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Abstract: Challenges in rapid prototyping are a major bottleneck for plant breeders trying to develop
the needed cultivars to feed a growing world population. Remote sensing techniques, particularly
LiDAR, have proven useful in the quick phenotyping of many characteristics across a number of
popular crops. However, these techniques have not been demonstrated with cassava, a crop of global
importance as both a source of starch as well as animal fodder. In this study, we demonstrate the
applicability of using terrestrial LiDAR for the determination of cassava biomass through binned
height estimations, total aboveground biomass and total leaf biomass. We also tested using single
LiDAR scans versus multiple registered scans for estimation, all within a field setting. Our results
show that while the binned height does not appear to be an effective method of aboveground
phenotyping, terrestrial laser scanners can be a reliable tool in acquiring surface biomass data in
cassava. Additionally, we found that using single scans versus multiple scans provides similarly
accurate correlations in most cases, which will allow for the 3D phenotyping method to be conducted
even more rapidly than expected.

Keywords: remote sensing; high-throughput phenotyping; terrestrial laser scanner; cassava; point
cloud; binned height; biomass

1. Introduction

Cassava (Manihot esculenta) is a South American crop that was first cultivated between
4000 and 2000 B.C. However, only recently has it become an important food source for the
global population [1]. It is estimated that over 278 million tons of cassava [2] are cultivated
annually, with its yield primarily serving as a source of carbohydrates for humans and
secondarily as animal feed [3]. The crop is grown in such high quantities due to its ability
to thrive in marginally fertile soils and under various rainfall conditions [4]. In addition to
its hardy nature, cassava also tends to outperform many other tropical staple crops on a per
hectare energy yield basis, leading to its widespread use across much of the tropics [5,6].

Considering the worldwide importance of cassava, especially within developing
countries, yield improvements would help strengthen economic growth in these areas
by shifting its cultivation from that of subsistence to a cash crop [7]. Two areas in which
cassava improvement is needed are early bulking (EB) of roots [8,9] and higher biomass
of aboveground material [10,11]. Early bulking genotypes would have two significant
advantages: a shortening of crop duration and increased yield [12]. While cassava leaves
are not the most widely consumed part of the plant, they nevertheless serve as an important
vegetable in the Congo [13], as well as an important animal feed for cattle and sheep, due
to their high crude protein (~25%) content [14].
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Thus far, selection for both traits has only been achieved through costly destructive
methods. Phenotyping of cassava is generally conducted by hand, which is a laborious
and time-consuming task considering the size and long production cycle of the crop. As
such, there is a need for a non-destructive method to quantify cassava root development
and high-quality aboveground biomass. High-throughput phenotyping is one method that
could speed up this process while also reducing costs [15].

While it varies somewhat based upon genotype, the cassava physical structure es-
sentially consists of broad leaves and open canopies, making for easy LiDAR returns [16].
Additionally, the height of some genotypes can make it difficult to capture a full plant
image with certain sensors [17]; thus, a long-range, ground-based LiDAR unit would
provide a reasonable capture of the full plant. Thankfully, there are a variety of scanners
available on the market that can allow fast capture of 3D data. However, little, if any,
literature exists on the use of this type of technique on cassava.

Terrestrial laser scanners (TLS) have the ability to record fine details of an object in 3D
and often capture additional data such as intensity or RGB images. This is accomplished by
emitting pulses of laser light (often at a single wavelength) at an object and using the time
of flight and speed of light to determine the distance [18]. The distance measure, along with
the horizontal (azimuth) and vertical (zenith) angles between the instrument and the object,
is recorded for each laser pulse. This information is used to perform simple trigonometric
calculations to create a single point in 3D space which, when combined with other points,
forms a point cloud. The point clouds from multiple scans captured around the object can
be registered together and information related to the reflectance and pseudo-color [19]
images can be applied to form a data-dense 3D representation.

While no literature exists on its use for cassava, TLS has been used to assess phe-
notypic characteristics of many other crops, such as crop growth [20], early stage plant
detection [21] and prediction of plant area [22]. Aboveground biomass determination
has been conducted in many species including oilseed rape (Brassica napus), winter rye
(Secale cereale), winter wheat (Triticum aestivum) and grasslands [23–25]. Vineyard studies
have also been conducted with significant results [26].

