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Abstract: Fine-resolution LiDAR DEMs can represent surface features such as road and railway
embankments with high fidelity. However, transportation embankments are problematic for several
environmental modelling applications, and particularly hydrological modelling. Currently, there are
no automated techniques for the identification and removal of embankments from LiDAR DEMs.
This paper presents a novel algorithm for identifying embankments in LiDAR DEMs. The algorithm
utilizes repositioned transportation network cells as seed points in a region-growing operation. The
embankment region grows based on derived morphometric parameters, including road surface
width, embankment width, embankment height, and absolute slope. The technique was tested on
eight LiDAR DEMs representing subsections of four watersheds in southwestern Ontario, Canada,
ranging in size from 16 million cells to 134 million cells. The algorithm achieved a recall greater than
or equal to 90% for seven of the eight DEMs, while achieving a Pearson’s phi correlation coefficient
greater than 80% for five of the eight DEMs. Therefore, the method has moderate to high accuracy
for identifying embankments. The processing times associated with applying the technique to the
eight study site DEMs ranged from 1.4 s to 20.3 s, which demonstrates the practicality of using the
embankment mapping tool in applications with data set sizes commonly encountered in practice.
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1. Introduction

Fine-resolution digital elevation models (DEMs) such as those derived from light
detection and ranging (LiDAR) are valuable for environmental modelling because these
DEMs can represent topographic detail with high fidelity [1]. One consequence of this
detail is the representation of surface features such as transportation embankments. In
agricultural and rural areas, road and railway embankments are constructed to maintain a
stable gradient across a landscape and to reduce the impact of flooding on transportation
infrastructure by elevating roads and railways above the surrounding terrain [2,3]. These
transportation embankments often have parallel ditches and embedded culverts to facilitate
drainage off of, and away from, the embankment. This stands in contrast to roads and
railways in urban settings, which are typically level with the ground surface and drained
by sub-surface sewers.

Although the embankment surface and associated ditches are faithfully captured in
fine-resolution DEMs, the culverts that pass beneath embankments are not [1,4,5]. Without
culverts, digital embankments become artefact dams that exhibit different hydrological be-
haviour than real embankments. Digital embankments can create extensive upslope areas
of artefact depressions, which impede the modelling of hydrological flow and connectivity,
and influence modelled flood potential and contaminant delivery [1,4,6–10]. Typically, it
is best to employ hydrological conditioning techniques such as filling and breaching to
remove artefact depressions created by embankments [1,4,11,12]. However, these condi-
tioning techniques cannot recreate a pre-embankment surface necessary for applications
such as historical flow modelling.
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Furthermore, the topographic influence of embankments extends into the areas adja-
cent to embankments and interferes with the derivation of terrain attributes based on local
neighbourhoods, such as slope, which are often required for applications such as predictive
soil mapping, vegetation distribution mapping, and wetland mapping [13–16]. For such
applications, hydrological conditioning techniques do not eliminate the local topographic
effects of embankments.

Therefore, for some modelling applications, there is a need to identify and remove
embankments in their entirety to improve the accuracy of environmental models impacted
by embankments. Currently, there are no automated techniques to identify or remove
embankments. This paper presents a novel region-growing algorithm for mapping trans-
portation embankments in fine-resolution LiDAR DEMs. This method is raster-based rather
than point-cloud based because of the complexities of processing point cloud data and
the greater availability of raster DEM data, thus making the algorithm widely applicable
to practitioners.

Roads and railways, and thus the embankments they are constructed on, are largely
linear features. There are many techniques traditionally used in remote sensing for mapping
radiometrically uniform linear features in imagery data, including edge and line detection,
the Hough and wavelet transforms, and mathematical morphological approaches [17–22].
However, DEMs are surfaces, not images, and features such as embankments in DEMs are
not uniform in elevation or first or second order derivatives. Thus, the aforementioned
techniques were deemed inappropriate for the development of an embankment mapping
algorithm. Instead, a region growing approach was chosen because existing transportation
network vectors offered high-quality seed points for classifying embankments in DEMs.

