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Abstract: With continuous improvement of earth observation technology, source, and volume
of remote sensing data are gradually enriched. It is critical to realize unified organization and
to form data sharing service capabilities for massive remote sensing data effectively. We design
a hierarchical multi-dimensional hybrid indexing model (HMDH), to address the problems in
underlying organization and management, and improve query efficiency. Firstly, we establish remote
sensing data grid as the smallest unit carrying and processing spatio-temporal information. We
implement the construction of the HMDH in two steps, data classification based on fuzzy clustering
algorithm, and classification optimization based on recursive neighborhood search algorithm. Then,
we construct a hierarchical “cube” structure, filled with continuous space filling curves, to complete
the coding of the HMDH. The HMDH reduces the amount of data to 6-17% and improves the
accuracy to more than eight times than traditional grid model. Moreover, it can reduce the query time
to 25% in some query scenarios than algorithms selected as the baseline in this paper. The HMDH
model proposed can be used to solve the efficiency problems of fast and joint retrieval of remote
sensing data. It extends the pattens of data sharing service and has a high application value.

Keywords: remote sensing big data; indexing model; fuzzy clustering; neighborhood search;
space curve

1. Introduction
1.1. Research Background

With the continuous development of earth observation technology, data from different
imaging methods coexist. Remote sensing data are more and more diversified and their
types are becoming more and more abundant. At the same time, the spatial resolution, time
resolution, spectral resolution, and radiation resolution of remote sensing data are getting
higher and higher. The acquisition speed of remote sensing data is accelerating, leading to
shortened update cycle and significant increase in data volume [1,2]. Remote sensing data
presents obvious "big data" characteristics, such as large capacity, high efficiency, multiple
types, difficult to identify, high value, etc. Further, it has been widely used in many fields
such as national defense, agriculture, water conservancy, land planning, smart cities, disas-
ter warning, geological survey, and emergency monitoring and so on [3-5]. These massive
amounts of remote sensing data have different sources and different structures. However
they have time, spatial and data characteristics, and can comprehensively reflect the surface
of the earth in multiple granularities, multiple temporal phases, multiple directions, and
multiple levels [1]. On the one hand, it can form a complementary relationship with other
spatial big data such as GIS data. On the other hand, the generalized remote sensing big
data include all non-contact imaging data, the integrated information mining of which can
reveal more earth knowledge and changing laws [1-3]. Therefore, we should organize and
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manage remote sensing big data in a unified manner, eliminate their structural differences,
and realize the fusion of multi-source remote sensing data. In doing so, it will help fully
tap its application value and provide comprehensive and diversified information support
for data analysis, command, and decision-making and other fields. For example, in the
application of remote sensing detection of forest fires, it is necessary to interpret the fire
point data from the medium and high-resolution satellite data with shortwave infrared and
visible light near infrared bands. However, due to the characteristics of a single satellite, the
increase in spatial resolution is often at the cost of time resolution. Therefore, it is necessary
to integrate the hyperspectral and multispectral data generated by multiple satellites, so as
to realize near real-time and accurate monitoring of forest fire occurrence and fire situation.

Remote sensing big data has the characteristics of large data volume, wide distribution,
multi-scale, and multi-time equal [6]. Efficient access of remote sensing data is the basis
for realizing remote sensing big data management and analysis, in order to meet real-time,
comprehensive, and system requirements. However, suffering from their discrepancies in
data format, metadata structure and processing methods, remote sensing data obtained by
different types of sensors are usually difficult to organize in a unified manner, easy to lead
to isolated data island. Huge challenges are brought to the efficient access of remote sensing
data. Solving the consistency problem of multi-source remote sensing data organization
specifications, realizing efficient organization and management of multi-source remote
sensing big data, and providing multi-dimensional and efficient data retrieval capabilities,
are the foci of remote sensing big data research field.

1.2. Paper Organization

This paper takes the main problems faced by remote sensing big data in the application
process as an entry. It introduces the research background and related research progress
of remote sensing big data organization and management, followed by the main research
content of this paper—a hierarchical multi-dimensional hybrid indexing model (HMDH).
The basic concepts involved in the construction of the HMDH model are introduced. We
construct the HMDH on several types of remote sensing datasets and set up retrieval
experiments, to prove the usability and universality of the HMDH. Finally, we conclude
this study and look forward to the future work.

2. Materials and Methods
2.1. The Outline of Hierarchical Multi-Dimensional Hybrid Indexing Model
2.1.1. Related Work

As the amount of remote sensing data continues to grow, the magnitude order of
remote sensing data has increased from GB to TB and PB, and will increase continually in
the future. The application of remote sensing big data is also developing in the direction
of networking and integration [1,7,8]. Many countries have launched national-level spa-
tial data infrastructure plans, providing services for accessing and downloading remote
sensing data and various thematic data, to provide support for the application of remote
sensing data in meteorology and hydrology, agricultural water conservancy, land planning,
earthquake resistance and disaster reduction, etc. [1]. For example, there is a spatial infor-
mation portal established by the US government abroad, and there are the geospatial data
cloud released by the Computer Network Information Center of the Chinese Academy
of Sciences, and the national science and technology resource sharing service platform
provided by the National Earth System Science Data Center in China [9-11]. All of these
platforms provide remote sensing data sharing capabilities. However, with the expansion
of remote sensing data applications, the drawbacks of these platforms have become in-
creasingly prominent. First of all, the remote sensing data retrieval methods provided by
the above platforms are relatively simple. Although some platforms provide the ability
to query remote sensing data within a certain space in the form of frame selection, which
provides convenience for users to screen remote sensing data to a certain extent, there
are still deficiencies in meeting the user’s needs for data retrieval. Secondly, there is no
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unified organization and management capability for multi-source remote sensing data.
After obtaining the data, users need to conduct a customized preprocessing process for
the differences of various types of remote sensing data, in order to carry out subsequent
business-related work content.