In this study, we attempted to use a FARO Focus 120 TLS (FARO Technologies Inc.,
Lake Mary, FL, USA) to predict several categories of aboveground biomass in three geno-
types of cassava, each of which differed in their aboveground structure. Our goal was
to use TLS data to predict the biomass of the entire plant, as well as the biomass within
specific height bins. Specifically, we tested several LiDAR data processing approaches
to identify the best practices for using LiDAR data as a predictor of several measures
of biomass (one of these approaches being the use of single scans versus two registered
scans of each plant to correlate to the various biomass measures). Our results show that
while binned height estimations did not provide good correlations, registered point clouds
of the plants resulted in fair to excellent results based on genotype. Perhaps the most
significant finding was that single, unregistered scans have comparable results to those of
registered point clouds, drastically reducing the time needed to process data for this type
of phenotyping.

2. Materials and Methods
2.1. Materials and Data Collection

The experiment was conducted at the International Center for Tropical Agriculture
(CIAT) in Palmira, Colombia (Figure 1). Planting began in December of 2016, with sub-
sequent plantings taking place approximately each month through August of 2017. The
planting was carried out in a staggered fashion to allow data on all 9 age groups to be
collected at one time (Figure 2). This resulted in 9 age groups, from 3 to 11 months, during
the data collection period in November of 2017.



Remote Sens. 2021, 13, 1272 3 of 17

Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 19 
 

 

collected at one time (Figure 2). This resulted in 9 age groups, from 3 to 11 months, during 
the data collection period in November of 2017. 

 
Figure 1. Location of the International Center for Tropical Agriculture. Approximately 16 km east, northeast of Cali, Co-
lombia. Location of the research center is represented by a star. 

 

 
Figure 2. Planting map, with 9 age groups, 3 genotypes (27 plots) and 15 plants per plot. Stars represent the planting 
location within a given plot. 

Figure 1. Location of the International Center for Tropical Agriculture. Approximately 16 km east,
northeast of Cali, Colombia. Location of the research center is represented by a star.

Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 19 
 

 

collected at one time (Figure 2). This resulted in 9 age groups, from 3 to 11 months, during 
the data collection period in November of 2017. 

 
Figure 1. Location of the International Center for Tropical Agriculture. Approximately 16 km east, northeast of Cali, Co-
lombia. Location of the research center is represented by a star. 

 

 
Figure 2. Planting map, with 9 age groups, 3 genotypes (27 plots) and 15 plants per plot. Stars represent the planting 
location within a given plot. 

Figure 2. Planting map, with 9 age groups, 3 genotypes (27 plots) and 15 plants per plot. Stars represent the planting
location within a given plot.

Three genotypes of cassava were chosen based on their contrast in aboveground
structure (Figure 3). Genotype 1 (CM523-7) is a typical erect shrub-type cassava with few
erect branches initiating above the ground surface. Genotype 2 (GM3893-65) is known
as an asparagus type with its characteristic lack of branches and its leaves, which grow
directly from the main stalk, allowing a higher planting density due to its very erect growth
structure. Genotype 3 (HMC-1) is another shrub type, but it has a lower branching structure
with branches often running near to the ground surface. Of both shrub types, Genotype 3
has a much lower growth pattern as compared to that of Genotype 1.



Remote Sens. 2021, 13, 1272 4 of 17

Remote Sens. 2021, 13, x FOR PEER REVIEW 4 of 19 
 

 

Three genotypes of cassava were chosen based on their contrast in aboveground 
structure (Figure 3). Genotype 1 (CM523-7) is a typical erect shrub-type cassava with few 
erect branches initiating above the ground surface. Genotype 2 (GM3893-65) is known as 
an asparagus type with its characteristic lack of branches and its leaves, which grow di-
rectly from the main stalk, allowing a higher planting density due to its very erect growth 
structure. Genotype 3 (HMC-1) is another shrub type, but it has a lower branching struc-
ture with branches often running near to the ground surface. Of both shrub types, Geno-
type 3 has a much lower growth pattern as compared to that of Genotype 1. 

 

 

Figure 3. Examples of the 3 cassava genotypes used in the study. (a) Erect shrub type (523-7), (b) 
asparagus type (Esparrago) and (c) low-branching type (HMC-1). 

The age groups were created to produce variability in the biomass of each genotype. 
For each planting, 15 plants of each genotype were planted from cuttings into a 3 plant by 
5 plant plot. The spacing between plants, as well as between rows, was 1 m. This exagger-
ated spacing was used to reduce the overlap between the plants. A double border was 
planted around the entire experiment, but no border was used between plots. The exper-
iment received irrigation, fertilizer and any necessary pest treatments required to main-
tain normal growth. Data were captured on a subset of the plants in each plot. Within each 
plot, 3 to 5 plants were randomly selected, while the remaining were cut down and re-
moved. This thinning was conducted to minimize the overlap between canopies in order 
to create space to get the FARO scanner in position.  

