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Abstract: Owing to the complex forest structure and large variation in crown size, individual tree
detection in subtropical mixed broadleaf forests in urban scenes is a great challenge. Unmanned
aerial vehicle (UAV) light detection and ranging (LiDAR) is a powerful tool for individual tree
detection due to its ability to acquire high density point cloud that can reveal three-dimensional
crown structure. Tree detection based on a local maximum (LM) filter, which is applied on a canopy
height model (CHM) generated from LiDAR data, is a popular method due to its simplicity. However,
it is difficult to determine the optimal LM filter window size and prior knowledge is usually needed to
estimate the window size. In this paper, a novel tree detection approach based on crown morphology
information is proposed. In the approach, LMs are firstly extracted using a LM filter whose window
size is determined by the minimum crown size and then the crown morphology is identified based
on local Gi* statistics to filter out LMs caused by surface irregularities contained in CHM. The
LMs retained in the final results represent treetops. The approach was applied on two test sites
characterized by different forest structures using UAV LiDAR data. The sensitivity of the approach
to parameter setting was analyzed and rules for parameter setting were proposed. On the first
test site characterized by irregular tree distribution and large variation in crown size, the detection
rate and F-score derived by using the optimal combination of parameter values were 72.9% and
73.7%, respectively. On the second test site characterized by regular tree distribution and relatively
small variation in crown size, the detection rate and F-score were 87.2% and 93.2%, respectively. In
comparison with a variable-size window tree detection algorithm, both detection rates and F-score
values of the proposed approach were higher.

Keywords: unmanned aerial vehicle (UAV); LiDAR; individual tree detection; subtropical mixed
broadleaf urban forest

1. Introduction

Urban trees play an important role in city life. They help improve air and water quality,
moderate the microclimate and air temperature, control soil erosion, and reduce the flow
of rainwater [1]. Detailed and accurate information of the trees planted in cities contributes
to the inventory and management of these trees, which serves as a basis of understanding
the ecological, economic, and social outcomes [2,3]. Acquiring individual tree positions is
a fundamental job. At individual tree level, the variables such as crown size, tree height,
and carbon stock can be estimated [4–7]. The tree detection accuracy directly affects the
estimation of other variables.

With the development of remote sensing technology, individual tree positions can be
detected from remote sensing data. Passive aerial and satellite imagery has been initially
applied to individual tree detection since the mid-1980s [8,9]. However, without moving to
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stereo acquisition, passive sensors can only obtain two-dimensional representations of tree
crowns [10]. Due to the ability to reveal the three-dimensional structure of trees [11,12],
airborne light detection and ranging (LiDAR) has become dominant in tree detection
studies. Nevertheless, acquiring LiDAR data by manned aircrafts is expensive and the
requirements on spatial resolution may be not satisfied [13]. Recently, unmanned aerial
vehicles (UAVs) have become popular platforms for the capture of LiDAR data. This
technique allows high point density LiDAR data (>50 pulses per square meter (p/m2))
to be captured rapidly and on demand at low deployment costs [14]. The high-density
data collected from UAV LiDAR enable accurate tree detection and new methods should
be developed to deal with the increased level of forest structural detail captured by UAV
LiDAR [15].

Canopy height model (CHM)-based methods have been widely used for individual
tree detection due to their simplicity [7]. They are based on the assumption that a treetop is
the highest point within a crown and the crown boundary is relatively low [10]. A local
maximum (LM) filter with a specific size sliding window is commonly applied on a CHM
that is generated from point cloud to extract LMs as representative of treetops. Even though
CHM-based methods are considered to have difficulty in detecting suppressed trees [16,17],
they can be used to provide seed points for algorithms that delineate tree crowns in CHM
or point cloud space [18–22].

CHM-based methods work effectively in the stands with homogeneous tree properties
but show reduced performance in those stands composed of trees of multiple species
varying in crown shape and size [23,24]. This is because the LM filter window size is
difficult to determine in the forests with heterogeneous tree properties. CHMs typically
contain surface irregularities possibly due to data noise or minor tree level fluctuations
caused by branches [14]. The surface irregularities are prone to cause false treetops [25].
The influence of surface irregularities can be reduced by using an appropriate LM filter
window size [17]. However, in mixed forests composed of trees with varying crown sizes,
the optimal LM filter window size is difficult to define. A large-size sliding window will
filter out both LMs due to surface irregularities and those related to treetops of small-size
crowns. Some studies employed a priori information such as the relationship between tree
height and crown size, and self-adaptively varied the LM filter window size to improve
the tree detection accuracy [26–28]. However, extensive field work needs to be performed
to collect data for obtaining the a priori information and inaccurate a priori information
may affect the tuning of the sliding window size. Smoothing techniques such as Gaussian
filtering are usually employed to correct surface irregularities [29,30]. Nevertheless, the
optimal smoothing parameter values are also difficult to determine and prior knowledge is
required [31].

To improve the accuracy of the tree detection solely based on height, a few studies
took crown morphology information into account [32–35]. The idea of such studies was
based on the observation of the convex shape that is typical of tree crowns [10]. In [32],
LMs were extracted from a CHM using multiple height thresholds and treetops were then
determined by fitting cone-shaped objects to the raw LiDAR data at the positions of LMs.
This method was regarded to be suitable for coniferous species with regular crown shapes
and complete treetops. In [33], a correlation surface was created by fitting an ellipsoid on
each cell to the airborne LiDAR points in a neighborhood and assigning the correlation
coefficient for the best fit ellipsoid to each cell. In [34], a least-square fitting of second
degree polynomials was applied on each cell of the CHM. According to the concavity or
convexity of the fitted surface, treetops were extracted and used as markers in the following
watershed segmentation. In [35], treetops were identified by fitting a Gaussian function
to each candidate treetop region extracted through a morphological opening process. All
these methods relied on shape fitting and were designed for specific tree species. They were
relatively sensitive to the noise contained in CHM [34]. When more than one peak appears
in a single crown, these methods may lead to over-detection. In addition, in mixed forests
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containing trees with varying crown sizes, it is difficult to determine the neighborhood size
for shape fitting.

LiDAR-based tree detection studies have been mostly conducted in boreal or tem-
perate stands [10]. Only few studies focused on subtropical or tropical mixed species
forests [24,27]. Subtropical mixed broadleaf forests, characterized by higher structural
complexity, have been less investigated. In contrast to coniferous trees with significant
treetops and symmetrical crown form, broadleaf trees usually have irregular crown shapes
and tend to overlap each other [15,36]. Individual tree detection in subtropical mixed
broadleaf forests is a great challenge and the existing methods developed for other forest
types may be not suitable.

Above all, in subtropical mixed broadleaf forests, individual tree detection has always
been a challenge and the studies on subtropical mixed broadleaf forests in urban scenes are
very few. Due to the complex forest structure and large variation in crown size, the optimal
filter window size of LM identification is difficult to define and relying solely on height for
tree detection is inadequate. In this study, crown morphology is utilized as complementary
information. The problem is how to express the crown morphology and how to use
crown morphology information to filter out LMs caused by surface irregularities contained
in CHM. This study aims to provide a novel CHM-based approach for individual tree
detection in subtropical mixed broadleaf urban forests. This approach adopts a strategy
that extracts LMs using a fixed-size window and then utilizes the crown morphology
identified by a local spatial autocorrelation statistic to filter out LMs caused by surface
irregularities. In the approach, new algorithms for quantifying and identifying crown
morphology and for filtering initially extracted LMs based on crown morphology are
developed. In the following, the details of the proposed approach are firstly introduced.
The proposed approach was applied on two test sites characterized by different forest
structures using high point density UAV LiDAR data. The sensitivity of the approach
to parameter setting is evaluated. Then, the performance of the proposed approach is
compared with a variable-size window tree detection algorithm implemented in software.