In the era of remote sensing big data, it is necessary to achieve further technological
breakthroughs in the efficient storage and management of massive multi-source remote
sensing data. Only by solving the consistency problem of the organization specifications of
multi-source remote sensing data, realizing the unified organization and management of
massive remote sensing data, and providing efficient data access mechanisms and sharing
capabilities, can it meet the needs of data-intensive and computationally intensive remote
sensing applications.

In terms of remote sensing data organization and management, a lot of related work
has been done at home and abroad. Among them, the main achievements abroad include
Google Earth Engine, Google Maps, Bing Maps, World Wind, and ERDAS APOLLO. In
China, there is a comprehensive geographic information service website built by The
State Bureau of Surveying and Mapping, Map World [12]. It uses distributed storage
technology to store global geographic information data and realizes geographic information
resource sharing. However, there are many shortcomings in these services. On one hand,
the data objects are mainly processed image data in JPEG/PNG format, whose own
multi-dimensional attributes are lost, such as spatial dimension, time dimension, and
event dimension, and it is difficult to meet the needs of other applications besides data
visualization. On the other hand, in the process of standardized organization of remote
sensing data, more attention was paid to the vertical multi-resolution pyramid structure,
whereas the horizontal organization of multi-source remote sensing data within the same
geographic area was ignored [12,13]. In addition, there are solutions for remote sensing
data integration, such as data cube [14,15] and Analysis Ready Data (ARD) [16]. The
Australian Geoscience Data Cube (AGDC) is a “Big Data” infrastructure that aims to realize
the full potential of Earth observation data holdings for Australia, including geometric
and radiometric corrections to Earth observation data to produce standardized surface
reflectance measurements that support time-series analysis, and collection management
systems which track the provenance of each Data Cube product and formalize re-processing
decisions [14]. The Swiss Data Cube (SDC) is a new paradigm revolutionizing the way
users can interact with EO data, lowering the barrier caused by Big Data challenges and
providing access to large spatiotemporal data in an analysis ready format [15]. Most of
these studies use metadata to organize and manage remote sensing data. They construct a
logical multi-dimensional data model through the data link of remote sensing data and
metadata information to solve the problem of multi-dimensional unified organization and
rapid calculation of remote sensing source data. The United States Geological Survey
(USGS) released the first version of Landsat Analysis Ready Data, to provided Landsat
data for the conterminous United States (CONUS), Alaska, and Hawaii in formats that can
be directly compared for change and time series analysis [16]. ARD solves the problems
of high application cost and complicated pre-processing process of satellite data for users,
and opens up the path between remote sensing data acquisition and application. However,
there is still a lot of work for users to quickly extracting the data of interest from these
massive amounts of data.

Therefore, we need to address the shortcomings of the above remote sensing data inte-
gration and sharing platforms, combine the needs of remote sensing big data in application,
effectively organize the storage of remote sensing big data, design a reasonable storage
management architecture, and provide multi-dimensional and efficient data retrieval capa-
bilities. Therefore, in view of the shortcomings in the above two types of remote sensing
data sharing platforms, we need to design a reasonable storage management architecture
based on the application requirements to effectively organize and store remote sensing big
data, and to provide multi-dimensional and efficient data retrieval capabilities.
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The researches on the storage and retrieval of remote sensing big data are mainly
divided into two categories. One is to expand the traditional relational database, that is
to increase spatial operation support to realize the storage and management of remote
sensing data; the other is to build a non-relational (NoSQL) database based on a distributed
file system, and process data relying on the parallel computing framework [17]. However,
due to the characteristics of remote sensing data such as multi-source, heterogeneous, and
heterogeneity, relational databases cannot meet requirements in terms of structured data
extension and non-structured data management. Meanwhile, relational databases need
to re-create the index when data are updated, and always take a long time, leading to
poor performance in fast storage and efficient retrieval of massive remote sensing data [17].
Modern storage technology is developing in the direction of distributed and large-scale
clustering, providing some solutions for the organization and storage of remote sensing big
data. Therefore, to address problems of traditional relational databases in remote sensing
data storage, distributed NoSQL databases such as HBase are usually used to construct
structured storage to realize management of large-scale remote sensing data, including
high-resolution remote sensing images and vector data, and to provide capabilities to
retrieval and access remote sensing data efficiently [13]. Wang et al. [18] proposed and
implemented a massive spatial data distributed cloud storage management and access
service solution based on NoSQL database technology and vector raster data integration.
In [19], based on the distributed column database HBase, an index suitable for distributed
storage of massive image data was proposed to improve the query efficiency of massive
data. In [20], focusing on the storage and management of massive, high-throughput,
spatially structured remote sensing image data and its basic land information products,
a remote sensing resource storage management method using big data architecture was
proposed, and a prototype system was implemented based on the MongoDB database.