Terrestrial laser scanning took place in mid-January 2017, using a FARO Focus 3D 
120 terrestrial laser scanner. The Focus has a range of 0.6 to 120 m, with a ranging error of 
±2 mm at 10 and 25 m, and operates at 905 nm. It is also equipped with a 70-megapixel 
color camera. The scanning was conducted at night to minimize the effect of wind on the 
point cloud quality as even a slight breeze can move the foliage, causing noise in the data. 
The scanning was conducted over a 3-night period and the winds during each night were 
recorded as negligible and caused only momentary movement of individual leaves. 

Scanning took several nights due to the large number of scans needed for the study. 
The FARO scanner settings were set according to Table 1. These settings were chosen as a 

Figure 3. Examples of the 3 cassava genotypes used in the study. (a) Erect shrub type (523-7),
(b) asparagus type (Esparrago) and (c) low-branching type (HMC-1).

The age groups were created to produce variability in the biomass of each genotype.
For each planting, 15 plants of each genotype were planted from cuttings into a 3 plant
by 5 plant plot. The spacing between plants, as well as between rows, was 1 m. This
exaggerated spacing was used to reduce the overlap between the plants. A double border
was planted around the entire experiment, but no border was used between plots. The
experiment received irrigation, fertilizer and any necessary pest treatments required to
maintain normal growth. Data were captured on a subset of the plants in each plot. Within
each plot, 3 to 5 plants were randomly selected, while the remaining were cut down and
removed. This thinning was conducted to minimize the overlap between canopies in order
to create space to get the FARO scanner in position.

Terrestrial laser scanning took place in mid-January 2017, using a FARO Focus 3D
120 terrestrial laser scanner. The Focus has a range of 0.6 to 120 m, with a ranging error of
±2 mm at 10 and 25 m, and operates at 905 nm. It is also equipped with a 70-megapixel
color camera. The scanning was conducted at night to minimize the effect of wind on the
point cloud quality as even a slight breeze can move the foliage, causing noise in the data.
The scanning was conducted over a 3-night period and the winds during each night were
recorded as negligible and caused only momentary movement of individual leaves.

Scanning took several nights due to the large number of scans needed for the study.
The FARO scanner settings were set according to Table 1. These settings were chosen as
a tradeoff between scan quality and time required to capture data across the entire study.
The scanner was mounted on an industrial tripod and was set to a height of approximately
1.25 m. The height varied between scans due to the exact placement of the legs in relation
to the local topography. For each plant, a total of 2 scans were taken, one from the north
and the other from the south side of the plant. The tripod-mounted scanner was placed in
the adjacent row (approximately 1.5 m from the center of the target plant) and was aligned
so the plant would fall roughly in the middle of the scanning window. No targets were
placed in the scene to register the scans, as stumps of the removed plants and other objects
provided sufficient references for registration. Only the points derived from the laser were
used in the analysis, with no accompanying photographs.
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Table 1. FARO Focus 120 scan settings.

Setting Value

Resolution 1/5
Quality 3X

Vertical Scan Area −60◦ to 90◦

Horizontal Scan Area 0◦ to 180◦

Scan Duration 2 m 39 s
Point Distance 7.67 nm at 10 m

Field data were harvested starting on the day after the first scan. These data included
biomass, which was binned in 20-cm increments from the soil surface to the top of the plant.
The binned data included two separate categories, one for the stalk and stem weights, and
a second for the weight of the leaves. The bins were physically marked on each plant, using
a large ruler and a number of small pieces of flagging tape to create a set of horizontal
planes separating the bins. Prior to harvest, a large tarp was placed around the base of
the plant to capture any dropped pieces. Harvesting was conducted manually by a team
of CIAT employees. The harvest was carried out by first removing all the leaves from a
plant and placing them in labeled paper bags for drying. Once all the leaves were removed,
the stalks and stems were cut into manageable pieces and again placed in marked bags.
The entire harvest took approximately 1 week to complete and another 3 weeks to dry the
samples. To limit molding, a large walk-in cold storage was used to store the samples prior
to their time in the dryer. All bags were dried in commercial drying ovens at 70 ◦C and
were weighed to capture dry weight.

2.2. Data Processing

Plants used for the analysis were randomly selected from the pool by genotype, which
resulted in 18 plants per genotype for a grand total of 54 across the 3 genotypes. For each
plant, the two scans were registered together in FARO SCENE software using common
points available in the environment (Figure 4). The target points used were mainly the
stalks of the previously removed plants along with some field markers and other objects in
the scene. Once registration was complete, each plant’s point cloud was roughly clipped
to remove unnecessary background points and was then exported as a .xyz file. The .xyz
format was chosen to facilitate analysis in CloudCompare 2.10 beta (CC) [27], an open
source point cloud editing and analysis program.