2. Material and Approach
2.1. Study Area and Data Collection

This study was conducted in the campus of Zhejiang A&F University (119◦22′43” E,
30◦02′01” N) in Lin’an District, Hangzhou, southeastern China (Figure 1). The climate
type is subtropical monsoon climate. This area mainly consists of broadleaf tree species,
including ginkgo (Ginkgo biloba L.), Cinnamomum chekiangense (Cinnamomum chekiangense
Nakai.), sweetgum (Liquidambar formosana Hance), Michelia maudiae (Michelia maudiae
Dunn), pine, etc. Both regular and irregular tree distribution patterns are present within
this area.
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Two test sites were selected to evaluate the performance of the proposed approach.
The species on test site 1 consist of Cinnamomum chekiangense, sweetgum, Michelia
maudiae, pine, etc. The predominant species on test site 2 are ginkgo and Cinnamomum
chekiangense, mixed with sweet olive, pine, etc. Test site 1 is characterized by a large
variation in crown size and irregular tree distribution. Test site 2 has a smaller variation in
crown size, within which the trees are regularly distributed. The field survey was conducted
in November 2020. For each tree within the test sites, the position (x, y coordinates) was
measured using an RTK-GNSS and the species was simultaneously recorded. The trees on
the test sites can be grouped into dominant, codominant, intermediate, and suppressed
ones [37]. The dominant trees are the tallest trees in the neighborhood or isolated trees.
The codominant trees are similar trees in a group. The intermediate trees are the ones close
to larger trees and their crowns are partially covered. The suppressed trees are located
under larger trees and are totally covered. Within test sites 1 and 2, a total of 48 and 39 trees
were recorded respectively, including dominant, codominant, and intermediate trees. The
suppressed trees were not included due to their invisibility from the CHM. Each tree crown
was delineated manually from a supplementary orthophoto acquired in 2019. A circle
centered at the tree position was used to represent the crown and the circle diameter was
extracted to indicate the crown size. The minimum crown diameters on test sites 1 and 2
are approximately 1.5 and 3 m, respectively.

The aerial survey was conducted in July 2020. The LiDAR data were collected using a
DJI Matrice 600 Pro, which carried a Velodyne VLP-16 laser scanner. The LiDAR sensor
has a measurement range of 100 m and can generate up to 300,000 points/second at dual
return mode across a 360◦ horizontal field of view and a 30◦ vertical field of view. During
the LiDAR data acquisition, the flight height was approximately 100 m above ground,
resulting in a point cloud with average density of approximately 160 points per m2. Direct
georeferencing was applied using a GNSS receiver.

2.2. Data Preprocessing

A preprocessing workflow was performed for the raw LiDAR data. Firstly, the iterative
filtering and thresholding method proposed in [38] was used to extract ground points. The
ground points were then interpolated to create a 0.5 m resolution digital terrain model
(DTM) using the Kriging algorithm. Subsequently, the LiDAR point cloud was normalized
by subtracting the DTM from the Z coordinates of the raw LiDAR data. The normalized
point cloud was then utilized to generate a CHM with 0.25 m resolution by assigning each
cell the above-ground height of the highest return within this cell. The cells of missing data
were interpolated using the surrounding cells. Finally, a Gaussian smoother and an average
smoother were applied on the CHM respectively to smooth out data noise contained in the
CHM. The smoother parameters include sliding window size and standard deviation of
Gaussian smoother and sliding window size of average smoother. The values of smoother
parameters were selected following other related studies [3,30] and are listed in Table 1.

2.3. Tree Detection Approach

In this paper, an individual tree detection approach based on crown morphology
information is proposed. The strategy is to extract as many LMs as possible using a fixed-
size LM filter window size and then filter the initially extracted LMs based on crown
morphology information. Firstly, a LM filter with a fixed-size sliding window is applied on
the CHM to extract LMs. The number of extracted LMs is closely related to the LM filter
window size. A small LM filter size allows small trees to be detected, but possibly retains
the LMs caused by surface irregularities. A large-size LM filter is unable to detect small
trees but can filter out more LMs caused by surface irregularities. In this study, we define
the LM filter size according to the minimum crown size. The LM filter size should be smaller
than or close to the minimum crown size. Subsequently, crown morphology is described
by profile curvature, a morphometric variable commonly applied in terrain analysis. Due
to the sensitivity of profile curvature to data noise [39], a spatial autocorrelation statistic,
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local Gi*, is utilized to quantify the spatial pattern of convex morphology of tree crowns
and extract cell clusters representing significant convex morphology. Finally, the initially
extracted LMs are filtered depending on the crown morphology information. A score is
calculated based on local Gi* values and assigned to each initially extracted LM. The LMs
with scores lower than a threshold are filtered out. Then, for each cell cluster containing
more than one LM, a new LM filter window size is calculated and applied on each LM
within the cell cluster to remove those that are no more the highest within the new windows.
The LMs that are retained in the final result represent treetops. The whole workflow of the
proposed approach is shown in Figure 2.
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2.3.1. Description and Identification of Crown Morphology

On the basis of in situ observation, tree crowns are generally characterized by an
outward curving shape [10]. To describe this shape feature, a morphometric variable, profile
curvature, is adopted. Profile curvature measures the rate of change of slope gradient in
the direction of maximum change, i.e., slope direction [40]. For a surface z = f (x, y), profile
curvature is defined as [41]:

κpr = −
fxx f 2

x + 2 fxy fx fy + fyy f 2
y

pq3/2 , p = f 2
x + f 2

y , q = 1 + p, (1)

where fx and fy are first-order partial derivatives; fxx, fyy, and fxy are second-order partial
derivatives. A positive profile curvature indicates the surface is convex in the slope
direction, while a negative value indicates a concave morphology. The profile curvature
is calculated on a cell-by-cell basis. For each CHM cell, a fourth-order polynomial is fit
to a piecewise continuous surface within a 3 × 3 window centered on this cell and its
derivatives are used to calculate the profile curvature [40].