Due to the huge volume of remote sensing data, in addition to designing a reasonable
storage structure, it is also necessary to design an efficient spatiotemporal data remote
sensing data index to improve data retrieval efficiency. Researches on spatio-temporal
index are usually to improve and expand traditional spatial indexes in dimensions, such
as time dimension, and the earliest research can be traced back to the 1970s. In [21], the
quadtree index was proposed, which divided nodes into four regions in a two-dimensional
space to solve the problem of combined query of data. In [22], a multi-dimensional binary
tree (KD tree) in which each node is a k-dimensional point was introduced, and it could be
used to store k-dimensional data; In [23], K-D-B tree divided the space into two subspaces,
thereby improving the search efficiency of the balanced KD tree; and in [24], R tree was
proposed, which stored the smallest bounding rectangle of spatial data in leaf nodes, and
the middle node was formed by gathering the bounding rectangles of lower nodes. In [25],
based on analysis of the limitations of traditional R-tree for multi-scale expression of spatial
data, SDMR tree, a deformed R-tree index structure for multi-scale expression of spatial
data was proposed. Afterwards, researchers merged multiple index structures to form a
hybrid index based on multiple tree structures. In [26], a multi-level hybrid index based
on grid and R tree was put forward; In [27], KD tree and R tree were combined to be used
in research on multi-dimensional cloud data index structure. The spatio-temporal index
should provide multi-scale retrieval capabilities for remote sensing data in dimensions
such as time and attributes. However, with the dimensionality of the remote sensing data
gradually increases, the depth of the spatio-temporal index based on a tree structure alone
will increase, and the query efficiency will be significantly reduced, resulting in the curse
of dimensionality [28]. Therefore, it is necessary to map the data in the high-dimensional
space to the one-dimensional space to realize the dimensionality reduction of the remote
sensing data. Index technology based on space filling curve is one of the effective methods
which can solve the multi-dimensional indexing problem of remote sensing data [19].
Ref. [29] proposed the Hilbert R tree, which uses Hilbert curve to perform one-dimensional
sorting on k-dimensional space data to improve node storage utilization. Ref. [30] realized
the tile map service spatial index based on the Z curve. Ref. [31] combined the Z curve
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with the Hilbert curve, and proposed a massive terrain data management scheme based
on tile quadtree and space filling curve. Ref. [32] compared several typical space filling
curves and analyze d their characteristics, and considered that Hilbert curve has better
spatial proximity than other space filling curves to ensure that there is the greatest degree of
proximity in space between consecutively encoded entities. Ref. [33] proposed a fast coding
method of Hilbert curve based on the partitioning, which could reduce the complexity
of Hilbert curve coding. Ref. [34] presents a distributed spatio-temporal database with
indexing techniques, GeoMesa. It uses space filling curves to map multi-dimensional data
to the single lexicographic list managed by the underlying distributed database. Ref. [35]
provides GeoWave, a software library that connects the scalability of various distributed
computing frameworks and key-value stores with modern geospatial software to store,
retrieve, and analyze massive geospatial datasets. Ref. [36] proposes a spatio-temporal
data indexing method based on Hilbert code, solving the problem of fast access to spatio-
temporal data in the virtual battlefield environment.

2.1.2. HierarchicalMulti-Dimensional Hybrid Indexing Model

In order to solve the problem of remote sensing big data in underlying data organi-
zation and query, we design a hierarchical multi-dimensional hybrid indexing model, as
shown in Figure 1. Firstly, incorporating the concept of grids in geospatial data, we use the
global seamless multi-level grid recursive subdivision method [4,37] to establish a remote
sensing data grid model based on spatial pyramids. We divide the remote sensing data
into remote sensing data grids, and extract the time, spatial, data, and other characteristics.
Then, we construct a multi-dimensional hybrid indexing model based on data clustering.
We use fuzzy clustering algorithm to achieve partition based on data features to divide
remote sensing data grid into different datasets, and then, we use recursive neighborhood
search algorithm to complete the completion of the dataset based on spatio-temporal
characteristics, providing the complete description of the classification under the spatio-
temporal grid and forming a structured model of multi-dimensional hybrid index. Next,
we map the multi-dimensional hybrid index to remote sensing data storage structure in the
dimensions of time, space, and event to construct a "cube" structure. Finally, continuous
space curves are designed to fill the grids at different levels to realize the coding of the
HMDH index.

In the HMDH model, the main technologies and concepts involved are as follows:

e Space Pyramid. The spatial pyramid technology is that the pyramid is a multi-
resolution hierarchical model. The essence of its construction process is to block
and layer the image to form multiple resolution levels [12,13].

e  Quadtree [23]. The data structure of the quadtree is to store the data with two-
dimensional keys in a tree, and divide the space plan into different levels of tree
structure. For evenly distributed spatial data objects, the quadtree structure usually
has relatively high spatial data insertion and query efficiency.

e  Fuzzy C-Means (FCM) [38]. Clustering is to divide a group of physical or abstract
objects into several groups according to the degree of similarity between them. FCM
is a typical fuzzy clustering algorithm, whose basic idea is to use the degree of
membership to restrict the degree to which each data sample belongs to a certain class
to complete data classification [39-42].

e  Euclidean Distance [43]. The Euclidean distance is widely used in the field of image
processing. The size of the Euclidean distance reflects the degree of similarity between
two pixels, that is, the smaller the value, the smaller the difference between the two
pixels [44].

e  Regional growth [45,46]. Region growth is a region-based image segmentation tech-
nology, which is a process of combining pixels or sub-regions into larger regions
according to predefined growth criteria. The basic method of region growth is to
start from a set of “seed points”, which neighbor pixels with properties similar to the
pre-defined seeds are added to each seed to form these growth regions [46,47].
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e  Hilbert Curve [29]. The Hilbert curve is derived from the classic Peano curve cluster.
Compared with other space filling curves, Hilbert curve has better spatial proxim-
ity, which can ensure the maximum proximity of encoded continuous entities in
space [29-33].
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Figure 1. Hierarchical multi-dimensional hybrid indexing model.

2.2. Construction of Hierarchical Multi-Dimensional Hybrid Indexing Model

Remote sensing data are quite different in terms of organizational structure, spatial
resolution, time resolution, etc. Taking remote sensing image data as an example, due to
varying degrees of influence by sensors, errors, and other factors, even the resolutions
of data describing the same geographic area are quite different. These data are usually
isolated from each other and cannot be managed and used uniformly. Therefore, it is
necessary to establish a grid model to realize the unified organization and management of
remote sensing data.

On the basis of the remote sensing data grid, in order to accurately and quickly retrieve
and access target data, it is necessary to find the optimal feature combination of the remote
sensing data ontology to achieve data pre-classification. This paper combines the data
features of a single grid in the remote sensing data grid and the space and time attributes
of the data, and uses fuzzy clustering based on spatio-temporal feature fusion to realize
the pre-classification process of remote sensing data, and divide the target data grid into
the correct dataset.

In this section, we respectively introduce the construction process of remote sensing
data grid and the realization process of fuzzy clustering with spatio-temporal features, and
explain in detail how to realize remote sensing data clustering based on the feature fusion
of remote sensing data.
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2.2.1. Remote Sensing Data Grid

In order to realize the unified organization of remote sensing data, we have proposed
a remote sensing data grid, which organizes remote sensing data from multiple aspects
such as spatial resolutions, time resolutions and data structures. The specific organization
is as follows. The structure of the remote sensing data grid is shown in Figure 2.