In addition, the unregistered scans (2 per plant) were also roughly clipped and ex-
ported as .xyz files to allow single-scan analysis. The single scans were used to assess the
potential to correlate to the field biomass measures without the need for the registration
step. While targets can be used to automate the registration process, this is not always
feasible nor reliable, and therefore manual adjustments may still be needed. Thus, man-
ual registration, through point picking of common points via various software packages,
is often the method used. Our group wanted to assess the potential of bypassing the
registration step by using a single scan per plant for the analysis.

The following processing steps were applied to the registered scans as well as the
single scans: Each point cloud was opened in CC where it was further clipped to remove
all points which were not plant points or ground points which fell below the plant. All
the ground points below the plant were kept in order to facilitate the segmentation of the
ground from the plant points. In addition, the Statistical Outlier Removal (SOR) filter was
run to help remove outliers in each point cloud. The SOR values used were determined
through trial and error using visual assessment (Table 2). Each file was then exported in the
.las format to allow analysis in R-3.6.1 (GNU Project), a statistical computing and graphics
programming language.
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Table 2. Statistical Outlier Removal (SOR) settings in CloudCompare.

SOR Function Setting

Mean distance estimation 6 points
SD multiplier threshold 1.00

2.3. Ground Classification

R-Studio Desktop, an integrated development environment for the programming
language, was used to visualize the code utilized for the analysis. In R, the lidR package
was used to run lasground_pmf (Progressive Morphological Filter, or PMF). The lidR
package is a collection of code and functions that allow users to analyze data in .las and .laz
formats, which are commonly used for storing LiDAR data. The lasground_pmf function
uses a filter to segment ground points for each point cloud so that vegetation can be
separated from ground points for analysis.

The two variables for the filter are: (1) the sequence of window size(s) to be used in
filtering the ground returns and (2) the sequence of threshold height(s) above the ground
surface to be considered as a ground return [28]. For this analysis, trial and error was used
to determine PMF settings (Table 3).
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Table 3. Progressive Morphological Filter (PMF) settings in R.

PMF Function Setting

Window Size 0.2 m
Threshold Height 0.05 m

2.4. Binning

The point cloud had to be binned by height to match the field data. All ground points
except for those directly below the main stalk were clipped manually in CC. These point
clouds were then loaded back into R and the average height of the few remaining ground
points was determined. The point cloud data were binned using the average ground height
as a reference and then simply segmenting the data by height to match the field data.

2.5. Subsampling

We tested the effect of point cloud density on the ability of the point count to predict
total plant dry weight. To do this, the additional preprocessing step of subsampling the
point cloud using the subsampling tool in CC was completed. The minimum space between
points was set to 0.002 m (2 mm), as it closely resembles the theoretical maximum ranging
accuracy of the FARO Focus 120 (±0.02 mm @ 10 m) and would not degrade the data.

2.6. Data Analysis

All regressions were completed in R using the base function lm (linear model) and all
outputs were generated using the package ggplot2. In addition, all bootstrap analyses were
conducted using the boot package in R. Bootstrapping is a resampling technique which
allows estimation of the population response and associated uncertainty to a variable
through sampling with replacement. For details on bootstrapping, see Efron and Tibshirani,
1994 [29]. We used the bias-corrected and accelerated bootstrap (BCa) method as it has the
ability to correct for bias and skewness in the distribution of the output estimates. The
number of iterations used was 5000 with a confidence level of 0.95. All bootstrap analyses
used in this study were conducted using the same method. To test the ability of the FARO
to predict cassava biomass within different height bins, we regressed the binned point
cloud data against the binned field data for all 54 plants. The number of points in each
point cloud height bin was regressed against the total dry plant weight (stalk and stem +
leaf wts.) and the leaf-only dry weight. A bootstrap analysis was also conducted for both.

Our group examined the relationship between the LiDAR data and the entire plant dry
weight. This was conducted for the registered-only, the registered and subsampled and the
single-scan subsampled LiDAR datasets. For the single-scan analysis, the selection of which
scan (north or south) to use was conducted through random selection on a plant-by-plant
basis. For each of the three analyses, the point count of each plant’s entire point cloud was
regressed against the total plant dry weight (e.g., a dry weight of 1333 g to a point count of
332,249). In addition, a bootstrap analysis was also conducted.

Our group also tested the relationship between the LiDAR data and the leaf-only
dry weight. This was conducted for the registered and subsampled and the single-scan
subset LiDAR datasets. For each of these analyses, the point count of each plant’s entire
point cloud was regressed against the plant’s leaf dry weight. A bootstrap analysis was
conducted for each. A by-genotype analysis using the leaf dry weight was conducted for
both the registered and subsampled and the single-scan subsampled datasets. This was
conducted by subsetting the dataset by genotype and then running the same analysis as
mentioned above.