2. Materials and Methods
2.1. Embankment Mapping Algorithm

The following sections describe each of the components of the embankment mapping
algorithm used by the tool. The algorithm begins by selecting and repositioning seed
points. Parameters are then derived to serve as growth conditions for the region growing
component of the algorithm (Table 1). Finally, the embankment region is grown from the
seed points using the derived parameters.

Table 1. User-defined parameters required by the embankment mapping tool. All parameters are
specified in map units, except for spill-out slope which is specified in degrees.

Parameter Description

Seed repositioning search distance Size of the neighbourhood to search around each
transportation network cell

Minimum road width Width of the top of the level road or railway surface

Typical embankment width Maximum width of a ditch-lined embankment

Maximum embankment width Maximum width of an embankment at a
valley crossing

Maximum typical embankment height Maximum height of a ditch-lined embankment

Maximum upward elevation increment Maximum elevation the embankment region is
allowed to grow upwards

Spill-out slope Threshold for the maximum absolute slope between a
cell and its nearest seed

2.1.1. Seed Selection

Region growing is a segmentation technique that can be used to identify distinct
features in rasters, such as DEMs [17,23]. The first step in a region-growing operation is the
selection of starting cells, sometimes called seed points. The mapped region then grows
outwards from each of the initialization seeds, classifying neighbouring cells as part of
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the region if those cells are within a pre-defined similarity threshold, or set of thresholds,
based on a set of conditional criteria [17,23].

The road embankment mapping algorithm described in this paper utilizes the cells
of a rasterized transportation network (derived from mapped road and railway line vec-
tors) as seed points. Transportation network cells should be found atop transportation
embankments, usually in a medial position, and thus these cells serve as ideal starting
points for embankment mapping. However, depending on data quality, some transporta-
tion vectors can be misaligned with embankments, positioned either to the side of the
embankment or off the embankment entirely. This situation can result in poor classification
of embankments and unwanted classification of non-embankment cells. To solve the vector
alignment problem, the embankment mapping algorithm begins by repositioning seed cells
to the highest, non-seed location within their local neighbourhoods, the size of which is
provided by the seed repositioning search distance parameter. Under most circumstances,
the center of the nearest embankment should represent the highest elevation within the
search distance.

2.1.2. Parameter Derivation

Once a seed cell has been repositioned, it is added to the classified embankment region,
a seed priority queue (SPQ), and a distance priority queue (DPQ). A priority queue is a
list of values that follows a first-in-first-out (FIFO) principle where values are dequeued
(i.e., popped) based on a priority value [24]. For both the SPQ and the DPQ, grid cells are
dequeued based on their distance to the nearest seed cell, such that cells closer to seed cells
are dealt with before those further from seeds. The seed priority queue is used to store
seed points for the region growing algorithm. The distance priority queue is used to store
each cell within the maximum embankment width so that morphometric parameters can
be derived for those cells.

Before the embankment region is grown, the morphometric parameters used to map
embankments must be derived using the DPQ. Each cell, x, is popped from the DPQ and
each of the eight neighbours, xn, is scanned. If xn is within the maximum embankment
width relative to the repositioned seed cells, xn is added to the DPQ and parameters for
xn are derived. These parameters include (1) the distance of xn to the nearest seed cell,
(2) the elevation difference between a cell and its nearest seed cell (i.e., the height of the
embankment at xn), (3) the slope of the embankment at xn, and (4) the maximum absolute
slope at xn, defined as the largest slope encountered between xn and its nearest seed cell.
This process continues until every cell in the DPQ has been scanned and the morphometric
parameters for embankments have been derived.

2.1.3. Region Growing

Figure 1 presents a model of a ditch-lined embankment (Figure 1A) and a model
of an embankment at a valley crossing (Figure 1B), which are used to illustrate several
embankment zones identified in the region-growing algorithm for embankment mapping.

Zone 1 corresponds to the transportation network seed cells, which because of the
typical construction of road surfaces, should be situated along the embankment medial
line. Zone 2 represents the surface of the embankment, which corresponds to the width of
the level road/rail embankment top. Zones 3 and 4 correspond to the sides and ditches
of a ditch-lined embankment, and the distinction between these two zones is explained
further below. Zone 5 corresponds to the relatively steep sides of an embankment in places
where the embankment traverses a valley or other low point in the landscape.