Spatial Property: 90°E,-45°S,180°E,0°
Time Property : 2020-01-01 12:01
Event Property : 11

Spatial Property: 90°E,-45°S,180°E,0°
Time Property : 2020-01-01 12:01:01
Event Property : 12

Figure 2. Remote sensing data grid.

e Integration across Spatial Resolutions. Refer to the traditional pyramid technology, the
remote sensing data grid is the data grid model based on the spatial pyramid, which
breaks up data according to uniform rules, associates spatio-temporal information
is with data grids of different scales, and optimize data structure using data spatio-
temporal attributes.

e Integration across Time Resolutions. We extract remote sensing data in the time
dimension by establishing time slices of different thicknesses in the time dimension.
The time attribute of the data is decomposed according to the smallest time granularity,
and then it is aggregated step by step from low to high resolution in the time dimension
to form time series of different scales.

e Integration across Data Structures. From the two aspects, remote sensing data de-
scription and remote sensing data content, we carry out data integration between
unstructured and structured remote sensing data. In terms of remote sensing data
description, we analyze the characteristics of remote sensing data to define a unified
meta-information model, which can provide a comprehensive and unified standard-
ized description of remote sensing data. A metadata model can include content such
as data identification, data source, geographic location, shooting time, storage path,
spatial coordinate reference system, and so on. We use relational databases to store
meta-information extracted from remote sensing data. In terms of remote sensing
data content integration, we realize unified storage of remote sensing data based on
NoSQL database, storing remote sensing data of different structures by expanding
different columns. Based on the grid model, the correlation between data is established
in spatial and time dimensions, which is defined in the key of remote sensing data
retrieval, and the remote sensing data with different structures can be extracted at one
time based on a unified data key.

The smallest unit of the remote sensing data grid has attributes such as resolution and
spatial range, and is expressed in encoding with its resolution level, row order, and column
order. Figure 2 shows the structure of one of the quadtrees. As the level value increases,
the spatial resolution corresponding to each level gradually increases. In the construction
of the pyramidal grid model, the spatial resolution expressed by each grid on different
layer is
lonmax — [0 min
2level ¢ oridSize

gridRes = @)
where [071max and [o7yin represents the maximum and minimum value of the longitude
range of the current coordinate system, respectively, level represents the level of current
grid, gridRes represents the resolution, and gridSize represents the size of current grid.
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The calculation formulas of grid data coordinates (column number, row number) are

ot — latmax — lat @)
span

col — lon — Iottmin 3)
span

span = gridRes x gridSize 4)

where row and col represent the row number and column number of the grid, respectively.
lon and lat represent the longitude and latitude positions of the grid center. [onyi, and
latmax represent the minimum longitude and maximum latitude of the current coordinate
system, and span represents the size of the longitude range and latitude range represented
by each grid [48-50].

The construction process of remote sensing data grid based on spatial pyramid is
as follows:

1. Associate spatio-temporal information on the basis of the pyramidal grid hierarchy,
and establish the correspondence between remote sensing data and grid models
according to the spatial resolution and geographic scope of the remote sensing data.

2. Copy the remote sensing data to the relevant position in the grid based on the
correspondence to obtain a grid generated from the remote sensing data.

3. Useresampling algorithm (such as bilinear interpolation algorithm) to down sampling
remote sensing data step by step to obtain grid data at lower resolution levels, thereby
obtaining a complete remote sensing data pyramid.

4. Sample multi-source remote sensing data on a unified remote sensing data pyramid
hierarchy to form a hierarchical structure, realize multi-scale management of data,
and obtain a global remote sensing data pyramid.

2.2.2. Clustering Optimization Based on Fusion of Spatio-Temporal Feature

On the basis of the remote sensing data grid, in order to accurately and quickly retrieve
and access the target data, it is necessary to perform feature clustering and association on
the multi-source data at first, and find the optimal feature combination of the data ontology
to achieve data pre-classification. Considering that in the pyramid grid, a single grid is the
smallest carrier of spatio-temporal information and usually contains multi-dimensional
information, especially in the grid layer of small scale, due to the size limitation, local
locations have semantic information belonging to multiple categories and will lead the
clustering results to be discontinuous, that is, cliff phenomenon. Therefore, the accuracy of
clustering results obtained only by the features of the data ontology is low. To remedy the
impact on the classification results, we use the neighborhood search strategy to determine
the similarity of the edges of the target data, according to the connectivity of the spatial
location of the remote sensing data, and divide the grid containing multiple semantics to
the correct dataset, as shown in Figure 3.

Target Feature Fuzzy
Data Selection Clustering

T \

Recursive Similarity Neighborhood
Growth Determination selection

Figure 3. Clustering optimization based on spatial-temporal Features.

We use the optimized FCM algorithm to divide the remote sensing dataset. Firstly,
we select the combination of statistical feature of the remote sensing data as the basis of
classification, and choose one or several combined features of the remote sensing data as
a set of vectors to calculate, and determine the association relationship between the data
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grids containing the same objects from the grid dataset, extract object information and
group remote sensing datasets based on the similarity of features between grid data, to
obtain remote sensing datasets containing different feature elements.

Firstly, we fuse the multi-source features of the remote sensing data by expanding
the data dimension of the FCM algorithm, and use weighting factors to adjust the degree
of contribution of different features of the remote sensing data. The modified objective
function is as follows:

n c
minf, (U, V) = Y Y agull]|x — ;] (5)
k=1i=1

where ay is the weighting factor of the kth feature. Whereas determining the weight factor,
firstly we set an initial value which satisfies the constraint condition for each feature, then
we use the weight to divide the cluster, and feedback the evaluation index of the clustering
result to adjust the weight of the feature. Empirical judgment or machine learning method
can be used to get the weight factor of each feature in the best classification result after
many iterations.