The average ratio of leaf to stalk and stem weight for each genotype was determined.
This was conducted by taking the leaf weight for each plant and dividing it by the stalk
and stem weight. These ratio values for each plant were then averaged across the genotype.
In addition, a shape analysis was conducted to assess the variation in the squareness of
the horizontal growth in the X and Y directions for Genotypes 1 and 3. This analysis was
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conducted by using the dimensions of the bounding box for each plant in CC. These two
dimensions were captured for each plant in the two genotypes and were then turned into
a ratio by dividing the two dimensions. The closer the value was to 1.00, the squarer the
plant’s horizontal growth. A test of equal variance was conducted in R, which found the
variances were not equal. A t-test using unequal variances was conducted in R to test if the
squareness ratios derived from Genotypes 1 and 3 were equal data.

3. Results
3.1. Binned Height

Binned aboveground biomass data were correlated to the binned LiDAR data. Both
the total plant dry weight and the leaf-only dry weights were tested. Using the total plant
dry weight, we achieved an R2 of 0.01 with a p-value of 0.02 (data not shown). A slight
improvement was seen using only the leaf dry weights, where we found an R2 of 0.19
at a p-value of 6.62 × 10−9 (Figure 5). The bootstrap analysis suggested an R2 of 0.19,
with a bias of 4.03 × 10−3 and an STDEV of 0.06. The 95% R2 confidence intervals for the
bootstrap analysis were 0.08 to 0.31.

Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 19 
 

 

Our group also tested the relationship between the LiDAR data and the leaf-only dry 
weight. This was conducted for the registered and subsampled and the single-scan subset 
LiDAR datasets. For each of these analyses, the point count of each plant’s entire point 
cloud was regressed against the plant’s leaf dry weight. A bootstrap analysis was con-
ducted for each. A by-genotype analysis using the leaf dry weight was conducted for both 
the registered and subsampled and the single-scan subsampled datasets. This was con-
ducted by subsetting the dataset by genotype and then running the same analysis as men-
tioned above. 

The average ratio of leaf to stalk and stem weight for each genotype was determined. 
This was conducted by taking the leaf weight for each plant and dividing it by the stalk 
and stem weight. These ratio values for each plant were then averaged across the geno-
type. In addition, a shape analysis was conducted to assess the variation in the squareness 
of the horizontal growth in the X and Y directions for Genotypes 1 and 3. This analysis 
was conducted by using the dimensions of the bounding box for each plant in CC. These 
two dimensions were captured for each plant in the two genotypes and were then turned 
into a ratio by dividing the two dimensions. The closer the value was to 1.00, the squarer 
the plant’s horizontal growth. A test of equal variance was conducted in R, which found 
the variances were not equal. A t-test using unequal variances was conducted in R to test 
if the squareness ratios derived from Genotypes 1 and 3 were equal data. 

3. Results 
3.1. Binned Height 

Binned aboveground biomass data were correlated to the binned LiDAR data. Both 
the total plant dry weight and the leaf-only dry weights were tested. Using the total plant 
dry weight, we achieved an R2 of 0.01 with a p-value of 0.02 (data not shown). A slight 
improvement was seen using only the leaf dry weights, where we found an R2 of 0.19 at a 
p-value of 6.62 × 10−9 (Figure 5). The bootstrap analysis suggested an R2 of 0.19, with a bias 
of 4.03 × 10−3 and an STDEV of 0.06. The 95% R2 confidence intervals for the bootstrap 
analysis were 0.08 to 0.31. 

 
Figure 5. Binned (20 cm) registered and subsampled point cloud data regressed against the leaf 
dry weight for all genotypes. (a) Regression, (b) bootstrap (n = 349). 

3.2. All Genotypes Combined 
For the registered point clouds, the total LiDAR point count for each plant was re-

gressed against the entire plant dry weight. The linear regression resulted in an R2 value 
of 0.45 and a p-Value of 1.73 × 10−8 (data not shown). The bootstrapping resulted in a mean 
R2 value of 0.46, a bias of 0.02 and standard error of 0.13. The 95% confidence ranged from 
0.21 to 0.7.  
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3.2. All Genotypes Combined

For the registered point clouds, the total LiDAR point count for each plant was
regressed against the entire plant dry weight. The linear regression resulted in an R2 value
of 0.45 and a p-Value of 1.73 × 10−8 (data not shown). The bootstrapping resulted in a
mean R2 value of 0.46, a bias of 0.02 and standard error of 0.13. The 95% confidence ranged
from 0.21 to 0.7.