Although profile curvature is capable of describing the outward curving shape of
tree crowns, it is sensitive to data noise. The ‘pepper and salt’ appearance will be present
if all cells with positive curvature values are extracted (Figure 3). Within a tree crown
characterized by an outward curving shape, large positive curvature values tend to cluster.
Therefore, the convex morphology of tree crowns can be identified through recognizing
the local spatial pattern of clustering of large positive curvature values. In this study, local
Gi* statistic is adopted to recognize such a spatial pattern. Let {z1, z2, . . . , zn} be a set of
observations of a random variable acquired on different locations (xi, yi) (i = 1, 2, . . . , n)
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over space. Local Gi*, an indicator of local spatial association among observation values
around the spatial location i, is defined by [42]:

G∗i =

n
∑

j=1
Wijzj −W∗i z

s
{[

(nS∗1i)−W∗2i

]
/(n− 1)

}1/2 , W∗i =
n

∑
j=1

Wij, S∗1i =
n

∑
j=1

W2
ij, (2)

where W is a n-by-n weight matrix, z and s are the mean and the standard deviation of
all observations, respectively. In this case, the observations are profile curvature values
calculated on the CHM. The spatial weight matrix W defines spatial relationship among
observations. A typical method to construct the matrix W for identifying spatial patterns is
assigning a weight of one to the observations within a neighborhood of location i, while
a weight of zero to others [43,44]. In this study, the spatial weight matrix is constructed
based on a distance threshold D, which can be defined as:

Wij =

{
1 if dij < D
0 else

i, j = 1, . . . , n, (3)

where dij represents the distance between the target location i and the neighboring location
j. A large distance threshold D results in a large-size neighborhood, enabling a large-
scale spatial pattern to be recognized. Multi-scale spatial patterns can be revealed by
local Gi* through varying the distance threshold [45–47]. For a forest containing trees of
multiple species and varying crown sizes, using a single distance threshold is inadequate to
recognize the morphology of both small-size trees with regular shape and large-size trees
with irregular canopy surface. Therefore, on each cell, a series of distance threshold values
are employed and multiple local Gi* values are calculated, amongst which the maximum
local Gi* value is recorded. The series of distance threshold values are selected based
on the minimum crown size. Theoretically, the maximum distance threshold should not
exceed the minimum crown size. For a small intermediate tree, when a distance threshold
larger than its crown size is used, its spatial pattern will be concealed by the patterns of
neighboring large trees.
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Figure 3. Extraction of cells with positive profile curvature values.

A large positive local Gi* indicates a local spatial pattern of clustering of large positive
profile curvature values, while a large negative one indicates clustering of large negative
curvature values. The significance of a local spatial pattern can be measured by means of
a statistical significance test. If the neighborhood size is larger than 8 observations, the
resultant distribution of local Gi* is normal [48]. The statistic defined by Equation (2) is in
a Z-score standardized form. Consequently, to recognize significant spatial patterns, the
local Gi* values are directly compared with the critical value under a specified significance
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level. If a local Gi* value is beyond the critical value, the local spatial pattern is statistically
significant [49]. In this study, to recognize the convex morphology of tree crowns, all cells
with positive local Gi* values beyond the critical value under a specified significance level
are extracted. Figure 4a shows an example of cell extraction. The local Gi* values calculated
on the cell containing the LM inside the red rectangle are shown in Figure 4b. With a
maximum distance threshold of 1.5 m and an interval equal to the CHM cell size, five
distance thresholds (0.5, 0.75, 1.0, 1.25, and 1.5 m) are adopted to calculate local Gi*. The
minimum distance threshold is 0.5 m and the distance threshold of 0.25 m is not included
so that there is enough number (≥8) of cells used for calculation of local Gi*. On the same
cell, the local Gi* values corresponding to the five distance thresholds are all positive.
The maximum local Gi* value is 2.72, corresponding to the minimum distance threshold,
indicating a small-scale significant pattern of clustering of large positive curvature values.
The other local Gi* value beyond the critical value (1.96) corresponds to the maximum
distance threshold. That means that around the cell, a large-scale significant pattern is
also present. In such a case, the probability that the LM falling in this cell represents an
individual tree is high.
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Figure 4. (a) Extraction of cells with positive local Gi* values beyond the critical value under a significance level of 0.05; (b)
Local Gi* values calculated on the cell containing the local maximum (LM) inside the red rectangle. The canopy height
model (CHM) resolution is 0.25 m, the LM filter size is 5 × 5, and the maximum distance threshold is 1.5 m.

2.3.2. Filtering of Initially Extracted LMs

The cells extracted through statistical significance tests tend to form clusters (Figure 4). Each
initially extracted LM is treated in different ways depending on the following situations:

(1) The LMs outside the extracted clusters are directly removed;
(2) If a cluster contains only one LM, the LM is retained;
(3) If a cluster contains more than one LM, each LM within the cluster is assigned a

score that is calculated using the local Gi* values of the cell containing the LM and
surrounding 8 cells.

In the third situation, the principle of score definition is that if a LM falls within a local
area composed of cells with positive local Gi* values, the local area is characterized by a
convex morphology (Figure 5) and the possibility that the LM represents a treetop is high.
On each cell within a cluster, multiple local Gi* values corresponding to a series of distance
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thresholds have been calculated. The number of positive local Gi* (NoP) is counted and
recorded for each cell. The score of the ith LM (i = 1, 2, . . . , m) is given by:

Scorei =

2
∑

m=0

2
∑

n=0
NoPr+m−1,c+n−1 − NoPr,c

NNoP 6=0
+ NoPr,c, (4)

where r and c represent the row and column of the cell containing the target LM, respec-
tively; NNoP 6=0 is the total number of the surrounding cells with non-zero NoP values. As
explained in Section 2.3.1, the maximum distance threshold determines the number of
local Gi* values calculated on each cell. Therefore, the score value is closely related to
the maximum distance threshold. As an example, on the cell containing the LM inside
the red rectangle in Figure 4, all five local Gi* values are positive and hence its NoP is 5.
Around this cell, the NoPs of the 8 neighboring cells are all 5. The target LM’s score that
is calculated following Equation (4) is 10. Thus, when a maximum distance threshold of
1.5 m is used, the maximum score value (i.e., full score) is 10. The score value indicates the
probability that a LM represents a treetop. A higher score indicates a higher probability. To
filter out LMs caused by surface irregularities, a score threshold is applied. All LMs with
score values below the threshold are removed.
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Figure 5. Point profile indicating the crown morphology of two trees delimited by dash dot lines.

To further filter the LMs, the LM filter window size adaptively varies based on the
cell clusters extracted through statistical significance tests. As indicated in Figure 6, the
local Gi* values on the cells in dark blue color are lower than 2.576, i.e., the critical value
under a significance level of 0.01. These cells are mostly present on the crown boundaries.
Therefore, within each cluster containing more than one LM, all the cells with local Gi*
values smaller than 2.576 are removed from the cluster. After that, one large-size cluster
(e.g., cluster A in Figure 6a) may be divided into several small clusters. If a small cluster
contains a single LM, the LM is retained in the final result, while if a small cluster (e.g.,
cluster in Figure 6c) contains more than one LM, new LM filter window sizes are calculated
for each LM according to the extent of the cluster. LM filters with newly calculated window
sizes are then centered on the LMs within this cluster. If a LM is still the highest within
the new LM filter window, the LM is retained in the result, or else it is removed. During
this process, the key step is the calculation of new LM filter window size. As indicated
in Figure 6c, starting from the LM in the center, the cluster boundary is searched along
four directions and each searching path (black solid line in Figure 6c) has two intersection
points with the boundary. For each direction, the distance between the two intersection
points is recorded and four distances are finally recorded for this LM. The four distances
are rearranged in ascending order. If the minimum distance is larger than the initial LM
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filter window size (7 cells × 7 cells in Figure 6), the minimum distance is taken as the new
LM filter window size.
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2.3.3. Parameter Setting

The parameters in the approach can be divided into two groups: parameters related
to LM extraction and parameters related to filtering of LMs based on crown morphology.
The first group includes smoother parameters and LM filter window size, while the second
group includes maximum distance threshold (maxD), significance level, and score thresh-
old. The parameter values for both test sites are listed in Table 1. The LM filter size and
maxD are smaller than or close to the minimum crown size.

