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Soil organic matter (SOM) is essential for preserving a healthy soil that provides
good soil structure and high fertility and water -holding capacity. Furthermore, an SOM
increase, and thus its main component, soil organic carbon (SOC), leads to a sequestration
of atmospheric CO2 and it is proposed as a nature-based solution to mitigate climate
change, which has received great political attention (e.g., Lima Paris Action Agenda: 4h
initiative; Kyoto protocol: Article 3.4). However, croplands have suffered for centuries from
a lack of biomass return to the soil leading to SOC depletion that limits the sequestration
potential of soils. To understand SOC dynamics, large spatial heterogeneity needs to be
addressed, which typically requires large amounts of soil sample analysis. Visible, near,
and shortwave infrared (VNIR–SWIR) soil reflectance spectroscopy is now an accepted
alternative to wet chemistry for efficiently processing the large number of samples required
to investigate patterns in SOC and monitor its dynamics using proximal and remote sensing.
Pilot studies have demonstrated the potential of airborne remote sensing for mapping
SOC in the homogenized topsoil of exposed croplands (in particular when they are just
seeded) using spectroscopic techniques analogous to the ones used in the laboratory. The
development of miniature sensors mounted on unmanned aerial vehicles (UAVs), as well as
the high-spectral resolution imaging spectrometers onboard airborne or satellite platforms,
have bridged the gap between high-resolution plot and moderate-resolution landscape
scale assessments. UAVs are cost-efficient and easy to operate, whereas airborne campaigns
are costly to organize and involve heavy infrastructure, although none of them can cover
large areas. Satellites such as the Sentinel 2 (S2) multispectral instrument provide a global
cover at five-day intervals with lower spectral resolution, whereas recent or upcoming
hyperspectral satellites such as PRISMA and EnMAP have higher spectral resolution but
limited revisit capabilities. Obviously, the conditions for predicting SOC in croplands from
remote sensing platforms are less favorable than for analyzing samples in a laboratory due
to the lower spectral resolution, atmospheric disturbance, and heterogeneity of the soil
surface (e.g., moisture content, partial crop or residue cover, roughness). However, the
potential of mapping SOC patterns from the field to the regional scale and monitoring SOC
dynamics over time is unprecedented. This will, without doubt, greatly contribute to the
transition to a sustainable and high carbon sequestration agriculture.

The prediction of soil properties, such as SOC, is complex due to the variable spectral
response of organic matter, resulting in a lack of clear and narrow spectral features. This
Special Issue aims to present the most recent methodological developments and science
use cases in improving the quantification of SOC based on VNIR–SWIR spectroscopy
data acquired from proximal, unmanned aerial system (UAS), airborne, and satellite high-
spectral resolution instruments. The papers in this issue demonstrate the potential of
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remote sensing for SOC mapping and monitoring, and address the challenges that need
to be resolved before we can establish a (pre-)operational remote sensing SOC mapping
and monitoring system. We can subdivide these challenges into the following categories:
(i) characterization of soil organic matter composition [1] and related soil properties [2],
(ii) soil surface conditions that disturb the spectral signal of the soil [3–6], and (iii) spectral
modeling issues from the signal pretreatment [7], from the degradation in spatial and
spectral resolution [8], or from using multiple linear regressions including topographic
covariates [9] and using soil spectral libraries as calibration data [10].

Soil organic matter is a heterogeneous compound and its characterization by spectral
techniques is not always straightforward. One of the challenges is the partial overlap of
organic spectral features with hematite iron oxide features in the VNIR spectral range
(400–1000 nm). Heller Pearlshtien and Ben Dor [1] investigate the effect of different SOM
species in Mediterranean soils rich in hematite iron oxides. They found out that syn-
thetic mixture could not imitate the authentic soil reflectance status, especially across
the overlapping spectral position of the iron oxides and OM, and hence may hinder real
conditions. They emphasize that saturation effects of SOM on the iron oxide VNIR spectral
signal should be taken into account when iron oxide and SOM contents are intended to
be individually estimated. For the next study on aggregate stability, it is well-known that
SOM plays a dominant role in aggregate stability and even more for cropland soils that
are generally poor in organic matter. The quantification of aggregate stability involves
laborious techniques such as wet sieving and particle size analysis to derive parameters
such as the mean weight diameter (MWD) of water stable aggregates. It is therefore not
surprising that mapping and monitoring of aggregate stability is hardly feasible in practice.
Shi et al. [2] propose to build on the correlation of MWD and SOC, allowing them to map
aggregate stability for croplands in the flight strip of an airborne hyperspectral sensor.