To improve the correlation, we took the additional step to subsample each registered
point cloud in an attempt to standardize its spatial density. The subsampling improved the
correlation, with an R2 value of 0.73 and a p-value of 1.26 × 10−16 (Figure 6). The bootstrap
analysis resulted in a mean R2 of 0.74, a bias of 5.79 × 10−4 and a standard error of 0.07
with a 95% confidence between 0.55 and 0.84.

A major limitation to the use of TLS data, and LiDAR data in general, is the time-
consuming process of registration. We tested the potential of the point count from a single
scan, which was subsampled, to correlate to the entire plant dry weight. The correlation
was similar to that obtained via the registered and subsampled clouds. The R2 value of the
regression was 0.73 with a p-value of 2.2 × 10−16 (Figure 7). The bootstrap analysis had a
mean R2 of 0.74, a bias of 8.23 × 10−4 and an STDEV of 0.07. The 95% confidence interval
was 0.57 to 0.84.
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3.3. By Genotype

The study included three different genotypes of cassava, which contrasted in their
aboveground structure. We tested the ability of the TLS technology to predict plant biomass
between the various structural types of cassava. When we assessed the registered and
subsampled data on a genotype basis, we found variation in the predictive power of the
LiDAR technology (Figure 8). Note that the bootstrap density scale was adjusted to allow
full representation of the trend line. Genotype 1 had an R2 of 0.64 and a p-value of 4.32
× 10−5. Genotype 2 performed well with an R2 of 0.95 and a p-value of 1.12 × 10−12.
Genotype 3 fell in the middle with an R2 of 0.71 and a p-value of 6.45 × 10−6. The bootstrap
results suggest a large amount of variation in the predictive power for both Genotypes 1
and 3 (Table 4).
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Table 4. Registered and subsampled point cloud data regressed against the entire plant dry weight,
by genotype. Bootstrap output (n = 18).

Genotype Mean R2 Bias STDEV 95% Confidence Interval

1 0.66 4.84 × 10−3 0.10 0.36–0.81
2 0.96 1.37 × 10−3 0.01 0.92–0.98

3 0.73 −7.65 ×
10−3 0.12 0.40–0.88
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The same by-genotype analysis was conducted for the single scan with subsampling
dataset. Genotypes 1 and 2 performed similar to the registered and subsampled dataset
(Tables 5 and 6). However, for Genotype 3, the outcome was not as good. For the third
genotype, the use of a single scan with subsampling resulted in an R2 of 0.52 with a p-value
of 4.38 × 10−4 (Figure 9). The bootstrap analysis told a similar story, with a notable increase
in the range of the 95% confidence interval for Genotype 3 (0.15–0.79).

Table 5. Regression and bootstrap results by analysis method using both the dry plant weight and
leaf weight for all genotypes (n = 54) and by genotype (n = 18). R = registered; R & S = registered and
subsampled; SS & S = single-scan subsampled. Gray color denotes R2 below 0.7.

Comparing All Genotypes
Regression Bootstrap

Analysis
Method Plant Weight Leaf Weight R2 p-Value 95% CI

R X 0.45 1.73 × 10−8 0.21–0.70
R & S X 0.73 1.26 × 10−16 0.55–0.84
SS & S X 0.73 2.20 × 10−16 0.57–0.84
R & S X 0.80 2.00 × 10−16 0.63–0.88
SS & S X 0.78 2.00 × 10−16 0.64–0.86

Table 6. Regression and bootstrap results by analysis method using both the dry plant weight and leaf weight for by genotype (n = 18).
R = registered; R & S = registered and subsampled; SS & S = single-scan subsampled. Gray color denotes R2 below 0.7.

Comparing
Genotype 1
Regression
Bootstrap

Genotype 2
Regression Bootstrap

Genotype 3
Regression Bootstrap

Analysis
Method

Plant
Weight

Leaf
Weight R2 p-Value 95% CI R2 p-Value 95% CI R2 p-Value 95% CI

R & S X 0.64 4.32 × 10−5 0.36–0.81 0.95 1.12 × 10−12 0.92–0.98 0.71 6.45 × 10−6 0.40–0.88
SS & S X 0.73 3.55 × 10−6 0.45–0.88 0.96 9.29 × 10−13 0.92–0.98 0.52 4.38 × 10−4 0.15–0.79
R & S X 0.70 8.66 × 10−6 0.33–0.88 0.95 3.35 × 10−12 0.91–0.98 0.83 1.13 × 10−7 0.58–0.94
SS & S X 0.76 1.64 × 10−6 0.45–0.91 0.94 3.82 × 10−11 0.89–0.97 0.64 4.31 × 10−5 0.30–0.86
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3.4. Leaf Dry Weight

Our group questioned if variations in the stem weights were causing the change in
predictive power of the technology between genotypes. In order to test this, we regressed
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against only the leaf dry weights for both the registered and subsampled and single-scan
subsampled datasets.