Table 1. List of parameters and their values used in the proposed approach on test sites 1 and 2.

Test Site Parameter Value Value Selection Method

1

Gaussian smoother size 3 × 3, 5 × 5 Following other studies
σ 1 0.25 m, 0.5 m Following other studies

Average smoother size 3 × 3, 5 × 5 Following other studies
LM filter size 5 × 5, 7 × 7 Based on minimum crown size

maxD 1 m, 1.5 m Based on minimum crown size
Significance level 0.10, 0.05 Commonly used
Score threshold 1, 2, 3, . . . , [full score-0.5] /

2

Gaussian smoother size 3 × 3, 5 × 5 Following other studies
σ 1 0.25 m, 0.5 m Following other studies

Average smoother size 3 × 3, 5 × 5 Following other studies
LM filter size 7 × 7, 9 × 9, 11 × 11 Based on minimum crown size

maxD 1.5 m, 2.0 m, 2.5 m Based on minimum crown size
Significance level 0.10, 0.05 Commonly used
Score threshold 1, 2, 3, . . . , [full score-0.5] /

1 Standard deviation of Gaussian smoother.
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2.3.4. Accuracy Assessment

Following the accuracy assessment method in other studies [15], recall (r), precision (p), and
F-score (F) as the overall accuracy are calculated using the following equations, respectively:

r = TP/(TP + FN), (5)

p = TP/(TP + FP), (6)

F = 2 · r · p/(r + p), (7)

where TP is the number of correctly detected trees, i.e., true positives; FN is the number of
undetected reference trees, i.e., false negatives; FP is the number of incorrectly detected
trees, i.e., false positives. Since both tree positions and crown extents have been recorded,
the LM closest to the reference tree position within each crown is regarded as a true positive,
while the rest of LMs are regarded as false positives. Recall is a measure of tree detection
rate and omission error. A larger recall means higher detection rate and lower omission
error. Precision is a measure of commission error. A higher precision means smaller
commission error.

2.4. Comparison with Existing Method

Our approach is compared with the tree detection algorithm in Fusion software [50].
This algorithm is similar to that reported in [26]. It applies a variable-size window to
identify LMs as representative of treetops. The window size is adaptively adjusted based
on the crown size estimated using the following equation:

width = A + B × ht + C × ht2 + D × ht3 + E × ht4 + F × ht5, (8)

where width is the estimated crown width, ht is the height of the surface at the center of the
sliding window. The equation coefficients should be estimated using regression analysis
based on the field survey data on tree height and crown diameter [26]. We manually ex-
tracted the tree height and crown diameter data on the two test sites. Within a specified area
around each reference tree position, the above-ground height of the highest LiDAR point is
recorded as the tree height. In Section 2.1, circles were delineated from an orthophoto to
represent crown extent. The circle diameter was used as crown diameter. The quadratic
regression analysis results for both test sites are given in Figure 7. No significant regression
relationship between tree height and crown width can be found both on test sites 1 and 2.
Therefore, the default equation coefficients in the Fusion software were adopted to apply
the variable-size LM filter. In addition, an average smoother can be applied on the CHM in
the software. The smoother sizes adopted in this study can be found in Table 1.
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3. Results
3.1. Sensitivity Analysis

In this study, the sensitivity of the tree detection approach to parameter values was
analyzed. Different combinations of parameter values were applied to derive individual
tree detection results and recall, precision, F-score were calculated for the results. Firstly,
the values of LM extraction-related parameters varied and other parameter values were
fixed. The parameter values for comparison on test site 1 are listed in Table 2. The recall
and F-score values generated by using each combination of parameter values are shown in
Table 2 and Figure 8.

Table 2. List of LM extraction-related parameter values and corresponding tree detection results for comparison on test
site 1. The values of the parameters related to filtering of initially extracted LMs were fixed. MaxD = 1.5 m, significance
level = 0.10, and score threshold = 9.

Combination No. Average
Smoother Size

Gaussian
Smoother Size σ 1 LM Filter Size Recall Precision F-Score

1 / 3 × 3 0.25 m 5 × 5 77.1% 50.0% 60.7%
2 / 3 × 3 0.5 m 5 × 5 77.1% 52.1% 62.2%
3 / 5 × 5 0.25 m 5 × 5 70.8% 58.7% 64.2%
4 / 5 × 5 0.5 m 5 × 5 72.9% 68.6% 70.7%
5 3 × 3 / / 5 × 5 77.1% 52.9% 62.7%
6 5 × 5 / / 5 × 5 68.8% 68.8% 68.8%
7 / 3 × 3 0.25 m 7 × 7 72.9% 70.0% 71.4%
8 / 3 × 3 0.5 m 7 × 7 75.0% 69.2% 72.0%
9 / 5 × 5 0.25 m 7 × 7 70.8% 70.8% 70.8%
10 / 5 × 5 0.5 m 7 × 7 72.9% 74.5% 73.7%
11 3 × 3 / / 7 × 7 72.9% 68.6% 70.7%
12 5 × 5 / / 7 × 7 66.7% 76.2% 71.1%

1 Standard deviation of Gaussian smoother.

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 26 
 

 

As shown in Table 2 and Figure 8, as the smoothing degree of CHM increased, the 
detection rate (recall) decreased and the F-score increased. For Gaussian smoother, the 
smoother size increased from 3 × 3 to 5 × 5 and σ increased from 0.25 to 0.5 m. When a 5 × 
5 LM filter was adopted (combinations 1 to 4), the detection rate decreased from 77.1% to 
72.9%, while the F-score increased from 60.2% to 70.7%. When a 7 × 7 LM filter was 
adopted (the 7th to 10th combinations), the detection rate did not increase, while the 
F-score increased from 71.4% to 73.7%. For average smoother, when a 5 × 5 LM filter was 
adopted and the smoother size increased from 3 × 3 (the 5th combination) to 5 × 5 (the 6th 
combination), the detection rate decreased from 77.1% to 68.8%, while the F-score in-
creased from 62.7% to 68.8%. When a 7 × 7 LM filter was adopted and the smoother size 
increased from 3 × 3 (the 11th combination) to 5 × 5 (the 12th combination), the detection 
rate decreased from 72.9% to 66.7%, while the F-score increased from 70.7% to 71.1%. A 
higher smoothing degree induced more details of CHM to be smoothed out, including 
both true treetops and surface irregularities. 

The LM filter size also had an effect on the tree detection results. The detection rates 
generated by using a 5 × 5 LM filter are higher or equal to the detection rates generated 
by using a 7 × 7 LM filter. A few LMs related to treetops of small-size crowns could not 
be extracted when the LM filter size increased. All F-scores generated by using a 7 × 7 
LM filter are higher than those generated by using a 5 × 5 LM filter. This is because when 
a larger-size LM filter was used, fewer LMs due to surface irregularities were extracted. 
It should be noticed that when the LM filter size increased from 5 × 5 to 7 × 7, the differ-
ences in detection rate and F-score among the combinations became smaller. It means 
that when a larger-size LM filter was used, the effects of smoother parameters on the 
tree detection results became smaller. Actually, the 7 × 7 LM filter size is slightly larger 
than the minimum crown size (1.5 m) on test size 1. This proves that a LM filter size ap-
proaching the minimum crown size is reasonable. In addition, the comparison between 
the results of Gaussian smoother and average smoother indicates that the highest 
F-score generated by a Gaussian smoother is larger than the one generated by an aver-
age smoother regardless of LM filter size used. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.2

0.4

0.6

0.8

1

Combination No.