Each grid cell x is popped from the SPQ and each neighbour xn is scanned. If the
distance between x and xn is less than half of the minimum road width, xn falls within Zone
2 and is added to the SPQ and classified as part of the embankment region. Within Zone 2,
the growth of the region is constrained only by the distance to the nearest seed; changes
in elevation or slope are inconsequential on the road or railway surface. This condition
ensures satisfactory classification of the road or railway surface.



Remote Sens. 2021, 13, 1308 4 of 16Remote Sens. 2021, 13, x FOR PEER REVIEW 4 of 18 
 

 
Figure 1. (A) Cross-sections of a ditch-lined embankment and corresponding embankment zones; (B) An embankment at 
a valley crossing and the corresponding embankment zones. These cross-sections are idealized conceptual profiles and 
not derived from real embankments. 

Zone 1 corresponds to the transportation network seed cells, which because of the 
typical construction of road surfaces, should be situated along the embankment medial 
line. Zone 2 represents the surface of the embankment, which corresponds to the width of 
the level road/rail embankment top. Zones 3 and 4 correspond to the sides and ditches of 
a ditch-lined embankment, and the distinction between these two zones is explained 
further below. Zone 5 corresponds to the relatively steep sides of an embankment in places 
where the embankment traverses a valley or other low point in the landscape. 

Each grid cell x is popped from the SPQ and each neighbour xn is scanned. If the 
distance between x and xn is less than half of the minimum road width, xn falls within 
Zone 2 and is added to the SPQ and classified as part of the embankment region. Within 
Zone 2, the growth of the region is constrained only by the distance to the nearest seed; 
changes in elevation or slope are inconsequential on the road or railway surface. This 
condition ensures satisfactory classification of the road or railway surface. 

Beyond Zone 2 cells, region growth along the sides and ditches of a ditch-lined 
embankment is governed by the embankment width, embankment height, and slope. 
Criteria for Zone 3 and 4 cells are based on embankment height and width. Cells that fall 
within either Zone 3 or 4 must be less than the maximum embankment width and typical 
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conditions are met, xn is added to the SPQ and classified as part of the embankment region. 
Zone 3 cells are part of monotonically downward profiles along the path that the region-
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Figure 1. (A) Cross-sections of a ditch-lined embankment and corresponding embankment zones; (B) An embankment at a
valley crossing and the corresponding embankment zones. These cross-sections are idealized conceptual profiles and not
derived from real embankments.

Beyond Zone 2 cells, region growth along the sides and ditches of a ditch-lined
embankment is governed by the embankment width, embankment height, and slope.
Criteria for Zone 3 and 4 cells are based on embankment height and width. Cells that fall
within either Zone 3 or 4 must be less than the maximum embankment width and typical
embankment width, and less than the maximum typical embankment height. If these
conditions are met, xn is added to the SPQ and classified as part of the embankment region.
Zone 3 cells are part of monotonically downward profiles along the path that the region-
growing operation traced in joining a Zone 3 cell to its nearest seed cell. This monotonic
downward condition allows the region to grow into the bottoms of embankment-side
ditches and no further.

Zone 4 cells relax the monotonic downward condition, allowing for small elevation
increases to account for surface variation in fine-resolution DEMs. However, the upward
growth of Zone 4 cells is restricted by the maximum upward elevation increment. Zone
4 cells are further restricted by the maximum absolute slope encountered along the path
connecting xn to its nearest seed cell. The maximum absolute slope of Zone 4 cells must
be within the spill-out slope threshold, since the slope gradient along a road or railway is
typically very gradual compared with the steeper cross-sectional slope.

Finally, if xn does not meet the conditions for a Zone 3 or 4 cell but is still less
than the maximum embankment width threshold, it falls within embankment Zone 5,
corresponding to the sides of embankments at valley crossings. Embankments at valley
crossings are usually wide and steep and lack ditches, and so Zone 5 cells must have a
downward-oriented slope and the slope must be unbroken between xn and the nearest
seed cell. A break in slope indicates that the valley bottom has been reached and region
growing should be ceased.