We use four indicators: recall rate, precision rate, accuracy rate, and Kappa coef-
ficient to evaluate the clustering results of remote sensing data, and respectively gives
statistics of fuzzy clustering based on single feature and multi-feature fusion, as shown
in Figure 4a,b. Figure 4c shows the selection process of each feature weight factor in the
multi-source feature fusion, taking the adjustment of the weight coefficient of the mean and
histogram of gradient (HOG) [51-55] as an example, and gives cluster evaluation results
with different weights.

Mrecall
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maccuracy

D Kappa coefficient | |
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—
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Figure 4. Evaluation index values of fuzzy clustering results based on image features. (a) single feature; (b) multi-feature

fusion; (c) multi-feature fusion using various weighting factors. h and m respectively represent the weight coefficients of

the histogram of gradient (HOG) and the mean gray level.

In Figure 4, the clustering based on multi-source image features has a higher recall
rate than single image feature clustering, the completeness of the remote sensing dataset
obtained has been partially improved, whereas the precision, accuracy, and Kappa coeffi-
cient have been reduced; in the process of feature weight adjustment, by setting reasonable
feature weight coefficients, the recall rate of clustering results can be improved on the
premise that the precision rate, accuracy rate, and Kappa coefficient and other indicators
maintain a high level, therefore, the completeness of remote sensing dataset extraction can
be enhanced.

In Figure 5, the thumbnails of the remote sensing dataset after clustering at each stage
are given, and the gray and red rectangular boxes are used to identify the data grid in
the dataset and the new data grid compared with the result of the previous stage of the
clustering process to more intuitively represent the clustering results using single feature,
multi-feature fusion, and optimized feature weight.
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(@)

b | (c)

Figure 5. Results of fuzzy clustering results based on image features. (a) clustering results based on mean; (b) clustering
results based on mean and HOG; (c) clustering results with adjusted weighting factors.

Figure 5 shows that the use of a single image feature can identify most lake grids,
but the recognition effect is poor in the edge region; compared with a single feature,
clustering based on gray level mean and HOG feature fusion improve the integrity of some
edge regions of the lake dataset; the adjustment of the feature weight factor contributes
to the accuracy of remote sensing data grid division and the completeness of remote
sensing datasets.

In the process of clustering analysis based on image features, the amount of image
feature data is reduced in feature extraction, resulting in the loss of some continuity details
in the spatial position relationship, so that the remote sensing data grid originally belonging
to the same object are divided into different sets. In order to optimize the clustering analysis
process to obtain a more accurate remote sensing dataset, temporal, and spatial features
are introduced in the remote sensing data classification process to establish the association
relationship between remote sensing big data, and achieve data similarity division in the
spatio-temporal dimension.

The optimization of fuzzy clustering combined with spatio-temporal features, is to
select grids obtained by clustering based on image features which contain some kind of
objects as seeds and use a recursive 8-neighborhood search algorithm to judge the similarity
between the seed data grid and its neighboring data grid and complete the division of the
edge grid, to achieve optimization of clustering results [56,57]. In this paper, the region
segmentation algorithm is applied to the grid pyramid, and the difference in pixel value is
upgrade to the difference in grid feature value in the regional similarity criterion. We select
the grid data with the highest similarity to the cluster center as the seed grid, and use the
similarity of the eigenvalues between the seed and its neighboring grids as the judgment
basis, and connect the grids that meet the regional growth criteria to achieve grid-level
regional growth. As shown in Figure 6, T, is selected as the seed node, the black arrow
indicates the recursive route, and the circular area indicates the search range; that is, a total
of 24 similarity determinations are completed in 3 areas.
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Figure 6. Eight-neighborhood recursive decision algorithm.

e Judgment Criterion of Neighborhood Similarity
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Regarding data grid with multiple features as a set of data samples in a multi-
dimensional feature space, referring to the definition of Euclidean distance, the distance
between any two grids in the image feature space of the grid data is defined as:

Diff(P(x,y),P'(x',y)) = a1(Fip — Fip)* + ax(Fap — Fopr)” (6)

where Dif f is the distance between two grids, Fip, F;pr and F,p, F,ps respectively, represents
the value of two characteristics of an arbitrary grid and the seed grid, and 44,4, indicates
the weight coefficient when comparing each feature of the grid.

e  Grid Area Search Based on 8-Neighborhoods

The process of clustering optimization combined with spatio-temporal features is
shown in Figure 7.

Start
Extract features of Add tiles in 8 neighborhoods
spatiotemporal image tiles into the queue

A 4

Get results of optimized

) 4

true
Fuzzy C-Means clustering Are tiles in same class ? Are there any tile
l to judge ?
false
‘ Choose a tile to seed ‘ v false

true/@e of features

Are there any tile
less than threshold? to seed ?

false

false

Figure 7. Fuzzy clustering optimization based on spatio-temporal features.

The specific process of clustering optimization combined with spatio-temporal features
is as follows:

1. Judge the similarity between the grid in 8-neighborhoods and the seed grid to deter-
mine whether they belong to the same dataset.

2. Ifitbelongs to the same dataset, then the 8-neighborhood grid similarity judgment of
this neighborhood grid will be performed; otherwise, the search will not continue to
the surroundings.

3.  When judging the similarity of image features in the neighborhood search, it is
necessary to judge the cells in the grid from large to small to determine whether they
belong to the same dataset.

Figure 8 shows the clustering results based on image features and optimized re-
sults using spatio-temporal features, and some differences in the results are identified by
rectangular boxes.

As we can know from Figure 8, compared with the clustering method based on image
features, the accuracy of the clustering results optimized by using spatio-temporal features
at the edge of feature elements is significantly improved, which can ensure the integrity
and spatio-temporal continuity of the remote sensing dataset.
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Figure 8. Comparison of fuzzy clustering results. (a) fuzzy clustering results based on image features;
(b) fuzzy clustering results based on spatial-temporal features.