 

 

Recall F-score

 
Figure 8. The effects caused by changing LM extraction-related parameter values on test site 1. The 
parameter values for each combination can be found in Table 2. MaxD = 1.5 m, significance level = 
0.10, and score threshold = 9. 

Then, the effects caused by changing the values of parameters related to filtering of 
LMs based on crown morphology were analyzed. For the 12 combinations of parameter 
values in Table 2, the recall and F-score values generated by using a maxD of 1.0 m were 
subtracted from the ones generated by using a maxD of 1.5 m. The difference values in-
dicate the effects caused by changing the maxD value from 1.0 to 1.5 m. A positive dif-
ference means an increase of detection rate or F-score. The calculated difference values 

Figure 8. The effects caused by changing LM extraction-related parameter values on test site 1.
The parameter values for each combination can be found in Table 2. MaxD = 1.5 m, significance
level = 0.10, and score threshold = 9.

As shown in Table 2 and Figure 8, as the smoothing degree of CHM increased, the
detection rate (recall) decreased and the F-score increased. For Gaussian smoother, the
smoother size increased from 3 × 3 to 5 × 5 and σ increased from 0.25 to 0.5 m. When
a 5 × 5 LM filter was adopted (combinations 1 to 4), the detection rate decreased from
77.1% to 72.9%, while the F-score increased from 60.2% to 70.7%. When a 7 × 7 LM filter
was adopted (the 7th to 10th combinations), the detection rate did not increase, while the
F-score increased from 71.4% to 73.7%. For average smoother, when a 5 × 5 LM filter
was adopted and the smoother size increased from 3 × 3 (the 5th combination) to 5 × 5
(the 6th combination), the detection rate decreased from 77.1% to 68.8%, while the F-score
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increased from 62.7% to 68.8%. When a 7 × 7 LM filter was adopted and the smoother size
increased from 3 × 3 (the 11th combination) to 5 × 5 (the 12th combination), the detection
rate decreased from 72.9% to 66.7%, while the F-score increased from 70.7% to 71.1%. A
higher smoothing degree induced more details of CHM to be smoothed out, including both
true treetops and surface irregularities.

The LM filter size also had an effect on the tree detection results. The detection rates
generated by using a 5 × 5 LM filter are higher or equal to the detection rates generated by
using a 7 × 7 LM filter. A few LMs related to treetops of small-size crowns could not be
extracted when the LM filter size increased. All F-scores generated by using a 7 × 7 LM
filter are higher than those generated by using a 5 × 5 LM filter. This is because when a
larger-size LM filter was used, fewer LMs due to surface irregularities were extracted. It
should be noticed that when the LM filter size increased from 5 × 5 to 7 × 7, the differences
in detection rate and F-score among the combinations became smaller. It means that when
a larger-size LM filter was used, the effects of smoother parameters on the tree detection
results became smaller. Actually, the 7× 7 LM filter size is slightly larger than the minimum
crown size (1.5 m) on test size 1. This proves that a LM filter size approaching the minimum
crown size is reasonable. In addition, the comparison between the results of Gaussian
smoother and average smoother indicates that the highest F-score generated by a Gaussian
smoother is larger than the one generated by an average smoother regardless of LM filter
size used.

Then, the effects caused by changing the values of parameters related to filtering of
LMs based on crown morphology were analyzed. For the 12 combinations of parameter
values in Table 2, the recall and F-score values generated by using a maxD of 1.0 m were
subtracted from the ones generated by using a maxD of 1.5 m. The difference values
indicate the effects caused by changing the maxD value from 1.0 to 1.5 m. A positive
difference means an increase of detection rate or F-score. The calculated difference values
are shown in Figure 9. As shown in the figure, when maxD varied from 1.0 to 1.5 m, the
detection rates increased or decreased. The difference values of detection rate are mostly
+/−2.1% and the largest one (−6.2%) was generated by using a 5 × 5 average smoother
and a 5 × 5 LM filter (the 6th combination). In contrast, all difference values of F-score
are positive, meaning that more LMs due to surface irregularities were filtered out when
a 1.5 m maxD was used. When a larger maxD was adopted, the spatial pattern of crown
morphology in larger-size extent was identified and the sizes of the cell clusters extracted
from significance tests became larger, leading to the acquisition of a larger-size LM filter
window and more LMs being filtered out. The 1.5 m maxD equals the minimum crown
size on test site 1, proving that the parameter selection rule that maxD should approach the
minimum crown size is appropriate.
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In the same way, for the 12 combinations of parameter values in Table 2, the recall
and F-score values generated by using a significance level of 0.10 were subtracted from
the ones generated by using a significance level of 0.05. The differences indicate the effects
caused by changing the significance level from 0.10 to 0.05. A positive difference means
an increase of detection rate or F-score. The calculated difference values are shown in
Figure 10. As shown in the figure, the detection rates remained the same or had a minor
increase (2.1%). In contrast, almost all F-score values decreased. This is because when the
significance level varied from 0.10 to 0.05, fewer cells were extracted through significance
tests and one large-size cluster derived under a significance level of 0.10 became several
smaller-size clusters under a significance level of 0.05. Within the smaller-size clusters,
the single LMs related to treetops or caused by surface irregularities were retained in the
final result.
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Figure 10. The effects caused by changing significance level on test site 1. Recall (F-score) difference
is the product of the recall (F-score) generated by using a significance level of 0.05 minus the one
generated by using a significance level of 0.10. The parameter values for each combination can be
found in Table 2. MaxD = 1.5 m, and score threshold = 9.

The effects caused by changing the score threshold were also evaluated. The 1st,
5th, and 10th combinations in Table 2 were applied and two maxD values (1.0 and 1.5 m)
were utilized. For maxD of 1.0 m, the full score calculated following Equation (4) is 6
and the score thresholds ranging from 1 to 5.5 were applied. The F-score values of the
corresponding tree detection results were calculated and are shown in Figure 11a. As
indicated in the figure, the F-score values generated by using the combination 10 were
unaffected by the score threshold. As the score threshold increased, the F-score values
generated by using combinations 1 and 5 also increased and the maximum F-score values were
obtained when a score threshold of 5.5 was used. For maxD of 1.5 m, the full score calculated
following Equation (4) is 10 and the score thresholds ranging from 1 to 9.5 were applied. The
F-score values of the corresponding tree detection results are shown in Figure 11b. The figure
indicates that the F-score values generated by using the combination 10 were unaffected by
the score threshold. The F-score values generated by using combination 1 increased with
the score threshold and the maximum F-score value was derived when the score threshold
equaled 9. The F-score values generated by using combination 5 also increased with the
score threshold and the maximum F-score value was derived when a score threshold of 9.5
was used. It can be inferred from Figure 11 that a score threshold approximately equaling
to the product of a multiplier of 0.9 and the full score is appropriate for tree detection on
test site 1.
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Figure 11. The effects caused by changing score threshold on test site 1: (a) MaxD = 1.0 m, significance
level = 0.10; (b) MaxD = 1.5 m, significance level = 0.10. The 1st, 5th, and 10th combinations in Table 2
were applied.