The major steps in the region-growing algorithm for the identification of embankments
are outlined in Figure 2.

The process of region growing continues until every cell in the SPQ has been scanned,
at which point the process terminates and an embankment region has been identified.
Notice that due to the maximum width parameters, the number of grid cells that pass
through the SPQ is very likely to be far less than the total number of cells in the input DEM.
At the maximum, it would be equal to the number of cells in the raster that are less than or
equal to the maximum width parameter distance from a seed cell, although in most cases
the actual number of cells will be substantially less.
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2.1.4. Algorithm Implementation

The embankment mapping tool was developed as an open-source plugin to the
WhiteboxTools geospatial analysis platform [25]. The user must specify the names of the
input DEM raster and transportation vector, in Shapefile format. Additionally, users must
specify the seven parameters described in Table 1. The tool’s Rust source code is available
for inspection on the WhiteboxTools GitHub repository [26].
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2.2. Study Sites

The method was tested on eight low-relief LiDAR DEMs representative of agricultural
landscapes within southwestern Ontario, Canada (Figure 3, Table 2). The LiDAR point-
cloud data were originally acquired by a 3rd party LiDAR provider on behalf of the Ontario
Ministry of Agriculture, Food, and Rural Affairs (OMAFRA) and the Ontario Ministry of
Natural Resources and Forestry (OMNRF). The point clouds were collected by the data
provider using a Leica ALS70-HP sensor at an average density of 8 points/m2 starting in
the fall of 2016 and ending in the spring of 2018 [27].
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Figure 3. Four of the eight study sites across southwestern Ontario, Canada. (A) The Catfish Creek 1 site; (B) The Catfish
Creek 2 site; (C) the Brantford 1 site; (D) The Brantford 2 site. (E) The Kettle Creek 1 site; (F) The Kettle Creek 2 site; (G) the
McGregor Creek 1 site; (H) The McGregor Creek 2 site. Only roads or railways on embankments have been included.

The LiDAR point clouds were interpolated to 0.5 m resolution bare-earth DEMs using
the LidarTinGridding tool found in the WhiteboxTools geospatial analysis software [25].
The study sites range in relief from a minimum of 16.16 m at the McGregor Creek Test Site 1
to a maximum relief of 49.97 m at the Kettle Creek Test Site 2. Each study site was selected
for exhibiting a variety of embankment morphologies. Transportation network vector
data sets were obtained from the OMNRF and edited to include smaller embankments
un-mapped in the original transportation network.
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Table 2. Characteristics of the study site DEMs. Relief is the difference between the highest and
lowest elevation in a dataset. Road/rail length refers to the total length of the edited transportation
network vector, including all roads and railways on embankments.

Study Site Size (Grid Cells) Relief (m) Road/Rail Length (km)

Catfish 1 42,636,000 32.35 21.57

Catfish 2 69,435,000 20.43 33.53

Brantford 1 19,791,000 24.33 10.52

Brantford 2 78,334,000 38.15 46.47

Kettle 1 76,184,000 45.11 26.23

Kettle 2 134,723,000 49.97 69.22

McGregor 1 16,880,000 16.16 16.01

McGregor 2 42,636,000 21.16 32.89

2.3. Algorithm Validation

Eight validation datasets were created by manually digitizing the mapped and un-
mapped embankments in each study site, using hillshade images derived from the LiDAR
DEMs, orthoimagery, and the transportation network vectors as guides. The digitized
reference embankments were then rasterized.

To measure the algorithm accuracy, the derived embankment maps were compared to
the reference embankment rasters using the recall, precision, and Pearson’s phi coefficient
(PPC) metrics. These metrics are useful for evaluating the accuracy of a binary classification
technique [28,29]. Recall (1) refers to the percentage of reference data that is correctly
classified by the algorithm, and is calculated as:

Recall =
TP

TP + FN
(1)

where TP is the number of cells classified as true positives (correctly classified embankment
cells) and FN is the number of cells classified as false negatives. Precision (2) refers to the
percentage of cells classified by the algorithm that are correct, and is calculated as:

Precision =
TP

TP + FP
(2)

where FP is the number of cells classified as false positives. Finally, the PPC (3) is a
coefficient of correlation between observed and predicted binary classes and is functionally
equivalent to the Matthews correlation coefficient widely used in bioinformatics and
machine learning [30,31]. The PPC yields values between negative one and positive one,
indicating perfect disagreement and perfect agreement, respectively, between observed
and predicted classes. The PPC takes true negatives and class size into account, making
this metric more robust than similar classification metrics such as the F1 score [28], and is
calculated as:

PPC =
TP ∗ TN − FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(3)

where TN is the number of cells classified as true negatives.
In addition to accuracy, the tool’s computational efficiency was assessed. Once optimal

parameter settings were found through experimentation, the tool was applied 10 times
to each of the eight test data sets using constant parameter settings and the minimum
processing times of each test set was recorded. Processing times excluded data input and
output. All tests were performed on an i9-9980 computer system with eight processor cores
and 64.0 GB of DDR4 memory.
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3. Results
3.1. Algorithm Performance

The tool was applied to each of the eight study sites with varying parameter settings
to determine the optimal settings for efficient algorithm performance (Table 3). Table 4
presents a summary of the performance metrics of the algorithm at each study site. The
technique performed best on Catfish Creek Test Site 2, achieving a recall of 94.0%, a
precision of 81.8%, and an PPC of 0.873. The algorithm showed the poorest performance
on Kettle Creek Test Site 1, achieving a recall of 87.3%, a precision of 67.3%, and an PPC
of 0.760. The algorithm achieved a recall greater than or equal to 90.0% for seven of the
eight study sites, and an PPC greater than or equal to 80% for five of the eight study sites.
The fastest processing time achieved by the algorithm was 1.4 s on the East Brantford Test
Site 1, a 0.075 GB DEM. The slowest processing time measured during the tests was for
the Kettle Creek Test Site 2, a 0.51 GB DEM, where the tool took 20.3 s to complete the
embankment mapping.

Table 3. User-defined parameter settings for each of the eight study sites. SrchDist refers to the seed
repositioning search distance. MinWidth refers to the minimum road width. TypWidth refers to the
typical embankment width. MaxWidth refers to the maximum embankment width. MaxHght refers
to the maximum embankment height. ElevInc refers to the maximum upward elevation increment.
SpillSlope refers to the spill-out slope. All parameters are specified in map units, except for SpillSlope,
which is specified in degrees.

Study Site SrchDist MinWidth TypWidth MaxWidth MaxHght ElevInc SpillSlope

Catfish 1 10.0 4.0 15.0 35.0 1.0 0.005 2.0

Catfish 2 10.0 5.0 15.0 25.0 1.0 0.005 4.0

Brantford 1 5.0 5.0 15.0 30.0 1.0 0.005 4.0

Brantford 2 5.0 6.0 25.0 35.0 1.0 0.05 6.0

Kettle 1 5.0 6.0 25.0 40.0 1.0 0.05 4.0

Kettle 2 3.0 6.0 25.0 40.0 2.0 0.05 4.0

McGregor 1 15.0 2.0 20.0 40.0 2.0 0.05 4.0

McGregor 2 8.0 4.0 20.0 35.0 2.0 0.05 4.0

Table 4. Performance metrics of the embankment identification algorithm at each study site. Pro-
cessing time was measured as the minimum processing time of 10 test runs and excludes data input
and output.

Study Site Processing Time (s) Recall (%) Precision (%) PPC

Catfish 1 4.6 90.4 70.7 0.792

Catfish 2 6.3 94.0 81.8 0.873

Brantford 1 1.4 90.3 75.5 0.820

Brantford 2 12.5 90.0 70.3 0.786

Kettle 1 6.6 87.3 67.3 0.760

Kettle 2 20.3 91.8 78.8 0.841

McGregor 1 2.6 96.5 78.1 0.859

McGregor 2 7.8 93.6 80.3 0.862

3.2. Classification

Figure 4 shows an example of all the transportation embankments identified by the
embankment mapping tool for the McGregor Creek Test Site 1. The recall achieved for
this site indicates that 96.5% of all reference embankment cells (Figure 4A) were correctly
classified as embankment cells by the algorithm.
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Figure 6 demonstrates the algorithm’s ability to identify embankments at valley
crossings. These embankments have wide, steep sides without ditches that correspond to
Zone 5 of the zonal embankment model (Figure 1). As expected, the sides of embankments
at valley crossings are mapped as Zone 5 cells.
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The algorithm’s inability to correctly classify embankments with an atypical morphol-
ogy is demonstrated in Figure 7. This embankment at a valley crossing is an abandoned
railway line that has been converted into a recreational trail. There are ridges to either side
of the embankment surface that likely represent fencing or guard rails. The embankment
mapping tool’s region-growing method struggled to grow beyond these lateral ridges and
was unable to provide satisfactory coverage of the full embankment width. Furthermore,
the seed-point placement algorithm frequently relocated seed points to the tops of the
lateral ridges. Such atypical embankments were, however, rare within the study data sets.

Figure 8 demonstrates the effect of removing mapped embankments and interpolating
a surface in the data gaps left by the excised features. Data voids were filled using an
inverse-distance weighted (IDW) interpolation technique.
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4. Discussion
4.1. Embankment Classification

The tests produced high PPC and recall values, and moderate to high precision values.
These results indicate that the embankment mapping algorithm identifies transportation
embankments in LiDAR DEMs with moderate to high levels of accuracy. For most em-
bankments in each study site, the algorithm correctly classifies reference embankment
cells as embankment cells according to the zonal model of ditch-lined embankments and
embankments at valley crossings developed in Figure 1.

Although Zone 5 of the zonal model of embankments corresponds to the sides of
embankments at valley crossings, Zone 5 can be co-opted to map features such as driveways.
The driveway in Figure 5B is mapped to Zone 5 because this feature extends beyond
the typical embankment width while still sharing morphometric characteristics of the
embankment surface. Since driveways could act as region spill-out points, being sites where
the embankment is directly connected to the surrounding terrain beyond the drainage
ditches, it is important to notice that the embankment region experienced minimal spill-
out from the driveway. Thus, by finding optimal parameter settings, both satisfactory
embankment classification and limited region spill out can be achieved.

While mapping precision was moderate to high in all tests, it was more than 10%
lower on average than recall. It is hypothesized that the reduced precision is a result of
the use of a less restrictive maximum embankment width parameter setting in testing.
That is, a wider maximum embankment width setting allows the classified region to grow
beyond the actual width of some ditch-lined embankments and spill into the surrounding
landscape, increasing the number of false positives. However, a narrower maximum
embankment width setting results in unsatisfactory classification of embankments at
valley crossings, which are often much wider than ditch-lined embankments, reducing the
number of true positives. Therefore, the algorithm’s performance is quite sensitive to the
maximum embankment width parameter. It is suggested that a relatively large maximum
embankment width setting be used, because satisfactory embankment classification with
modest region spill-out should be preferred so that as few embankment cells as possible
are left in the DEM once embankments have been removed.

The algorithm performs poorly when there is a mismatch between the morphology of
a digital embankment and the embankment model morphologies of either a ditch-lined
embankment or an embankment at a valley crossing (Figure 1). In Figure 7B, the lateral
ridges representing fencing or guard rails confound the seed repositioning component
of the algorithm regardless of the search distance used. This embankment also exhibits
a rougher surface than most embankments because it is an unpaved recreational trail,
which likely limits the effectiveness of the maximum upward elevation increment growth
parameter. That is, if the variance in elevation is greater than the maximum upward
elevation increment, the region will only grow into Zone 2 or Zone 5, as these zones do
not depend on this parameter. However, such atypical embankment morphology was rare
across all eight datasets (only one such location was found in all eight study sites). Other
embankment morphologies, such as multi-lane highways with raised medians, do not
present a problem for the algorithm because these features are represented with a vector
line for each direction of travel rather than a single vector line for the entire feature.

4.2. Embankment Removal

The embankment map created by the tool can be used to remove embankments
from a DEM for applications where the presence of embankments is undesirable. This
can be accomplished by setting the mapped embankment cells to NoData in the output
DEM, producing an embankment-less DEM. Once embankments have been removed, a
surface approximating the terrain beneath embankments can be interpolated from the areas
adjacent to the excised embankments.

The embankment mapping tool offers users the option to automatically perform the
embankment removal and IDW surface interpolation. However, no single interpolation
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technique is suitable for all applications and all landscapes [32–37], and so the IDW inter-
polator used by the tool may not be optimal in all applications. In such cases, users should
manually interpolate across mapped embankments using the interpolator most suited to
the user’s data and application.

4.3. Algorithm Limitations

Although the embankment mapping method introduced in this paper demonstrates
moderate to high accuracy for identifying embankments in fine-resolution DEMs, there are
several limitations that can impact the use of the tool in a DEM pre-processing workflow.

1. Transportation network vectors often exclude small, un-mapped roads or long
driveways represented in fine-resolution DEMs. Users must edit their transportation
vectors to include these features if mapping and removal of the embankments of such
features is required. Furthermore, some transportation vectors can be misaligned with
embankments. While the seed repositioning component of the algorithm can mitigate this
problem in many cases, if vectors are misaligned beyond a reasonable seed repositioning
search distance, it is recommended that the user edit their vector data for better alignment.
Thus, the algorithm is sensitive to the quality of the transportation network vector.

2. Typically, the robustness of region-growing methods is limited by the quality of seed
points [38,39]. Although the seed repositioning component of the algorithm is generally
robust, it can identify non-embankment cells as potential seed points even when a relatively
small search distance is used, depending on the local topography. This is generally the
case where the road vector is misaligned to the edge of the embankment and where the
embankment is part of a larger roadcut. In the Kettle Creek 1 study site (the site with the
poorest performance), a large number of road cuts caused many seed points to be assigned
to non-embankment terrain and region growth into the surrounding terrain, reducing the
recall and precision metrics for this site. This problem can often be solved by ensuring that
the repositioning search distance is less than half of the typical embankment width, and by
manual realignment of transportation vectors. The algorithm’s performance is therefore
sensitive to the seed repositioning search distance parameter.

3. Embankments are better classified when parameter settings are less restrictive.
Using relatively restrictive parameter settings to minimize region spill-out is problematic
because embankment cells remaining in the DEM will result in localized elevation peaks
once the data gaps left by the excised embankments are interpolated.

4. There may be a mismatch between the morphology of a digital embankment and
the morphology of a ditch-lined embankment or an embankment at a valley crossing
(Figure 1). Atypical embankment morphology, such as the recreational trail with fencing or
guard rails in Figure 7, may be a result of DEM pre-processing errors or may represent real
morphology. In such cases, inadequate embankment classification can occur.

5. Conclusions

Road and railway embankments are well represented in fine-resolution LiDAR DEMs.
Modelled hydrological flow paths are impacted by the presence of embankments be-
cause remote sensing technologies are unable to capture the drainage culverts beneath
embankments, and the embankments themselves interfere with the reconstruction of
pre-embankment surfaces. Furthermore, the local topographic effects of embankments,
particularly on the derivation of terrain attributes such as slope, reduce the accuracy of
modelling applications such as predictive soil mapping, vegetation distribution mapping,
and wetland mapping.

This paper presented a method for identifying embankments in LiDAR DEMs that
relies on a region-growing operation. The algorithm begins by repositioning potential
seed cells used for the region-growing operation to ensure satisfactory embankment clas-
sification when the input vector data is misaligned. The embankment region then grows
using derived morphometric parameters including embankment slope, height, and width,
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classifying cells based on a zonal model of ditch-lined embankments and embankments at
valley crossings.

The embankment mapping technique was applied to eight fine-resolution LiDAR
DEMs representing largely agricultural areas of southwestern Ontario, Canada, and val-
idated using manually digitized reference embankments. The results indicate that the
technique demonstrated good computational efficiency and a moderate to high accuracy
when applied to embankments that match the profiles of ditch-lined embankments and
embankments at valley crossings. The tests showed that the method could correctly classify
87.3–96.5% of transportation embankment grid cells across study sites. The embankments
mapped by the algorithm can be removed and a new surface interpolated as part of a DEM
pre-processing workflow to improve the accuracy of modelling applications impacted by
the presence of embankments in DEMs.
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