76.02%, two-stage) and S2A-Net (76.11%, one-stage). While, for multi-scale
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testing, our method achieves 79.91% in terms of mAP and outperforms the second method
S2A-Net (79.42%).

PL BD BR GTF SV LV SH TC

BC ST SBF RA HA SP HC

Figure 11. Representative results on DOTA.
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Table 3. Comparisons with state-of-the-art methods (both two-stage and one-stage) on DOTA OBB task. R-50, R-101, R-152, and H-104 represents ResNet-50, ResNet-101, ResNet-152, and
Hourglass-104, respectively. * means multi-scale testing. Note that the FPS is a relative FPS calculated by the overall inference time and the number of chip images. For FPS, † denotes
tested on Titan Xp GPU, ‡ means on V100 GPU, and § represents on Titan 1080 Ti.

Method Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP FPS

two-stage :
FR-O [50] R-101 79.42 77.13 17.70 64.05 35.30 38.02 37.16 89.41 69.64 59.28 50.30 52.91 47.89 47.40 46.30 54.13 -

Azimi et al. [53] R-101 81.36 74.30 47.70 70.32 64.89 67.82 69.98 90.76 79.06 78.20 53.64 62.90 67.02 64.17 50.23 68.16 -
RoITransformer * [26] R-101 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56 5.9 †

CAD-Net [54] R-101 87.80 82.40 49.40 73.50 71.10 63.50 76.60 90.90 79.20 73.30 48.40 60.90 62.00 67.00 62.20 69.90 -
SCRDet [4] R-101 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61 -
GLS-Net [5] R-101 88.65 77.40 51.20 71.03 73.30 72.16 84.68 90.87 80.43 85.38 58.33 62.27 67.58 70.69 60.42 72.96 -
Xu et al. [55] R-101 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02 10.0 †

Mask OBB [6] R-50 89.61 85.09 51.85 72.90 75.28 73.23 85.57 90.37 82.08 85.05 55.73 68.39 71.61 69.87 66.33 74.86 -
Mask OBB [6] R-101 89.56 85.95 54.21 72.90 76.52 74.16 85.63 89.85 83.81 86.48 54.89 69.64 73.94 69.06 63.32 75.33 -

F3-Net [1] R-152 88.89 78.48 54.62 74.43 72.80 77.52 87.54 90.78 87.64 85.63 63.80 64.53 78.06 72.36 63.19 76.02 -

one-stage :
RetinaNet [15] R-101 88.82 81.74 44.44 65.72 67.11 55.82 72.77 90.55 82.83 76.30 54.19 63.64 63.71 69.73 53.37 68.72 12.7 ‡

A2S-Det [23] R-50 89.45 78.52 42.78 53.93 76.37 74.62 86.03 90.68 83.35 83.55 48.58 60.51 63.46 71.33 53.10 70.42 -
A2S-Det [23] R-101 89.59 77.89 46.37 56.47 75.86 74.83 86.07 90.58 81.09 83.71 50.21 60.94 65.29 69.77 50.93 70.64 -

DRN [52] H-104 88.91 80.22 43.52 63.35 73.48 70.69 84.94 90.14 83.85 84.11 50.12 58.41 67.62 68.60 52.50 70.70 -
DRN * [52] H-104 89.71 82.34 47.22 64.10 76.22 74.43 85.84 90.57 86.18 84.89 57.65 61.93 69.30 69.63 58.48 73.23 -
R3Det [30] R-101 89.54 81.99 48.46 62.52 70.48 74.29 77.54 90.80 81.39 83.54 61.97 59.82 65.44 67.46 60.05 71.69 -
R3Det [30] R-152 89.49 81.17 50.53 66.10 70.92 78.66 78.21 90.81 85.26 84.23 61.81 63.77 68.16 69.83 67.17 73.74 -

S2A-Net [17] R-101 88.70 81.41 54.28 69.75 78.04 80.54 88.04 90.69 84.75 86.22 65.03 65.81 76.16 73.37 58.86 76.11 12.7 ‡/9.3 §

S2A-Net * [17] R-101 89.28 84.11 56.95 79.21 80.18 82.93 89.21 90.86 84.66 87.61 71.66 68.23 78.58 78.20 65.55 79.15 12.7 ‡/9.3 §

S2A-Net * [17] R-50 88.89 83.60 57.74 81.95 79.94 83.19 89.11 90.78 84.87 87.81 70.30 68.25 78.30 77.01 69.58 79.42 16.0 ‡/11.6 §

ours : -
SARA (Ours) R-101 89.20 84.60 55.94 73.71 79.77 82.03 88.99 90.75 85.70 87.25 62.36 66.61 78.94 75.57 67.60 77.93 8.8 §

SARA (Ours) * R-101 89.24 82.81 57.44 81.21 80.23 83.54 89.29 90.75 85.55 88.07 69.70 66.11 78.92 75.53 68.62 79.13 8.8 §

SARA (Ours) R-50 89.13 85.81 54.88 73.39 80.31 81.84 89.07 90.78 87.45 87.02 65.02 66.52 78.38 80.08 70.13 78.65 10.9 §

SARA (Ours) * R-50 89.40 84.29 56.72 82.29 80.49 83.01 89.37 90.67 86.20 87.44 71.34 69.06 78.49 80.98 68.98 79.91 10.9 §
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5.5. Failure Cases

Figure 12 shows some typical failure predictions of our method. Figure 12 (a) shows
black small vehicles may be missing since they are similar to the black background. Some
small and large vehicles in Figure 12 (b) are also missing due to the low resolution and blur.

(a)Missing black small vehicles. (b)Missing vehicles due to low resolution and blur.

Figure 12. Some typical failure predictions of our method. Blue circles hight the missing detected
objects. Notably, we only show the detect boxes whose score is higher than a threshold of 0.5.

6. Conclusions

In this paper, we propose a novel Self-Adaptive Aspect Ratio Anchor (SARA) for the
aspect ratio variations of objects in remote sensing images, which can self-adaptively learn
the appropriate aspect ratio for each category and benefit the regression. With the help of
SARA, we can only utilize a simple squared anchor (related to the strides of feature maps
in Feature Pyramid Networks) to regress objects in variation aspect ratio. We also utilize
an Oriented Box Decoder (OBD) to align the feature maps and encode the orientation
information of oriented objects. Our method achieves mAP value of 79.91% on the DOTA
dataset, which has achieved state-of-the-art.

Author Contributions: Conceptualization, J.-B.H. and X.Z.; methodology, J.-B.H.; software, J.-B.H.;
validation, J.-B.H., X.Z., and X.-C.Y.; investigation, J.-B.H.; resources, X.Z. and X.-C.Y.; writing—original
draft preparation, J.-B.H.; writing—review and editing, X.Z. and X.-C.Y. All authors have read and
agreed to the published version of the manuscript.

Funding: This work is supported by National Key R&D Program of China (2019YFB1405900), and the
Fundamental Research Funds for the Central Universities and USTB-NTUT Joint Research Program

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: This author would like to thank the providers of the awesome remote sensing
images DOTA dataset. The author would like to express their appreciation to the developers of
pytorch and S2A-Net for their open source code.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2021, 13, 1318 16 of 18

Abbreviations
The following abbreviations are used in this manuscript:

SARA Self-Adoptive Aspect Ratio Anchor
OBD Oriented Box Decoder
mAP mean Average Precision
HBB Horizontal bounding boxes
OBB Oriented bounding boxes
IoU Intersection-over-union
RoI Region of Interest
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