The parameter values for comparison on test site 2 are listed in Table 3. The recall
and F-score values generated by using each combination of parameter values are shown in
Table 3 and Figure 12. For Gaussian smoother, as the smoother size and σ increased, the
detection rate (recall) decreased. However, when the CHM was smoothed with a higher
degree, the F-score did not necessarily increase. No matter which LM filter size was used,
the highest F-score was derived by using a 5 × 5 smoother size and a 0.25 m σ, while the
lowest F-score was derived by using a 5 × 5 smoother size and a 0.5 m σ. This is different
from the comparison result on test site 1. To illustrate the reason, the results generated
by using the 9th and 10th combinations of parameter values are shown in Figure 13. The
tree highlighted by a white arrow was detected by using the 9th combination of parameter
values but undetected when the 10th combination of parameter values was used. The tree
crown had an initially extracted LM. During the process of filtering LMs based on crown
morphology, all cells with local Gi* values lower than 2.576 (0.01 significance level) were
assigned a value of 0. The cell cluster containing this LM was separated from other clusters
and the LM was directly retained. However, when the 10th combination of parameter
values was used, a large-size cell cluster containing several crowns was generated. A larger
LM filter window size that approached the crown size was derived following the method
in Section 2.3.2, and the initially extracted LM was removed due to the lower height of
this crown. In this case, using a smaller-size LM filter window is more appropriate. For
average smoother, when the smoother size increased, the detection rate decreased and the
F-score did not necessarily increased for the same reason. By applying a larger-size LM
filter, the recall decreased and the F-score increased, regardless of the smoother type. This
is the same as the comparison result on test site 1.

Table 3. List of LM extraction-related parameter values and corresponding tree detection results for comparison on test
site 2. The values of the parameters related to filtering of initially extracted LMs were fixed. MaxD = 1.5 m, significance
level = 0.10, and score threshold = 9.

Combination No. Average Smoother Size Gaussian Smoother Size σ 1 LM Filter Size Recall Precision F-Score

1 / 3 × 3 0.25 m 7 × 7 94.9% 80.4% 87.1%
2 / 3 × 3 0.5 m 7 × 7 97.4% 76.0% 85.4%
3 / 5 × 5 0.25 m 7 × 7 92.3% 85.7% 88.9%
4 / 5 × 5 0.5 m 7 × 7 87.2% 79.1% 82.9%
5 3 × 3 / / 7 × 7 97.4% 73.1% 83.5%
6 5 × 5 / / 7 × 7 92.3% 81.8% 86.8%
7 / 3 × 3 0.25 m 11 × 11 87.2% 97.1% 91.9%
8 / 3 × 3 0.5 m 11 × 11 84.6% 94.3% 89.2%
9 / 5 × 5 0.25 m 11 × 11 87.2% 100% 93.2%

10 / 5 × 5 0.5 m 11 × 11 76.9% 96.8% 85.7%
11 3 × 3 / / 11 × 11 84.6% 94.3% 89.2%
12 5 × 5 / / 11 × 11 82.1% 94.1% 87.7%

1 Standard deviation of Gaussian smoother.
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Figure 13. Tree detection results derived by using the 9th and 10th combinations of parameter values in Table 3: (a) the
result generated by using the 9th combination; (b) the result generated by using the 10th combination. The CHM with a
0.25 m resolution is displayed. The cells extracted through significance tests are shown in different colors according to the
local Gi* values on each cell.

For the 12 combinations of parameter values in Table 3, the recall and F-score values
generated by using a maxD of 1.5 m were subtracted from the ones generated by using a
maxD of 2.0 m. The calculated difference values are shown in Figure 14a. The difference
values calculated by subtracting the recall and F-score values generated by using a maxD
of 1.5 m from the ones generated by using a maxD of 2.5 m are shown in Figure 14b. A
positive difference value means the detection rate or F-score increased. As indicated in
Figure 14a, when the maxD varied from 1.5 to 2.0 m, the detection rates decreased or
remained the same, while the F-score values increased if a 7 × 7 LM filter was adopted.
This trend became more obvious when the maxD varied from 1.5 to 2.5 m. The detection
rates for all combinations decreased and the F-score values decreased when an 11 × 11 LM
filter was adopted, meaning that the use of a large maxD led to both LMs related to treetops
and the ones due to surface irregularities being filtered out.



Remote Sens. 2021, 13, 1278 16 of 24

Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 26 
 

 

indicated in Figure 14a, when the maxD varied from 1.5 to 2.0 m, the detection rates de-
creased or remained the same, while the F-score values increased if a 7 × 7 LM filter was 
adopted. This trend became more obvious when the maxD varied from 1.5 to 2.5 m. The 
detection rates for all combinations decreased and the F-score values decreased when an 
11 × 11 LM filter was adopted, meaning that the use of a large maxD led to both LMs re-
lated to treetops and the ones due to surface irregularities being filtered out. 

 
Figure 14. The effects caused by changing maxD value on test site 2. (a) Recall (F-score) difference as the product of the 
recall (F-score) generated by using a maxD of 2.0 m minus the one generated by using a maxD of 1.5 m; (b) Recall 
(F-score) difference as the product of the recall (F-score) generated by using a maxD of 2.5 m minus the one generated by 
using a maxD of 1.5 m. The parameter values for each combination can be found in Table 3. Significance level = 0.10. For 
maxD = 1.5 m, score threshold = 9. For maxD = 2.0 m, score threshold = 12. For maxD = 2.5 m, score threshold = 16. 

For the 12 combinations of parameter values in Table 3, the recall and F-score val-
ues generated by using a significance level of 0.10 were subtracted from the ones gener-
ated by using a significance level of 0.05. The calculated difference values are shown in 
Figure 15. A positive difference means an increase of detection rate or F-score. As indi-
cated in the figure, the detection rates were nearly unaffected but the F-score values 
mostly increased. This is contrary to the comparison result on test site 1. The largest 
F-score increase is 3.9%, which was acquired by using a 3 × 3 average smoother and a 7 × 
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Figure 14. The effects caused by changing maxD value on test site 2. (a) Recall (F-score) difference as
the product of the recall (F-score) generated by using a maxD of 2.0 m minus the one generated by
using a maxD of 1.5 m; (b) Recall (F-score) difference as the product of the recall (F-score) generated
by using a maxD of 2.5 m minus the one generated by using a maxD of 1.5 m. The parameter values
for each combination can be found in Table 3. Significance level = 0.10. For maxD = 1.5 m, score
threshold = 9. For maxD = 2.0 m, score threshold = 12. For maxD = 2.5 m, score threshold = 16.