2.3. Coding Mechanism of Hierarchical Multi-dimensional Hybrid Indexing Model

Remote sensing data has time, space, and event attributes, which can provide sup-
port for the sequence analysis and spatio-temporal change description of remote sensing
datasets. Therefore, in order to achieve rapid remote sensing data acquirement, it is nec-
essary to encode the multi-dimensional hybrid index model and establish the mapping
relationship between the model and the storage structure, so as to realize the access method
of remote sensing data based on the HMDH model.

We use spatio-temporal features to expand data in different dimensions and abstract
remote sensing data from the three dimensions of time, space, and event, to form a cube
structure, which can clearly show the details of the data in different dimensions. In the
cube structure, the event dimension is the fusion representation of various features of the
data ontology, and the feature weight can be adjusted by the weight factor.

However, in this cube structure, different dimensions are isolated from each other, and
single condition query does not provide complete data retrieval capabilities. Meanwhile,
retrieval based on features of different dimensions will increase the complexity due to the
combination of conditions, resulting in reduced retrieval efficiency. Therefore, this structure
cannot provide efficient retrieval support. Therefore, spatial curve and compression coding
are introduced to establish hierarchical remote sensing data index, which reduces the
complexity of the data access process.

In this section, we introduce the construction of “cube” structure and coding method
continuous mixed index, to explain how to establish the mapping relationship between
HMDH model and storage structure.

2.3.1. “Cube” Structure

Compared with other types of data, remote sensing data has time and spatial attributes
when it is acquired. Where the spatial attribute describes the geographic location and
range of the remote sensing data, and the time attributes represent the order in time
dimension and life cycle of the remote sensing data and defines the valid time range
of the dataset, and event attribute describes the combined range of different time and
spatial dimensions. These attributes support the sequence analysis and the description of
description of temporal and spatial changes of remote sensing datasets. Therefore, we use
these spatio-temporal features as benchmarks to expand the data in different dimensions
and establish a unified expression model for remote sensing data. As shown in Figure 9,
the “cube” model is an abstract cube model in time dimension, spatial dimension, and
event dimension.
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Figure 9. Remote sensing data cube model.

In the remote sensing data “cube” model given in Figure 9, the multi-source remote
sensing data are divided into different datasets. In the spatial dimension, on the basis of
the grid organization model of the pyramid structure, we construct a spatial dataset with
uniform geographic scope, spatial resolution, and grid size. In the time dimension, we
define the valid time range of the dataset in the form of a timestamp to construct the time
dataset. Furthermore, in view of the differences in the data sources and included objects,
we extract the event features of remote sensing data based on spatio-temporal correlations
to establish a remote sensing data organization model for multi-source remote sensing data,
and divide the event influence domain into several units in time and space dimensions, to
support users to extract and analyze multi-source remote sensing data based on events.

2.3.2. Hybrid Index Coding

Remote sensing data usually have multi-dimensional features, and single condition
query does not provide complete data retrieval capabilities. Meanwhile, the complexity of
the combination of conditions brought by retrieval based on features of different dimensions
will lead to reduced retrieval efficiency. In this section, we introduce spatial curves and
compression coding to build indexes, use spatial curves to connect data of different scales
and different sets, and realize a hybrid index based on grid coding, which can be used to
converts the feature combination retrieval of different dimensions into the form of batch
retrieval to reduce the complexity of the data access process.

Hilbert curve is used to fill the “cube” model at different scales, so that it can traverse
all grids in the spatial dimension, and make the curve start and end with the upper left and
upper right grids respectively. The space filling curves at different scales are connected
end to end in the order of increasing levels to ensure that all grids on the spatio-temporal
pyramid model can be uniquely mapped to a point on the space filling curve, thereby
realizing dimensionality reduction of the “cube” model [58].

Then, it is necessary to encode the grid nodes in the “cube” model to establish the
mapping relationship between the filling result of the Hilbert curve and the key used for
the remote sensing data storage to make the data near the spatial location is stored in the
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Event 4

Event 3

adjacent storage space, to guarantee that high efficiency of data storage and retrieval. The
encoding process is as follows:

1.  Divide the grid of the node’s level into four regions evenly according to the spa-
tial position, and number the four regions according to the direction of the space
filling curve;

2. Calculate the grid offset of each region relative to the starting point;

3.  Continue to subdivide the area to which the node belongs according to the above
process until the number of grids contained in the subarea is 1;

4. Accumulate the relative offsets of the sub-areas to which the node belongs during the
iteration process to obtain the code of the grid node in this level;

5. According to the series relationship of the space filling curve at different resolution

levels, the number of grid nodes is corrected; that is, the offset is added on the basis
of the foregoing encoding result, and the offset is smaller than all grids of the current
level Total, get the complete coding result of the grid node in the entire grid pyramid.

Figure 10 shows a schematic diagram of filling the “cube” model with a space filling
curve, and some coding results on layers 1-3. From the coding results in the figure, we
can see that this paper proposes that the continuous index space has continuity in spatial
dimensions of different scales.

Dataset 1, Spatial Scope 2, Time 3

Dataset 1, Spatial Scope 2, Time 3 Event 2

Dataset 1, Spatial Scope 2, Time 2

Dataset 2, Spatial Scope 4, Time 4

|

Event 1
Dataset 1, Spatial Scope 1, Time 1

0‘0

N v Vs VR v

Dataset 2, Spatial Scope 3, Time 4

)
0
X
%

e A ke
TN TN

A"’
o e, e
el v

FAVAVAVAVAVAVAVAV

FAVAVAVAVAVAVAVAY)
AVAVAVAVAVAVAV)

=

0001 0101 <=~
2
00000101 ¥

00000100 [*~

Figure 10. Remote sensing data cube model filled with Hilbert curve.

For the continuous index space of the multi-source remote sensing data organization
model, the corresponding data table and index table structure are given in Figures 11 and 12,
respectively.
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Figure 11. Space index on remote sensing data.

In the data table, the Rowkey [59-61] is constructed according to the encoding result of
Hilbert curve filling to ensure the continuity of the data index in the spatial dimension; in
the index table, the data time attribute and event attribute are used as prefixes to construct
the Rowkey, to ensure that the index is stored in the same order as the time and event
attribute values of the remote sensing data so as to achieve the continuity of the index of
the remote sensing data in the time dimension and the event dimension.