The first analysis looked at the effect across all genotypes. The registered and subsam-
pled dataset resulted in the best R2 value of 0.8 with a p-value of 2 × 10−16 (Figure 10). The
bootstrap results suggested a 95% confidence interval for the R2 between 0.63 and 0.88,
which again were the best across the study. The single-scan subsampled dataset did not
perform quite as well with an R2 of 0.78 (Table 5).
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Using the leaf dry weight on a by-genotype basis for the registered and subsampled
dataset resulted in a similar response for Genotypes 1 and 2, as with using the entire plant
dry weight (Tables 5 and 6). However, Genotype 3 had an improved R2 of 0.83 with a
p-value of 1.13 × 10−7 (Figure 11).
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We analyzed the single-scan subsampled dataset against the leaf dry weights on a by-
genotype basis. Interestingly, we found a similar pattern as with the same dataset regressed
against the entire plant dry weight. Genotypes 1 and 2 performed about the same (Tables 5
and 6), while Genotype 3 again performed poorly, albeit with a slight improvement over the
entire plant dry weight analysis, with an R2 of 0.64 and a p-value of 4.31 × 10−5 (Figure 12).
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Figure 12. Single-scan subsampled point cloud data regressed against the leaf dry weight, Genotype 3.
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3.5. Plant Shape

We compared the ratio of the leaf to stem weights for all three genotypes and found
a similar ratio, suggesting variations in the stalk and stem weights may not be a factor
in the variation in response between the single-scan subsampled methodology and the
three genotypes (data not shown). However, when we compared the dimensions of the
bounding boxes in CC for each of the plants in Genotypes 1 and 3, we found a significant
difference (T = −1.77, p-value 0.09) in the ratio of the X to Y axis lengths (Figure 13). This
suggests there is a statistical difference in the shape of the two genotypes, albeit one with
only 90% confidence. Therefore, the bounding box method of determining the difference
between single and multiple scans should be viewed with caution.
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4. Discussion

The binned height biomass analysis did not work well (R2 0.01). Using the leaf weight
did improve the correlation, though an R2 of 0.19 is not sufficient to suggest LiDAR as
a phenotyping tool for binned height biomass determination. However, several factors



Remote Sens. 2021, 13, 1272 14 of 17

could be the cause and might be addressed in the future. First, the bins may not have
overlapped well in respect to the start and end positions in the LiDAR data versus the field
data. Second, errors related to the placement of the bin start and end locations may have
caused noise in the field data. One solution might be to mark the bins on the plant prior to
scanning. This would allow more precise overlap to occur between the LiDAR and field
data, which might improve the correlation. In addition, this would overcome some of the
noise in the field data caused by the imprecise bin locations, further improving the result.

Depending on the processing workflow chosen for the LiDAR data, the strength of the
correlation to the entire plant biomass changed. Two key differences existed between the
processing workflows: (1) the use of a single scan per plant versus both scans registered
together, and (2) if registered scans were used, whether or not the point cloud was further
subsampled. It should be noted that all single-scan analyses included the further subsam-
pling step. The use of the registered-only processing methodology resulted in marginal
predictability of the entire plant biomass. However, when the same registered dataset was
subsampled to produce a uniform point density, the correlation improved (R2 0.45 to 0.73).
Skipping the time-consuming and labor-intensive step of registration, yet still applying the
subsampling, resulted in the same R2 of 0.73. This result alone suggests there is no need to
capture two scans of each cassava plant in order to correlate to the entire plant’s biomass,
and the registration step can be skipped. This is a major finding, as much of the processing
time is spent in the manual registration of scans.

The three genotypes used varied in their aboveground structure. Depending on the
processing workflow used (registered and subsampled versus single-scan subsampled),
we found the strength of the correlation to the entire plant weight changed, both between
genotypes and within. For Genotypes 1 and 2, the use of the single-scan subsampled
methodology is the best option. However, for Genotype 3, the use of the registered and
subsampled method achieved superior results over the single-scan subsampled method.