For the 12 combinations of parameter values in Table 3, the recall and F-score values
generated by using a significance level of 0.10 were subtracted from the ones generated by
using a significance level of 0.05. The calculated difference values are shown in Figure 15. A
positive difference means an increase of detection rate or F-score. As indicated in the figure,
the detection rates were nearly unaffected but the F-score values mostly increased. This is
contrary to the comparison result on test site 1. The largest F-score increase is 3.9%, which
was acquired by using a 3 × 3 average smoother and a 7 × 7 LM filter (the 5th combination
in Table 3). Through comparing the results of this combination derived by using different
significance levels, it can be found that the LMs filtered out by using a significance level
of 0.05 were on the boundaries of the cell clusters extracted by using a significance level
of 0.10. When the significance level of 0.05 was used, fewer cells were extracted through
significance tests and all LMs outside the cell clusters were filtered out. However, under
both significance levels, the highest F-score values are the same (93.2%), indicating that if
other parameter values are appropriately defined, changing the significance level will only
lead to a slight influence (e.g., 0~1% variation in F-score for the 7th to 12th combinations).
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Figure 15. The effects caused by changing significance level on test site 2. Recall (F-score) difference
is the product of the recall (F-score) generated by using a significance level of 0.05 minus the one
generated by using a significance level of 0.10. The parameter values for each combination can be
found in Table 3. MaxD = 1.5 m, and score threshold = 9.
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Finally, the effects caused by changing the score thresholds were analyzed for test
site 2. The 1st, 5th, and 10th combinations in Table 3 were applied and two maxD values
(1.5 and 2.0 m) were utilized. For maxD of 1.5 m, the full score calculated following Equation
(4) is 10 and the score thresholds ranging from 1 to 9.5 were applied. The F-score values
of the corresponding tree detection results were calculated and are shown in Figure 16a.
The optimal score thresholds for the 1st combination and the 5th combination are 9.5 and
9, respectively. The F-score value generated by using the 10th combination of parameter
values was unaffected by the score threshold. For maxD of 2.0 m, the full score calculated
following Equation (4) is 14 and the score thresholds ranging from 1 to 13.5 were applied.
The F-score values of the corresponding tree detection results are shown in Figure 16b.
The optimal score thresholds for the 1st combination and the 5th combination are both
12. The F-score value generated by using the 10th combination of parameter values was
unaffected by the score threshold. It can be inferred from the figure that a score threshold
approximately equaling to the product of a multiplier of 0.9 and the full score is appropriate
for tree detection on test site 2.
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3.2. Method Performance

For test site 1 with a large variation in crown size and irregular tree distribution, the
highest F-score among all results is 73.7%, generated by the combination of 5 × 5 Gaussian
smoother, 0.5 m σ, 7 × 7 LM filter, 1.5 m maxD, and significance level of 0.10. When this
combination of parameter values was used, the tree detection result was not affected by the
variation in score threshold. The tree detection result is shown in Figure 17. The detection rate
(recall) is 72.9% and a total of 13 among 48 reference trees were undetected. As indicated in
Figure 17a, almost all undetected trees have small-size crowns and are partially covered
by neighboring higher trees. Therefore, no LM was initially extracted within their crowns.
One exception is crown C in Figure 17b. One LM was initially extracted within its crown
but was subsequently filtered out. This is because in the process of recalculation of LM
filter size, a larger LM filter window size was derived and the initial LM was no more the
highest within the new LM filter window and hence removed. The precision is 74.5%. A
total of 10 LMs (e.g., the blue ones in crowns A and B in Figure 17b) caused by surface
irregularities were filtered out based on crown morphology and 12 ones were retained in
the final result. Within some large-size crowns such as crowns D and E in Figure 17c, more
than one LM was retained in the final result. These trees are of ever-green broadleaf species
and have many large branches and irregular crown surfaces. Thus, within their crowns,
the cell clusters extracted through significance tests had complex shapes, which affected
the calculation of new LM filter window size and the subsequent filtering of LMs.
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Figure 17. Tree detection result on test site 1 using the proposed approach. (a) Whole extent of test site 1; (b,c) Enlarged
samples. The cells extracted through significance tests are shown in orange color. The CHM resolution is 0.25 m, the
Gaussian filter size is 5 × 5, σ is 0.5 m, the LM filter size is 7 × 7, the maxD is 1.5 m, and the significance level is 0.10. The
result was unaffected by the variation in score threshold.

For test site 2 with a smaller variation in crown size and regular tree distribution, the
highest F-score among all results is 93.2%, generated by the combination of 5 × 5 Gaussian
smoother, 0.25 m σ, 11 × 11 LM filter, 1.5 m maxD, and significance level of 0.10. The
result was not affected by the variation in score threshold. The tree detection result is
shown in Figure 18. The detection rate (recall) is 87.2% and a total of 5 among 39 reference
trees were undetected. The sizes of these undetected crowns vary from 3.8 to 6.0 m, not
including the minimum crown size (3.0 m) in this test site. As shown in Figure 18a, no
LM was initially extracted within the extents of the undetected crowns. One exception is
crown B in Figure 18c, whose initially extracted LMs were filtered out. We checked the tree
heights of these undetected crowns and their neighbors and found that these undetected
crowns were lower than their neighbors. As an example, the tree height of crown B in
Figure 18c is 10.0 m and the tree heights of the two closest neighbors are 13.3 and 13.5 m.
Their crowns have an overlap. A larger-size LM filter window was derived during the
process of filtering LMs based on crown morphology. The treetop of crown B was not the
highest within the new window and hence removed. The precision is 100%. A total of
4 LMs (e.g., the blue ones outside crown A in Figure 18b) caused by surface irregularities
were filtered out based on crown morphology. The number is small since few LMs caused
by surface irregularities were initially extracted. In comparison with the result in Figure 17,
both recall and precision are much higher on test site 2. This is due to the homogeneous
tree properties on test site 2. Because most trees have similar crown sizes, a LM filter
with a window size (11 × 11) approaching the mean crown size (2.5 m) induced high
detection rates and low commission errors. However, on test site 1, the difference between
the minimum (1.5 m) and maximum (8.5 m) crown sizes is large and the LM filter size
(7 × 7) defined based on the minimum crown size induced higher commission errors.
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Figure 18. Tree detection result on test site 2 using the proposed approach. (a) Whole extent of test
site 2; (b,c) Enlarged samples. The cells extracted through significance tests are shown in orange
color. The CHM resolution is 0.25 m, the Gaussian filter size is 5 × 5, σ is 0.25 m, the LM filter size
is 11 × 11, the maxD is 1.5 m, and the significance level is 0.10. The result was unaffected by the
variation in score threshold.

3.3. Method Comparison

The variable-size window LM extraction algorithm in Fusion software was applied
on both test sites. A 3 × 3 and a 5 × 5 average smoother were applied on the 0.25 m
CHM respectively before the LM identification and the best results (highest F-score) are
displayed in Table 4 and Figure 19. As a comparison, the tree detection results of the
proposed approach derived by using the optimal combinations of parameter values were
shown in the table. Since only the average smoother is available in Fusion, the best results
of the proposed approach generated by using the average smoother are also shown in
the table. It should be noticed that the highest F-score values were derived by using not
only one combination of parameter values for both test sites 1 and 2. As indicated in
Table 4, the proposed approach generated slightly better results than the variable-size
window LM extraction algorithm. On test site 1, although the difference (1.2%) in F-score
between the proposed approach and the variable-size window algorithm is slight, a much
higher detection rate (72.9%) was derived by using the proposed approach. This is because
the proposed approach utilized a small-size LM filter to extract LMs and then performed
filtering of the initially extracted LMs based on crown morphology. Therefore, both higher
detection rate and higher commission error (lower precision) were derived. The variable-
size window algorithm adjusted the LM filter window size according to the surface height.
Due to the insignificant relationship between tree heights and crown sizes (Figure 7) and
crown overlapping on both test sites, it was difficult to determine the appropriate window
sizes for those trees with large crown sizes but lower tree heights and those trees with
small crown sizes but larger tree heights.
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Table 4. Individual tree detection results derived by using the proposed approach and the algorithm in Fusion software.