Key
Rowkey Version

Key
TIME_yyyyMMdd1_keyl timestamp1
Time TIME_yyyyMMdd2_key2 timestamp
Dimenson TIME_yyyyMMdd2_key3 timestamp1
TIME_yyyyMMdd2_key4 timestamp1
TAG_namel_valuel_keyl timestamp1
Event TAG_namel_value2_key2 timestamp1
Dimenson TAG_name2_value3_key3 timestamp 1
TAG_name2_value4_key4 timestamp1

Figure 12. Time and event index on remote sensing data.

Rowkey in the data table mainly includes the grid block identification (BlockID), grid
offset (Index), data type (Type), and data production time (Time), as described below:

1. BlockID is the grid block ID obtained by dividing the grid according to space. In order
to ensure the hashability of the data in distributed storage, the BlockID is stored in
reverse order;

2. Index is the storage location of the grid in the grid block. The grid data of a certain
spatial location can be obtained by prefix matching;

3. Type is the basic category to which the data belongs, 0-basic image, 1-vector map,
2-temporal image, and 4-basic elevation;

4. Time is the coarse-grained time attribute value extracted from the data, is the produc-
tion time of the data, accurate to the year.

The data table contains two column clusters, MetaData and TileData. Where MetaData
is used to store grid data element information, such as grid task ID, grid data classification,
grid transparency, grid data channel number, etc. Moreover, TileData is used to store grid
data in different formats, such as png256, jpeg256, png512, and jpeg512, etc. The version of
the grid in the data table is its production time in milliseconds.

The Rowkey in the index table mainly includes the retrieval type, retrieval value, and
the key of the grid in the data table, described as follows:
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1. “TIME_yyyyMMdd1_keyl” means that the value of the key corresponding to the
grid whose time attribute value is “yyyyMMdd1” is keyl;

2. “TAG_namel_valuel_keyl” means that the value of the event attribute namel is the
grid data of valuel, and the value of the key stored in the data table is key1

3.  “TIME” and “TAG” are used to distinguish time and event attributes.

The index table contains a column cluster Key, which contains a column Key, which is
used to store the key of the grid data in the data table; the version of the grid data in the
index table is the data production time.

2.4. Experimental Materials

This paper mainly takes remote sensing data from the following sources as test data
to verify the effectiveness and versatility of the HMDH index in multi-source remote
sensing data.

2.4.1. Remote Sensing Satellite Image Data

The remote sensing satellite image data used in this test comes from Microsoft’s
Bing map service. Data in three regions of the Paracel Islands, Hawaiian Islands, and
Qinghai-Tibet Plateau lakes are selected as the test data set, in PNG format.

2.4.2. Digital Elevation Data

The digital elevation data is the global spatial resolution 30 m digital elevation data
of the ASTER GDEM V2 version, coming from the Geospatial Data Cloud Platform of the
Computer Network Information Center of the Chinese Academy of Sciences, in GeoTiff
format.

3. Results and Discussion
3.1. Construction Results of the HMDH
3.1.1. Construction Results of the HMDH for Remote Sensing Image Data

As for remote sensing image data, we select the Paracel Islands dataset, the Hawaiian
Islands dataset, and the Qinghai-Tibet Plateau lake dataset. We extract color features,
texture features, shape features, such as grayscale histogram, grayscale mean value, vari-
ance, standard deviation, color moment, direction gradient histogram, and image principal
component feature value and other data features; read the time stamp information from
metadata as the data time feature; read the coordinate system information, origin, affine
coefficient, and other parameters of the data, calculate the geographic range of the data
expression as the data spatial feature. Then we build the HMDH model on this basis. The
results are given in Figure 13.

In Figure 13, the experimental visualized results of the three test datasets and their
clustering results are given respectively, and grids of the divided remote sensing dataset
are marked with a rectangular box.

In the test, the data in the remote sensing dataset is marked by methods such as vector
marking and manual elimination. On the basis of the marking results, we calculate the
integrity, accuracy, and redundancy of the traditional grid dataset and the clustered dataset
to get the effectiveness evaluation result, as shown in Table 1.

Table 1. Remote sensing dataset statistics.

Dataset Grid The Amount of Data Integrity Accuracy Redundancy
Traditional grid 15,000 1 0.023 0.977
Paracel Islands dataset the HMDH 1792 1 0.20 08
H i Islands d Traditional grid 16,960 1 0.058 0.942
awail Islands dataset the HMDH 1072 1 0.951 0.049
Traditional grid 18,240 1 0.108 0.892
Plateau Lake dataset the HMDH 2601 1 0.935 0.065
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(a) (b)

Figure 13. Construction result of the multi-dimensional hybrid indexing model (HMDH) for remote
sensing image data. (a) Paracel Islands reef dataset; (b) Clustering results of Paracel Islands reef
dataset; (c) Hawaii Islands dataset; (d) Clustering results of Hawaii Islands dataset, (e) Qinghai-Tibet
Plateau lakes dataset; (f) Clustering results of Qinghai-Tibet Plateau lakes dataset.

Where the integrity indicates the completeness of the objects in the divided dataset,
which is represented by the percentage of the number of grids containing objects in the
HMDH to the number of all marked image grids in the traditional grid dataset; the accuracy
indicates the correctness of the dataset division, which is expressed by the percentage of
the number of grids that contains the objects to the total number of grids in the HMDH
dataset; the redundancy indicates the degree of redundancy of the image grid in the dataset
with respect to the feature target, and it is represented by the percentage of number of the
grids that does not contain objects to the total number of grids in the clustered dataset.