The spectra of cropland soils in seedbed condition reflect in ideal conditions the spectra
of an air-dried and sieved sample, as one can find in a soil spectral library. However, in
less ideal conditions, moisture, partial crop, and residue cover, as well as shading by
soil clods, can disturb the signal from the soil surface, because of which spectra from
remote sensors cannot be compared to the ones of the soil spectral library anymore. The
following studies deal with these limitations. Nawar et al. [3] demonstrate how spectra
acquired from an online prediction system can be efficiently corrected for soil moisture
effects using the external parameter orthogonalization (EPO) approach. Such systems are
used in precision agriculture, and the spectra are acquired from a tine pulled through the
topsoil by a tractor. The EPO approach requires a set of corresponding moist and air-dried
samples that are scanned simultaneously with the same spectrometer, conditions which
can mostly be met for proximal sensors mounted onsite. Vaudour et al. [4] investigate the
performance of SOC prediction models for S2 images acquired at different dates. They
acknowledge that the optimal conditions for SOC prediction are rare on a single S2 image
and that the SOC content can only be predicted in a fraction of the cropland area. The main
factors influencing the performance of the SOC prediction models were soil roughness in
conjunction with soil moisture and the cloud and shadow cover over the entire tile. They
show that the best performing dates for S2 SOC mapping were spring dates and that NDVI
values below 0.35 did not influence prediction performance, opening perspectives for
further use of Sentinel-2 into multidate mosaics. Castaldi et al. [5] used the European-wide
LUCAS spectral library for the calibration of an SOC prediction model for an entire S2
tile acquired in late summer in Northern Germany. They advocate that the Normalized
Burn Ratio 2 (NBR2), based on the two SWIR bands of S2 (B11 and B12), can be used
to mask pixels influenced by moisture content and/or crop residues, and investigate
different NBR2 thresholds. Dvorakova et al. [6] further investigate the potential of the
NBR2 index. The authors compare the NBR2 index based on a hyperspectral airborne
campaign and S2 images under dry conditions in late summer, and additionally for an S2
scene in wet condition in autumn. The higher spectral resolution of the airborne sensor
allowed the cellulose absorption index (CAI) to be calculated in the SWIR. The CAI proved
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to be efficient in masking pixels with a partial crop residue cover and correlated well
with the NBR2 index in dry conditions, but unfortunately not for wet conditions. The
new generation of hyperspectral satellites (e.g., PRISMA, EnMAP, later CHIME, SBG, etc.)
will certainly improve the possibilities for correction for residues and soil moisture as the
spectral resolution allows for an improved determination of these parameters based on
spectral indices or other approaches.

Shen et al. [7] tested 54 different spectral pretreatments to preprocess soil spectral data
acquired in the laboratory for an improved SOM prediction using partial least squares
regression (PLSR) techniques. These spectral pretreatments consisted of three denoising
methods, six data transformations, and three dimensionality reduction methods. Over-
all, the denoising caused a strong reduction of overfitting and increased accuracy. The
pretreatment will become ever more important as remote sensing platforms evolve from
multispectral to hyperspectral instruments. On the one hand, multispectral satellite data
are now readily available and their frequency of overflight allows the establishment of time
series. On the other hand, multispectral and hyperspectral UAV systems are affordable
options for acquiring images at the field scale under ideal conditions, as the operators
can quickly launch a campaign at low costs. Žížala et al. [8] compared the performance
of SOC prediction models in a large cropland field for multispectral satellite and UAV
sensors with different spatial and spectral resolution against a baseline using an airborne
hyperspectral sensor. A moderately strong spatial correlation was obtained between the
baseline SOC maps and the maps produced by all other sensors. Wehrhahn and Sommer [9]
provide an example of high-resolution UAV-based SOC mapping in a number of cropland
fields in hummocky terrain where tillage erosion creates high spatially-distributed SOC
dynamics. Multiple linear regression models including both spectral and topographic
variables already produce robust SOC prediction models. For mapping of large areas
using satellite imagery, the consistent analysis of calibration samples becomes a bottleneck.
Ward et al. [10] used a two-step approach to predict the SOC contents for airborne HySpex
and simulated EnMAP imagery acquired in northeastern Germany, based on the local
PLSR method for model building. First, the local PLSR uses the European LUCAS soil
spectral database to quantify the SOC content for soil samples from the study site, and
second, a remote sensing model is calibrated based on the local PLSR SOC results and the
corresponding image spectra.

This special issue demonstrates that the field of SOC prediction from remote sensing
is evolving rapidly thanks to the developments in soil databases, sensor technology (UAV,
airborne, spaceborne), modeling techniques, and to the advancing recognition of the urge
for global monitoring of soils. High-spatial resolution satellite data such as Sentinel 2 are
now readily available at five-day intervals and the miniature spectrometers suitable for
UAV platforms have become an affordable technology. Similarly, airborne platforms have
become more and more accessible, and upcoming spaceborne platforms are planned and
more will be available in the near future. Technical and methodological developments
will continue and upcoming high-quality spectroscopy data and tools for soil analyses
based on spectral databases will become more and more available, and applicable for all
types of platforms such as in the laboratory, onsite mounted on tractors, from UAV, and
air- and spaceborne platforms. This will open new perspectives for improved and more
regular SOC mapping and for supporting the monitoring of SOC stocks for which an
urgent demand exists in the framework of climate change mitigation.
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