The variation in the response of Genotype 3 between the two analysis methods
mentioned previously sparked a comparison between the field-derived leaf weight and
the LiDAR data. Initial speculation was that structural differences between the genotypes
might cause variation in the amount of the stalk and stem weight. The stalks, and especially
the stems, are hard to capture in the LiDAR data as these parts of the plant are often
obscured from view by the leaves. By removing the weight of the stalks and stems, we
thought we might improve the overall correlation, as well as improving the response of
Genotype 3 to the single-scan subsampled analysis method. For Genotypes 1 and 3, using
the leaf weight improved the correlation, as compared to regressing against the entire
plant weight when the same processing methodology was considered (Tables 5 and 6).
For Genotype 2, the results were good irrespective of the method used, as can be seen in
the minimal variation in the statistics between the entire plant and leaf analysis, as well
as between the processing methods. However, using the leaf weight with the single-scan
subsampled method resulted in an improved correlation for Genotype 1, but a lowered
one for Genotype 3.

It is unclear why using the single-scan subsampled analysis workflow resulted in
a similar, or even superior, correlation in all cases except that of Genotype 3. In seeking
to understand this, we looked at the differences in the horizontal growth shape between
Genotypes 1 and 3. We found that Genotype 1 had a more squared growth pattern with
less variation between the plants, while Genotype 3 had a more rectangular growth pattern
with more variation between plants. An example of this variation can be seen in Figure 14,
where an example plant from Genotype 1 has a nearly square bounding box, while the
example plant from Genotype 3 has a more rectangular box. The combination of the more
rectangular growth pattern with the greater variation in shape within Genotype 3 may
be one cause of the poor performance of the single-scan subsampled analysis method for
the genotype.
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Genotype 3 may also provide the best example of what a campaign would look like in a
field featuring a higher planting density. As this genotype contained low-hanging branches,
it was more likely that there would be overlapping and indistinguishable points between
the vegetation and the ground. However, there appeared to be no complications with the
Progressive Morphological Filter’s classification of ground points, based on inspections
by eye. However, while the filter proved effective for segmenting and eliminating ground
points, eliminating points from overlapping leaves and branches would certainly prove
more challenging. It is likely that any such overlap would have to be removed manually
and thus would depend heavily on the skill of the user. While a TLS like the FARO Focus
series provides a high-quality image, significant overlap in plants would make it very
difficult to properly classify biomass based on point clouds. In this case, a cassava variety
bred specifically for high-density planting (such as the asparagus type in this experiment)
would be ideal for ground-based LiDAR phenotyping, as the erect structure would make
overlap far less likely. It is also feasible that advances in machine learning could help to
mitigate some of the challenges associated with differentiating between overlapping plants,
especially if algorithms are designed specifically for this purpose. Scharr et al. have already
had success using these methods with leaf segmentation in Arabidopsis and tobacco [30],
while Kartal et al. have had success segmenting overlapping bean plants using a k-means
algorithm [31]. For fields which feature dense planting, breeders may also receive better
results by pursing large biomass assessments made through UAVs [32].

5. Conclusions

This study was designed to determine several different ways of assessing cassava
biomass in the field with an industry-standard TLS: binned height, full plant with regis-
tration and single scan. Results varied across these three methods, but ultimately the use
of terrestrial laser scanners for biomass estimation of cassava appears to be suitable in
most cases.

Binned height was the least successful method, providing poor correlations that
would be unsuitable in every circumstance given the effectiveness of this technology in
crop [33,34] and environmental [35] biomass assessments. However, we believe that this
was largely due to the experimental setup, which can be remedied for additional studies.
In future work, binned field data will be collected using a marker system to allow the
alignment of the field bins to those generated in the LiDAR data, assuring that more direct
comparisons are made between the point clouds and dry material.

Estimating biomass using registered point clouds of the entire plant yielded far better
results, especially when using a subsample of points from the clouds. However, this is also
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very much dependent upon the genotype and processing method. The erect shrub and
low-branching genotypes improved when being compared to the leaf-only weight, while
the asparagus type had only minor changes when being subjected to the same method.
Likewise, the asparagus types had the best correlations across all processing methods.
Thus, those breeders selecting for the asparagus genotype are likely to have the most
reliable data.

Additionally, it is likely that the painstaking registration process previously assumed
essential for these types of biomass estimations may not be necessary in the case of shrub
crops, saving a substantial amount of time in the data collection and processing stages
of LiDAR acquisition. Experiments using other crops and cassava genotypes, as well as
those using other sensors where a point cloud is formed, will need to re-test the use of
the single-scan subsampled processing workflow and provide a better assessment of the
full potential of bypassing the registration step for biomass estimation and phenotyping in
general. In addition, there is a significant need to determine what set of factors led to the
poor performance of the single-scan subsampled processing methodology for Genotype 3.

In conclusion, our findings, while positive, suggest that there is not a single LiDAR
processing workflow which can be applied to all cassava genotypes for the prediction of
aboveground biomass. Therefore, additional preliminary testing is recommended before
committing to a processing methodology.
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