It can be seen from Table 1 that the number of grids in the HMDH is reduced to
6-17% of the traditional grid dataset. The accuracy is increased to more than eight times
the original, and the redundancy is significantly reduced. In other words, benefit from
the fuzzy clustering method proposed in this paper, the size of the dataset significantly
reduced and the accuracy of data clustering is improved, under the premise of ensuring
the integrity of the feature elements in the remote sensing dataset.
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3.1.2. Construction Results of the HMDH for Digital Elevation Data

As for digital elevation data, we select the Hawaiian Islands data as the test dataset.
We extract grayscale histogram, mean value, standard deviation and other data features;
read the time stamp information from metadata as the data time feature; read the coordinate
system information, origin, affine coefficient and other parameters of the data, calculate
the geographic range of the data expression as the data spatial feature. Then we build the
HMDH model on this basis. The results are given in Figure 14.
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Figure 14. Fuzzy clustering results of digital elevation dataset. (a) Subregion 1 of Hawaii Islands
dataset; (b) Clustering results of subregion 1 of Hawaii Islands dataset; (c) Subregion 2 of Hawaii
Islands dataset; (d) Clustering results of subregion 2 of Hawaii Islands dataset; (e) Subregion 3 of
Hawaii Islands dataset; (f) Clustering results of subregion 3 of Hawaii Islands dataset; (g) Subregion
4 of Hawaii Islands dataset; (h) Clustering results of subregion 4 of Hawaii Islands dataset.



Remote Sens. 2021, 13, 1314

19 of 23

Query time/ms

600 r

500

400

300

200

100

—a—HDMH
8-STHI
—e—DDBI

o

In Figure 14, the original grid data set in the four sub-regions and the construction
results of the multi-dimensional hybrid indexing model are presented in the form of
visualization, and they are compared. Among them, the blue rectangular boxes are used to
identify the original remote sensing data grid division result, and the red rectangular boxes
are used to identify the construction result of the multi-dimensional hybrid indexing model.

It can be seen from Figure 14 that when HMDH is applied to digital elevation model
data, it can also achieve accurate division of targets. On the premise of ensuring the
integrity of the feature elements in the remote sensing data set, the size of the data set is
reduced and the effectiveness of model construction is improved significantly.

3.2. Query Performance of the HMDH

We use Apache JMeter as a performance testing tool to continuously access the inter-
face of the HMDH model we proposed and the traditional remote sensing data model, by
virtualizing a certain number of users, to conduct efficiency tests on the remote sensing data
access process, so as to complete the comparison of the retrieval efficiency of the above two
models in the spatial, time and target dimension. Average response time in experimental
results is shown in Figure 15. The index structures used in the test is as follows.

1.  Perform data retrieval based on the HMDH proposed in this paper;

2. Perform data retrieval based on the distributed database index (DDBI), established
on time, spatial and other features of the remote sensing data in distributed database
system [34];

3. Perform remote sensing data retrieval based on Hilbert code index method for spa-
tiotemporal data of virtual battlefield environment (STHI), proposed in [36].

We select remote sensing image data in global area on 0-9th layer, a total of 690
thousand. Firstly, we perform spatial retrieval, time retrieval, and event retrieval on tables
that store different amounts of data, respectively. We then perform examination on the
combination of spatial and time dimension, to verify the efficiency of the HMDH in multi-
dimensional combination query. The results of query on spatial, time and event dimension
are given in Figure 15, and the results of query on spatial and time dimensions are given in
Figure 16.
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Figure 15. Data query performance of HMDH on different storage data volumes. (a) Query in the spatial dimension,
(b) Query in the time dimension, (c) Query in the event dimension.
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Figure 16. Data query performance of HMDH in spatial and time dimension with different window sizes. (a) Query a
spatial scope of 2.5° x 2.5°, (b) Query with spatial scope of 4.6° x 4.6°, (c) Query with spatial scope of 7.4° x 7.4°.

It can be seen from Figure 15 that, the HMDH and DDBI have better query perfor-
mance than the STHI. Among them, the HMDH performs better on remote sensing data
query, especially in space dimension. As the amount of data grows, the STHI index has a
significant decline in query efficiency, while the other two indexes are relatively stable.

According to the results given in Figure 16, the HMDH is more sensitive to the size of
the interval for time query. Although the scope of spatial query varies, the query efficiency
slightly decreases as the scope of time query continues to expand, while the other two
index remains relatively stable. As the scope of spatial queries increases, the gap between
the three indexes gradually increases.

It can be seen from the above experimental results, the HMDH proposed has higher
retrieval efficiency in the retrieval process of mass remote sensing data in spatial, time and
event dimension, especially suitable for query in a short time interval. Compared with STHI
and distributed index, the query time of HMDH index in this scenario is shortened by at
least 75%. The HMDH has high application value and practical significance in some remote
sensing data query scenarios. In future research, we will take into account the optimization
of feature encoding in the time dimension and introduce a certain degree of disorder, to
further improve the efficiency of remote sensing data query in the time dimension.

4. Conclusions

Focusing on the challenges encountered in the process of remote sensing data orga-
nization, management and access, we propose a hierarchical multi-dimensional hybrid
indexing model—the HMDH model for multi-source remote sensing big data. The HMDH
model establishes the optimized retrieval scheme from the two perspectives of data, struc-
ture and index, to realize the reorganization and rapid sharing of massive remote sensing
data. According to the experimental results, compared with the traditional grid model, the
HMDH reduces the amount of data to 6-17%, and improves the accuracy to more than
eight times, and compared with other algorithms selected as the baseline in this paper, the
HMDH can reduce the query time to 25% in some query scenarios. That is, the HMDH
model has higher retrieval efficiency in the retrieval process in multiple dimensions such as
spatial dimension, time dimension, and event dimension. The HMDH can be used to solve
the access problems of remote sensing data in various fields with high spatial resolution. It
expands the data sharing mode, and shortens the data acquisition time.

In the later stage, it is necessary to consider the access of multiple remote sensing data
sources to learn from deep learning methods to realize a transferable end-to-end processing
flow, improve the accuracy and efficiency of pre-classification, and reduce the impact of
empirical values. In addition, how to provide a dynamic index expansion method at the
retrieval model level and improve the robustness of the indexing model, is also the focus
of future research.
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