Test Site Method Parameter Setting Recall Precision F-Score

Proposed approach 5 × 5 Gaussian smoother, 0.5 m σ, 7 × 7 LM
filter, 1.5 m maxD, 0.10 significance level 72.9% 74.5% 73.7%

1 Proposed approach 5 × 5 average smoother, 7 × 7 LM filter, 1.5 m
maxD, 0.05 significance level 68.8% 76.7% 72.5%

Algorithm in Fusion 5 × 5 average smoother 60.4% 90.6% 72.5%

Proposed approach 5 × 5 Gaussian smoother, 0.25 m σ, 11 × 11 LM
filter, 1.5 m maxD, 0.10 significance level 87.2% 100% 93.2%

2 Proposed approach 3 × 3 average smoother, 11 × 11 LM filter, 1.5 m
maxD, 0.05 significance level 84.6% 97.1% 90.4%

Algorithm in Fusion 5 × 5 average smoother 82.1% 97.0% 88.9%
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4. Discussion
4.1. Rules for Parameter Setting

For the proposed approach, the effects caused by changing the parameter values on
the tree detection results have been thoroughly investigated. The parameters used in the
approach were divided into two groups: the parameters related to local maximum (LM)
extraction and the parameters related to filtering of the initially extracted LMs based on
crown morphology. Even though the proposed approach was found to be more or less
sensitive to the parameter values, rules related to parameter setting can be derived. For
forests with different structures, there is difference in the rules. Test site 1 is characterized by
irregular tree distribution and large variation in crown size, while test site 2 is characterized
by regular tree distribution and small variation in crown size. The rules are as follows:

• Because the results (F-score) derived by using a Gaussian smoother were generally
better than those derived by using an average smoother on both test sites, the Gaus-
sian smoother is preferred. A larger smoother size and a higher standard deviation
for Gaussian smoother should be utilized to smooth out the surface irregularities
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contained in CHM. However, for those forests with structures similar to test site 2, a
high smoothing degree of CHM will lead to the LMs within large-size crowns that
have an overlap with neighboring crowns and are lower than neighbors being filtered
out. In such a case, the CHM should be smoothed with a slightly lower degree.

• The LM filter window size should approach the minimum crown size so that as many
small-size crowns as possible can be detected.

• A maximum distance threshold (maxD) that approaches the minimum crown size is
appropriate for the forests with a large variation in crown size. However, for those
forests with relatively homogeneous tree properties like test site 2, using a maxD that
approaches the minimum crown size leads to both LMs related to treetops and the
ones caused by surface irregularities being filtered out and the F-score values could
decrease when a large-size LM filter window is adopted. In such a case, a maxD
smaller than the minimum crown size should be used.

• The score threshold for filtering initially extracted LMs can be approximately defined
as the product of a multiplier of 0.9 and the full score. The full score varies with
the maxD value. A larger maxD leads to a larger full score and hence a larger score
threshold.

• A significance level of 0.10 is appropriate for both test sites. Although the sensitivity
analysis in Section 3.1 indicates that the F-score values slightly increased when the
significance level was changed from 0.10 to 0.05 on test site 2, the highest F-score values
among all combinations of parameter values were the same under both significance
levels. Therefore, if other parameter values are appropriately defined, the effects
caused by changing the significance level can be neglected.

4.2. Advantage and Limitation

This study focuses on individual tree detection using unmanned aerial vehicle (UAV)
LiDAR data in subtropical mixed broadleaf forests in urban scenes, which are characterized
by complex forest structure and large variation in crown size. Tree detection solely based on
height is difficult and complementary information is used in this study. A novel approach
based on crown morphology information is proposed for individual tree detection using
UAV LiDAR data. The strategy is using a LM filter whose window size approaches
the minimum crown size to extract as many LMs as possible and then using the crown
morphology identified based on local Gi* statistics to filter out LMs caused by surface
irregularities in CHM. The LMs retained in the final result represent treetops. The approach
does not need to collect field survey data to obtain such prior knowledge as the relationship
between crown size and tree height. Actually, this relationship has been proved to be
insignificant for both test sites in this study. Therefore, in comparison with other methods
that require prior knowledge [26–28], the proposed approach is advantageous to tree
detection in subtropical mixed broadleaf urban forests that have similar characteristics to
the test sites.

Because the studies on subtropical mixed broadleaf urban forests are very few, a
popular variable-size window LM extraction algorithm [50] was used to compare with
the proposed approach. The comparison result indicates that the proposed approach
obtained slightly higher tree detection accuracy (F-score) than the variable-size window
LM extraction algorithm. Although the commission error was relatively large, much higher
detection rates were derived by using the proposed approach on test site 1 characterized
by irregular tree distribution and large variation in crown size. An advantage of a high
detection rate is that complementary information apart from crown morphology can be
employed to further filter the LMs to improve the tree detection accuracy. The feasibility
of using point density [36] or other point cloud metrics as complementary information
for filtering LMs should be investigated in further studies. Moreover, an observation can
be derived from the results shown in Sections 3.1 and 3.2 that the cell clusters extracted
through significance tests approximate the crown extents and the cells around treetops



Remote Sens. 2021, 13, 1278 22 of 24

have the largest local Gi* values. Therefore, in the further study, the method for segmenting
the cell clusters based on the spatial pattern of local Gi* values should be investigated.

The limitation of the proposed approach is that it is still relatively sensitive to the
parameter setting, including smoother parameters, LM filter window size, and parameters
related to filtering of LMs based on crown morphology. Even though some rules for
parameter setting have been proposed in this study, it is difficult to find a balance among
the parameters and to automatically obtain the optimal combination of parameter values
for each test site characterized by different forest structures. The use of complementary
information apart from crown morphology to further filter the LMs retained in the result
may help reduce the sensitivity of the approach to the parameter setting. In addition, too
few test sites were used in this study due to the limitation of data acquisition. In further
studies, more test sites with different characteristics should be established to investigate
the parameter setting rules.

5. Conclusions

In this paper, a novel tree detection approach is proposed for subtropical mixed
broadleaf forests in urban scenes using unmanned aerial vehicle (UAV) LiDAR data. The
proposed approach firstly applies a fixed-size window local maximum (LM) filter to extract
LMs and then identifies the spatial pattern of convex crown morphology based on local Gi*
statistics to filter out LMs caused by surface irregularities in CHM. The LMs retained in
the final result represent treetops. The proposed approach was applied on two test sites
located in a university campus using UAV LiDAR data to evaluate its performance. The
two test sites are characterized by different forest structures. Through a sensitivity analysis,
the optimal combination of parameter values for each test site was obtained and the rules
for parameter setting were also derived. By using the optimal combinations of parameter
values, the highest F-score values for test sites 1 and 2 were 73.7% and 93.2%, respectively,
which were slightly better than the results derived by using a variable-size window tree
detection algorithm. The detection rates on both test sites were also higher than the variable-
size window algorithm. Although the rules for parameter setting have been proposed
in this study, it is still difficult to automatically determine the optimal combination of
parameter values. Complementary information apart from crown morphology should be
considered to further filter the LMs retained in the final result to improve the tree detection
accuracy. More test sites with different characteristics should be established to investigate
the parameter setting rules.
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