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Abstract: Unsupervised domain adaptation (UDA) based on adversarial learning for remote-sensing
scene classification has become a research hotspot because of the need to alleviating the lack of
annotated training data. Existing methods train classifiers according to their ability to distinguish
features from source or target domains. However, they suffer from the following two limitations:
(1) the classifier is trained on source samples and forms a source-domain-specific boundary, which
ignores features from the target domain and (2) semantically meaningful features are merely built
from the adversary of a generator and a discriminator, which ignore selecting the domain invariant
features. These issues limit the distribution matching performance of source and target domains, since
each domain has its distinctive characteristic. To resolve these issues, we propose a framework with
error-correcting boundaries and feature adaptation metric. Specifically, we design an error-correcting
boundaries mechanism to build target-domain-specific classifier boundaries via multi-classifiers and
error-correcting discrepancy loss, which significantly distinguish target samples and reduce their
distinguished uncertainty. Then, we employ a feature adaptation metric structure to enhance the
adaptation of ambiguous features via shallow layers of the backbone convolutional neural network
and alignment loss, which automatically learns domain invariant features. The experimental results
on four public datasets outperform other UDA methods of remote-sensing scene classification.

Keywords: remote-sensing scene classification; adversarial learning; unsupervised domain adapta-
tion; target-domain-specific classifier boundaries; domain invariant features

1. Introduction

Remote-sensing scene classification, which aims to automatically assign a semantic
label to each scene image, has been an active research topic in the field of high-resolution
satellite imagery in the past decades [1]. With the rapid development of satellite techniques,
an abundance of remote sensing images offers many more capability for scene classifica-
tion applications, such as geospatial object detection, urban planning, and environment
monitoring. In the early stage of development, traditional machine learning methods
have been used for scene classification tasks, such as support vector machine and bag of
words [2,3]. Recently, deep learning methods have been proven to be effective for extracting
image features [4–8], and many studies have demonstrated effective scene classification
performance with the help of deep learning from various novel perspectives including
self-supervised learning [9], data augmentation [10], feature fusion [11–15], reconstructing
networks [16–23], integration of spectral and spatial information [24], balancing global
and local features, refining feature maps through encoding method [25], adding a new
mechanism [26,27], as well as introducing a new network [28], open set problem [29], and
noisy label distillation [30]. However, a lack of annotated data has restricted the develop-
ment of deep learning methods in scene classification due to the high cost of annotating
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data. To relieve this problem, fine-tuning [5], data augmentation [31], semi-supervised
methods [32,33], and few-shot learning [34] have been applied to improve the utilization
efficiency of training samples, however, they are also restricted by label scale and do not
achieve unsupervised learning. In fact, we can easily obtain large amounts of unlabeled
samples but do not want to deal with the cost for manual annotation. To effectively utilize
the abundance of unlabeled data, unsupervised domain adaptation, bridging the gap
of domain shift between a source domain (with labels) and a target domain (without
labels) has proven to be effective to solve the problem of unlabeled data, and therefore is
attracting significant research attention. Through unsupervised domain adaptation, we
can extract features from unlabeled data with the help of existing feature knowledge from
annotated data.

Unsupervised domain adaptation assumes that both the source and target data are
related domains under different space feature distributions, and it intends to align the
data distributions of the two domains to achieve knowledge transfer [35]. The discrepancy
metric-based method and adversarial-based method are two commonly used methods for
unsupervised domain adaptation to achieve feature alignment [18]. The discrepancy metric-
based method usually designs a metric to measure the distribution discrepancy of the
source and target domain, and then minimizes the metric to align the two domains [36,37].
Pan et al. [38] proposed transfer component analysis (TCA) which attempted to learn some
transfer components across domains in a reproducing kernel Hilbert space using maximum
mean discrepancy. They skillfully applied knowledge transfer in machine learning and
introduced a new life cycle for unsupervised domain adaptation. