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Abstract: Climate change has significantly affected the ecosystem of the Tibetan Plateau. There,
temperature rises and altered precipitation patterns have led to notable changes in its vegetation
growth processes and vegetation cover features. Yet current research still pays relatively little
attention to the regional climatic determinants and response patterns of such vegetation dynamics.
In this study, spatial patterns in the response of the normalized difference vegetation index (NDVI)
to climate change and its dynamic characteristics during the growing season were examined for
the Tibetan Plateau, by using a pixel-scale-based geographically weighted regression (GWR) based
on the Global Inventory Modeling and Mapping Studies (GIMMS) NDVI data, as well as data for
temperature and moisture indices collected at meteorological stations, for the period 1982–2015.
The results show the following. Spatial nonstationary relationships, primarily positive, were found
between the NDVI and climatic factors in the Tibetan Plateau. However, warming adversely affected
vegetation growth and cover in some arid and semiarid regions of the northeast and west Tibetan
Plateau. Additionally, precipitation played a dominant role in the NDVI of the Tibetan Plateau in the
largest area (accounting for 39.7% of total area). This suggests that increased moisture conditions
considerably facilitated vegetation growth and cover in these regions during the study period.
Temperature mainly played a dominant role in the NDVI in some parts of the plateau sub-cold
zone and some southeastern regions of the Tibetan Plateau. In particular, the minimum temperature
was the dominant driver of NDVI over a larger area than any of the other temperature indices.
Furthermore, spatial regressions between NDVI dynamics and climatic variability revealed that a
faster warming rate in the arid and semiarid regions impeded vegetation growth through mechanisms
such as drought intensification. Moisture variability was found to act as a key factor regulating the
extent of vegetation cover on the south Tibetan Plateau.

Keywords: climate change; NDVI; spatial heterogeneity; Tibetan Plateau; GWR

1. Introduction

Hydrothermal conditions in the climatic environment are the primary nonbiological
factors that determine vegetation characteristics (e.g., phenology, productivity, and distri-
bution patterns of plants) and their dynamic variation [1,2]. The normalized difference
vegetation index (NDVI) is a commonly used index to study vegetation growth and cover,
and it has been extensively applied on various regional scales [3,4]. Time-series NDVI data
are often used to analyze the characteristics of changes in vegetation and their relation-
ships with climatic factors [5]. However, while able to promote vegetation growth and
development as well as the physiological and biochemical attributes of vegetation, changes
in climatic conditions may also adversely affect vegetation growth and cover and display a
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pronounced nonlinear pattern of action [6,7]. Thus, climate change will inexorably alter
vegetation habitats and thereby influence its growth conditions and, to a significant extent,
its key characteristics (e.g., geographical distribution and diversity) [8]. Hence, studying
the relationship between climate and vegetation can provide a theoretical basis for coping
with climate change and improving and optimizing ecological functions, making it an
important area of current research on global change [9].

Due to its geographical conditions—high altitudes and middle-low latitudes—and
special underlying surface features (e.g., permafrost), the Tibetan Plateau, also known as the
“Third Pole” of the Earth, is a region quite sensitive to global change, one that significantly
influences the climate in its surrounding regions or even at the global scale [10]. Since
the 1980s, the Tibetan Plateau has experienced notable warming, at a rate approximately
twice the global average [11], which has had an immense impact on its terrestrial carbon
sink [12]. Studies in recent years have demonstrated that the vegetation greening trend on
the Tibetan Plateau is driven by climate change [13,14]. By integrating multiple models,
research has shown that the contribution of climate change to gross primary productivity
has surpassed that of land use and carbon dioxide concentration on the Tibetan Plateau [15];
however, this negative warming effect upon vegetation productivity generally occurs
in relatively arid regions. This is because warming intensifies the evapotranspiration,
which then amplifies soil moisture deficiencies [16,17]. Thus, the response of vegetation
to climate change may be even more complex under the dual stresses of frigidity and
aridity [18]. Evidently, examining the impact of climate change on the dynamics and
regional distribution of vegetation on the Tibetan Plateau has paramount ecological value
and practical significance for deepening our understanding of global climate change and
protecting the ecological environment.

Current research concerned with ecosystems of the Tibetan Plateau tends to mostly
focus on the pattern of change in alpine grassland and its correlation with hydrothermal
factors amidst climatic warming. Nonetheless, it remains necessary to advance research
into distinguishing the regional climatic determinants and the response mechanisms of
vegetation dynamics and their corresponding spatial pattern on a macroscopic scale [19].
Further, the superimposition of multiple climatic factors compounds the uncertainty in the
investigation of their relationships with vegetation growth and cover [20]. In this context,
based on the eco-geographical regionalization of the Tibetan Plateau, this study analyzed
the spatial nonstationary relationships of NDVI vis-à-vis various climatic factors and their
respective variability over a recent time period (at least 30 years), by using such methods as
geographically weighted regression (GWR), with two objectives in mind. Firstly, to determine
the role of climatic factors in controlling alpine vegetation and its general distribution pattern,
and secondly, to examine the spatial pattern of the response of vegetation dynamics to climate
change from 1982 to 2015, both under the overarching aim to continuing to strengthen research
on the relationships between vegetation and climate on the Tibetan Plateau.

2. Materials and Methods
2.1. Study Region

Situated in southwest China, the Tibetan Plateau is a vast region spanning six provinces
(Tibet, Qinghai, Sichuan, Yunnan, Gansu, and Xinjiang) which, at an average altitude of over
4000 m, is known as the “Roof of the World”. The Tibetan Plateau is an important ecological
security barrier in China. Climatically, the Tibetan Plateau is characterized by intense radiation,
low temperatures, and wide daily temperature difference (14~17 ◦C) and annual temperature
range (−5.6~17.6 ◦C). Annual average precipitation in this region is mostly below 400 mm, and
moisture and thermal conditions transition from warm and wet to cold and dry from southeast
to northwest. Alpine grassland is the predominant type of vegetation in this region, which
accounts for one third of China’s total grassland area [21]. Zonally, vegetation transitions from
forests to meadows, to steppes, and eventually deserts, when going from east to west on the
Tibetan Plateau. For the analysis, it was divided into 10 ecoregions (Figure 1, Table 1) according
to the eco-geographical regions established for China by Zheng [22].
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Figure 1. Location of the Tibetan Plateau and its vegetation types and eco-geographical regions.

Table 1. The ecoregions of the Tibetan Plateau.

Temperature
Zones Humidity Regions Eco-Geographical Regions

ER1: Plateau
sub-cold zone

B: Sub-humid region ER1B1: Guoluo-Naqu Plateau mountain alpine shrub-meadow region

C: Semiarid region ER1C1: Southern Qinghai Plateau and wide valley alpine meadow-steppe region
ER1C2: Qiangtang Plateau lake basin alpine steppe region

D: Arid region ER1D1: Kunlun high mountain and plateau alpine desert region

ER2: Plateau
temperature zone

A/B: Humid/
sub-humid region

ER2A/B1: Western Sichuan and Eastern Xizang high mountain and deep valley
coniferous forest region

C: Semiarid region
ER2C1: Qilian Mountains of eastern Qinghai high mountain and basin coniferous

forest and steppe region
ER2C2: Southern Xizang high mountain and valley shrub-steppe region

D: Arid region
ER2D1: Qaidam Basin desert region

ER2D2: North Kunlun mountain desert region
ER2D3: Ngali mountain desert region

2.2. Climatic Variables

Two types of climatic variables, namely temperature variables (mean temperature, Tave;
maximum temperature, Tmax; and minimum temperature, Tmin) and moisture variables
(precipitation, P; and relative humidity, RH), were used in this study. These data are
available from the China Meteorological Data Service Center. We collected monthly data
sets produced by 135 meteorological stations on the Tibetan Plateau from 1982 to 2015.
Then, the station climate data were interpolated using the Auspline v4.2 to 8-km raster
data, to match the spatial resolution of the NDVI, with a view to facilitating subsequent
analyses and computations. Finally, climate data for a randomly chosen period, collected at
the meteorological stations not previously used (because of missing data for some months)
in the interpolation procedure, were selected to compare with and validate the values in the
corresponding interpolated grid cells. The correlation coefficients (Pearson’s r) between the
interpolated data for each of the three temperature indices and their measured values were
>0.99, while those for P and RH were 0.86 and 0.89, respectively. Hence, the interpolation
accuracy was relatively high and thus met the requirements for a robust study of their
overall patterns on the Tibetan Plateau. After these treatments, the monthly temperature
variables and relative humidity during the growing season (from May to September) were
averaged to obtain interannual data, and the annual total precipitation was obtained by
summing the monthly data of the growing season.
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2.3. Normalized Difference Vegetation Index (NDVI)

The NDVI dataset (temporal resolution: 15 days; spatial resolution: 8 km) for the
1982–2015 period provided by the Global Inventory Monitoring and Modeling Studies
(GIMMS) is used here to derive vegetation growth and cover indices. Characterized
by relatively high accuracy and a long time series, the GIMMS NDVI dataset has been
extensively used to study global and regional large-scale changes in vegetation [23–25].
Monthly NDVI values were then calculated using the maximum value composite (MVC)
method. On this basis, monthly average NDVI values for the growing season (based on
previous studies obtained for the Tibetan Plateau, the growing season was defined here
as the period from May to September each year) were obtained. In addition, regions with
annual average NDVI values <0.1 were removed, to eliminate the effects of non-vegetation
factors [26]. It should be noted that non-vegetation area accounted for a large proportion
in some arid regions (ER1D1, ER2D1, and ER2D2), which were not considered in this study.
Subsequently, the spatial relationship between the monthly average NDVI and climate
variables was analyzed by the methods mentioned in the following sections.

2.4. Spatial Autocorrelation

The precondition for using geographically weighted regression (GWR, see Section 2.6)
is that geospatially correlated independent and dependent variables differ spatially, i.e.,
the regression coefficient varies with the spatial location of the independent variable [27].
The Moran’s I index is a measure of global spatial autocorrelation that reflects the extent
of the similarity between the attribute values of a spatial variable in adjacent spaces. The
Moran’s I is calculated this way:

I =

n ·
n
∑

i=1

n
∑

j=1
Wij(xi − x)(xj − x)

n
∑

i=1

n
∑

j=1
Wij ·

n
∑

i=1
(xi − x)2

(1)

where Wij is the spatial connection matrix between points i and j; the n is the total number
of spatial locations, and the xi and xj are the spatial attribute values of points i and j,
respectively, while x is the average value of the variable in all the spaces. The value of I
ranges from –1 to 1. When I > 0, it means the variable is positively spatially autocorrelated.
Conversely, when I < 0, the variable is negatively spatially autocorrelated. When I = 0,
however, the variable is not spatially correlated.

Usually, the standard Z-statistic is used to examine the significance of the Moran’s I:

Z =
I − EI√
var(I)

(2)

where EI and var(I) are the mean and variance of the Moran’s I, respectively. A positive
and statistically significant Z-score indicates a positive spatial autocorrelation and that
similar attribute values tend to cluster spatially. A negative and statistically significant
Z-score indicates a negative spatial autocorrelation and that similar attribute values tend to
disperse spatially. Accordingly, Z-score of 0 indicates that the attribute values of the spatial
variable are distributed independently and randomly.

2.5. Trend Analysis

In this study, the interannual trends of change in the growing-season climate and
vegetation indices were analyzed using the grid-scale-based ordinary least-squares (OLS)
method [28]. The equation for trend analysis is given by:
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θslope =

n ×
n
∑

i=1
i × Yi −

n
∑

i=1
i

n
∑

i=1
Yi

n ×
n
∑

i=1
i2 − (

n
∑

i=1
i)

2 (3)

where θslope is the slope of the linear regression, which conveys the trend and rate of change
in the climate or vegetation index for the Tibetan Plateau, Yi is the value of the climate or
vegetation index of the ith year, and n is the total number of years examined in this study
(n = 34).

2.6. Geographically Weighted Regression (GWR)

GWR, originally proposed by Brunsdon et al. [29], is a method used to extend ordinary
linear regression (e.g., OLS) when carrying out local spatial analyses. Using this method can
clarify changes in the spatial relationships within a given region, for better understanding.
The GWR’s parameters are a function of spatial location, in this way:

yi = β0(µi, νi) +
p

∑
k=1

βk(µi, νi)xik + εi (4)

where yi, xik, and εi are, respectively, the dependent variable (NDVI/NDVI variation),
independent variable (climate variable/variability), and random error at the spatial point i;
the (µi, vi) is the spatial location of point i; the k is the number of independent variables;
the βk is the regression coefficient at point i; and the β0 is the intercept.

A Gaussian model is generally used as the weight function for the GWR method,
as follows:

ωij = exp(−
d2

ij

b2 ) (5)

where ωij is the weight of observation point j of point i; the dij is the Euclidean distance
between points i and j; and the b is the bandwidth, which is a function that describes how
weight and distance are related. When dij > b, the ωij = 0; conversely, when dij = 0, the
ωij = 1. Here, the corrected Akaike information criterion (AICc) was employed to evaluate
model complexity and accuracy, as well as to determine an optimum b value. Lower AICc
values indicate better-performing models for a given simulation. Generally, when the
difference of AICc values between two models is greater than 3, the model with the lower
AICc value has the optimum b value [30].

Here, GWR considered both the spatial distribution and the dynamics patterns to
reveal the spatial variations in relationships between NDVI and climate variables. First,
the annual average climatic variables and NDVI should be conducted with normalization
by using the maximum–minimum standardized treatment [31], making the scopes from 0
to 1, and then the normalized climatic variables and NDVI were used as independent and
dependent variables, respectively, to calculate the regression coefficients, which indicated
the spatial relationship between NDVI and climatic factors. The purpose of normalized co-
efficients was to compare the results from climate variables in different dimensions, and this
treatment did not affect the spatial relationship between climate and vegetation. Second, the
climatic determinants for NDVI can be obtained by comparing the regression coefficients
for different climate variables, combined with the NDVI and climate trends. If variations
in both temperature and moisture factors coupled with relevant spatial relationship were
inconsistent with the varying trend of NDVI (that is, θslope_climate·βk·θslope_NDVI < 0), non-
hydrothermal factors (such as radiation, terrain and grazing) could be the dominant driver
of vegetation growth and cover. At last, the interannual variability of climate variable
(hereafter, climate variability) and NDVI variation during the study period were used in
the GWR as independent and dependent variables, respectively, to evaluate the spatial
correlation of climate change and vegetation dynamics.
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3. Results
3.1. Nonstationarity test of NDVI and Climate Change

First, the GWR coefficients of the mean and variability of each climatic factor were
subjected to a spatial autocorrelation analysis, to determine whether their relationships
of NDVI and its dynamics to climate change are spatially stationary (Table 2). These
results showed that the autocorrelation indices of the GWR coefficients were all > 0.8. This
suggested that the selected coefficients were highly spatially autocorrelated; that is, they
are spatially nonstationary. Additionally, each coefficient had a Z-score well above 2.58,
which is statistically significant at an alpha level of 0.01. Thus, GWR can comprehensively
display the quantitative effects of the climatic factors on the NDVI and its dynamics in
different regions.

Table 2. Moran’s I and Z scores of regression coefficients for each factor in the geographically
weighted regression model.

Regression Coefficients Tave Tmax Tmin P RH

Normalization
Moran’s I 0.94 0.95 0.92 0.83 0.90

Z 117.0 118.7 114.3 103.6 111.5

Variability Moran’s I 0.93 0.97 0.89 0.83 0.90
Z 116.5 120.3 111.3 103.6 112.6

3.2. Spatial Nonstationary Relationship Between NDVI and Climatic Factors

It can be seen from the interannual variability of climate variables during the growing
season of the study period (Table 3) that the Tibetan Plateau had experienced a significant
warming with a rate of 0.42◦C/decade. In arid and semiarid regions, the warming rates
were faster, and the Tmin varied more obviously. Precipitation also showed an increasing
trend. Areas with a faster increase rate of precipitation appeared in the semiarid region
of the plateau sub-cold zone, but the precipitation rate in the sub-humid and arid regions
increased slowly. The RH trend was nearly constant throughout the Tibetan Plateau during
the study period, and all ecoregions except the semiarid region of the plateau sub-cold zone
showed a downward trend. Spatially, the three temperature variables showed increasing
trends in almost all regions of the Tibetan Plateau, and the precipitation in most regions
was also an upward trend (Figure 2b). The RH trend, however, was decreasing in the
southeastern parts of the Tibetan Plateau (Figure 2c).

Table 3. Climatic variables and trends in ecoregions of Tibetan Plateau during the growing season of 1982–2015.

Eco-
Geographical

Regions

Tave Tmax Tmin P RH

Mean
/◦C

Trend
/◦C

10yr−1

Mean
/◦C

Trend
/◦C

10yr−1

Mean
/◦C

Trend
/◦C

10yr−1

Mean
/mm

Trend
/mm

10yr−1

Mean
/%

Trend
/%

10yr−1

ER1B1 27.9 0.44 28.6 0.45 27.4 0.67 465.0 8.6 69.7 −0.46
ER1C1 27.7 0.48 28.4 0.38 27.2 0.77 243.8 19.8 60.7 0.42
ER1C2 27.8 0.43 28.5 0.36 27.2 0.75 207.8 19.1 52.4 0.73

ER2A/B1 28.3 0.32 29.0 0.43 27.8 0.50 516.4 0.5 71.1 −0.52
ER2C1 28.2 0.51 28.8 0.42 27.6 0.65 337.1 9.1 65.8 −0.66
ER2C2 28.0 0.28 28.7 0.31 27.5 0.58 315.6 8.8 64.3 −0.12
ER2D3 28.1 0.53 28.8 0.41 27.4 0.79 62.8 2.1 43.8 −1.35

Tibetan Plateau 28.0 0.42 28.7 0.39 27.5 0.66 311.7 10.5 60.7 0.003
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Figure 2. The spatial distributions of NDVI (a), precipitation (b), and relative humidity (c) trends
during the 1982–2015 period. The blank regions represent non-vegetation area defined in this study
(annual average NDVI<0.1). The same below.

The GWR results for the NDVI and temperature indices revealed a positive spatial
correlation in most regions of the Tibetan Plateau (Figure 3). This indicated that warming,
to a certain extent, facilitated vegetation growth on the Tibetan Plateau. A negative spatial
correlation was found between the NDVI and each of the three temperature indices in
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some arid and semiarid regions (e.g., ER1C1, ER1C2, ER2C1, and ER2D3). Temperature
rises accelerated the evapotranspiration of soil moisture and further increased the extent of
droughts and, as a result, reduced the vegetation cover. This phenomenon was particularly
prominent in region ER2C1 and the northeastern part of region ER1C1.

 

3 

 

 

 
  

Figure 3. The spatial pattern regression coefficients for temperature (a): Tave; (b): Tmax; (c): Tmin, in
the geographically weighted regression model.
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The GWR results for the NDVI and moisture indices showed a positive spatial correla-
tion between the NDVI and precipitation in most regions of the Tibetan Plateau (Figure 4a),
so an increase in precipitation could increase the NDVI in these regions. A negative spatial
correlation between the NDVI and RH was found in some southern and northwestern
regions of the Tibetan Plateau (Figure 4b). An increase in RH might result in stomatal
closure in vegetation and weaken its transpiration [32] and, as a result, inhibit its growth
and development. This phenomenon was the most prominent in some parts of southern
regions, namely, ER1B1, ER2AB1, and ER2C2.

 

4 

 

 

  Figure 4. The spatial pattern regression coefficients for moisture ((a): P; (b): RH) in the geographically
weighted regression model.

3.3. Climate Determinants for NDVI in Different Ecoregions

The spatial domain of climatic determinants for NDVI is shown in Figure 5. In terms
of the overall pattern, precipitation was predominantly involved in NDVI, accounting for
39.7% of the Tibetan Plateau’s total area, a proportion larger than that of any other index
(Table 4). In the period of more than 30 years examined in this study, the NDVI increased
mainly in those regions where precipitation increased prominently (Figure 2a). Thus, the
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increase in precipitation played a vital role in fostering a gradual increase in vegetation
cover. RH was found to have played a dominant role in the NDVI in the western part of
region ER1B1, the eastern part of region ER2AB1, and some parts of region ER1C2. In
addition, a negative spatial correlation was mostly found between RH and NDVI. Thus, at
least spatially, vegetation growth in these regions was hindered by RH.
 

5 

 

  Figure 5. The effect regions of climatic determinants on NDVI on the Tibetan Plateau. “Others”
means the role of non-hydrothermal factors.

Table 4. Percentage of the area occupied by the effect regions of climatic determinants in ecoregions
of the Tibetan Plateau (%).

Eco-Geographical
Regions Tave Tmax Tmin P RH Others

ER1B1 3.4 11.6 8.3 32.6 36.2 7.7
ER1C1 1.1 11.4 20.9 39.9 16.7 6.4
ER1C2 0.4 4.2 5.1 59.1 20.2 4.8

ER2A/B1 1.1 10.8 8.5 39.9 31.8 7.0
ER2C1 2.1 1.8 2.2 57.6 31.6 3.5
ER2C2 2.6 1.7 6.6 63.4 12.0 6.9
ER2D3 0.1 0.3 0 55.2 3.1 6.7

Tibetan Plateau 1.1 6.2 7.1 39.7 19.3 4.3

The regions of dominant effect of temperature on the NDVI were mainly distributed
in some parts of the plateau sub-cold zone (ER1) and region ER2AB1 of the Tibetan
Plateau. Among the three temperature indices, the effect of Tmin was the most pronounced,
influencing NDVI over the largest area (7.1%) of the Tibetan Plateau (Table 4). This
dominant role of Tmin was most prominent in the southwestern part of region ER1C1 and
the northeastern part of region ER1C2. A positive correlation was found between the NDVI
and each of the temperature indices in these regions; this suggested that, at least spatially,
gradual temperature rises could foster greater vegetation cover.

3.4. Response Pattern of the NDVI Variation to Climate Variability

From the GWR results for climatic variability and NDVI dynamics, a negative spatial
correlation between NDVI dynamics and the variability of each of the three temperature in-
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dices was mainly in the semiarid regions (e.g., ER1C1, ER1C2, and south ER2C1) (Figure 6).
The NDVI mostly increased in all but some southern parts of region ER2C1 (Figure 2a).
In other words, the NDVI increased slowly in these regions where temperature increased
rapidly. In the western and southern parts of region ER1C1, the NDVI was predominantly
affected by Tmin (Figure 5). In most of the other regions, the NDVI was predominantly
affected by moisture.

The NDVI mostly increased in the eastern part of region ER1B1 and region ER2D3
(Figure 2a). Spatially, NDVI variability was positively correlated with Tmax variability
yet negatively correlated with the respective variability of Tave and Tmin in the eastern
part of region ER1B1 (Figure 6). Thus, the adverse effects of temperature variability on
vegetation growth and cover were primarily due to Tmin variability. Spatially, in region
ER2D3, NDVI variability was also found positively correlated with Tmin variability and
negatively correlated with the variability of Tave as well as that of Tmax (Figure 6). This
suggested that the adverse effects of temperature variability on vegetation growth and
cover were primarily a result of Tmax variability. Both regions were characterized by
increased precipitation and decreased RH (Figure 2b, c). Spatially, a negative correlation
was found between NDVI variability and each of the moisture indices in the eastern part
of region ER1B1 (Figure 7). In other words, a high rate of decrease in RH led to a high
rate of increase in the NDVI. By contrast, a positive correlation was found between the
NDVI variability and the variability of each of the moisture indices in region ER2D3
(Figure 7). Apparently then, climate change was able to alter vegetation growth and cover
in semi-humid and semiarid regions via differing mechanisms.

The variability of each climatic factor and NDVI variability were found to display
the same spatial relationship in the southern regions (ER2AB1 and ER2C2) of the Tibetan
Plateau. In addition, the variability of each climatic factor tested except RH was positively
correlated with NDVI variability in these regions (Figures 6 and 7). This suggested similar-
ities in the mechanisms by which climate change impacts vegetation growth and cover in
these regions. In these two regions, the NDVI was predominantly affected by precipitation
(Figure 5). In region ER2AB1, there was a decrease in precipitation (Figure 2b) but a rela-
tively marked decrease in its NDVI (Figure 2a). In other words, a high rate of decrease in
precipitation led to a high rate of decrease in the NDVI. An opposite pattern characterized
region ER2C2: there, both its precipitation and NDVI have increased (Figure 2a and b).
Put differently, a faster rise in precipitation levels fostered a high rate of increase in the
NDVI. Arguably, changes in precipitation were the principal driving factor for differential
vegetation growth and cover between these regions.
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  Figure 6. The spatial regression coefficients between NDVI variability and temperature variability

((a): Tave; (b): Tmax; (c): Tmin) from the geographically weighted regression model.
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Figure 7. The spatial regression coefficients between NDVI variability and moisture variability ((a):
P; (b): RH) from the geographically weighted regression model.

4. Discussion

Overall, the climate on the Tibetan Plateau is characterized by low temperatures,
large temperature differences, intense radiation, and high precipitation in summer [33]. In
addition, those effect regions of climatic determinants on NDVI on the Tibetan Plateau in
this study are consistent with those found across China (at a higher scale and lower resolu-
tion) [34]. As temperature rises, the response of vegetation growth to temperature becomes
increasingly prominent [35,36]. Before reaching the optimum temperature for photosynthe-
sis, temperature rises will facilitate photosynthesis [37], which we found in some parts of
the plateau sub-cold zone (ER1). Beyond this optimum temperature, warming will, on the
one hand, improve vegetation respiration and accelerate nutrient consumption (e.g., the
northeast Tibetan Plateau) and, on the other hand, accelerate moisture evapotranspiration
and reduce the accumulation of organic matter content [38], as it did in the southeast Ti-
betan Plateau. Changes in moisture can, to a certain extent, modify vegetation growth and
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cover in the largest areas of the Tibetan Plateau during the study period. However, more
moisture can also hinder vegetation growth and reduce vegetation cover by increasing
cloud cover and RH [32], which could be found in some sub-humid regions (e.g., ER1B1).
As many studies have shown, the response of NDVI on the Tibetan Plateau to climate
change follows a nonlinear process and generates a composite effect [39–41]. Consequently,
this necessitates an examination of the spatial distribution and temporal dynamic patterns
of vegetation growth and cover through multifactor comprehensive analysis, and provides
the theoretical reference for natural restoration of alpine ecosystem.

Regression analysis of climatic variability is crucial for helping to quantify the NDVI’s
response to climatic factors, since by conveying the dynamic responses of vegetation
growth and cover to climate change, it can better explain the dynamic relationships that
temperature and moisture have with vegetation. The intensity of vegetation growth de-
pends on the rates at which photosynthesis and respiration respond to climatic factors [42].
A positive correlation of climatic variability arises when the increase in the photosynthetic
rate surpasses that in the respiratory rate [43]. Specifically, an increase in Tmin variability
can have accelerated the consumption of biomass by increasing the nighttime assimila-
tion rate of vegetation. This is perhaps why Tmin became the principal factor inhibiting
vegetation growth in some regions (e.g., some parts of ER1C1). An increase in Tmax vari-
ability, however, can have inhibited vegetation growth and reduced vegetation cover by
strengthening the daytime respiration of vegetation and weakening its photosynthesis
(e.g., ER2D3). In addition, a faster warming rate accelerates moisture loss from soil and
vegetation and reduced regional vegetation cover [17], as it did in some southern parts of
the Tibetan Plateau. Evidently, analyzing the variation in NDVI and climatic variability as
objects of investigation can better capture and convey the relationship between vegetation
dynamics and climate change, as well as accentuate the impact of climate change upon
mechanisms of vegetation growth and cover on the Tibetan Plateau. It also provides new
ideas for the further processing of remote sensing data.

While climate is the principal driving factor affecting both vegetation growth and
cover on the Tibetan Plateau, the NDVI is also influenced by non-climatic factors [44],
which might appear in some humid/sub-humid regions (Figure 5; Table 4). Of the factors
contributing to spatial heterogeneity of the NDVI on the Tibetan Plateau, only climatic
factors were taken into consideration in this study. In reality, a multitude of other en-
vironmental factors, including terrain [45] and soil conditions [46], will also shape the
spatial heterogeneity of vegetation growth and cover. In comparison with other regions,
the Tibetan Plateau’ vegetation has remained relatively intact, that is insignificantly af-
fected by human activity [47]. The GWR used in this study is a local range-based spatial
regression model. Human activity displays certain similarities in the neighborhood. Thus,
this statistical method can be employed to uncover and establish the effects of climatic
factors on the spatial heterogeneity of NDVI.

5. Conclusions

In this study, spatial nonstationary relationships were simulated between the NDVI
and climatic factors in the Tibetan Plateau. Then, based on the regressions between NDVI
dynamics and the respective variability of moisture and temperature indices, the leading
climatic factors and their mechanisms of action were established for different regions of the
Tibetan Plateau. Ample moisture and heat enabled a gradual increase in both vegetation
growth and cover on the Tibetan Plateau. Spatially, temperature and precipitation are
positively correlated with NDVI in most regions. However, adverse effects of warming
upon vegetation growth and cover have begun to emerge in a concentrated manner in
some arid and semiarid regions of northeast and west Tibetan Plateau. Precipitation plays
a dominant role in the NDVI in nearly 40% of the Tibetan Plateau, an area larger than any
of the other indices. Temperature mainly governs the NDVI in some parts of the plateau
sub-cold zone (ER1) and some southeastern regions of the Tibetan Plateau. Among the



Remote Sens. 2021, 13, 1305 15 of 17

temperature indices, Tmin has the greatest influence on NDVI over the largest area of the
Tibetan Plateau (7.1%).

The increase in the warming rate mainly inhibits the NDVI in the semiarid regions of
the Tibetan Plateau. Furthermore, different temperature indices are capable of impeding
vegetation growth and reducing vegetation cover by means of intensifying respiration
and reducing the moisture available. This explains the difference in the climatic determi-
nants found among regions. Spatially, temperature and precipitation variability are both
positively correlated with NDVI dynamics on the south Tibetan Plateau. This suggests
similarities in the mechanisms of moisture and thermal conditions acting upon the NDVI
in plateau temperature zone (ER2). Looking ahead, further adjustments to the combination
of moisture and thermal conditions could substantially affect vegetation growth and cover
in this region.
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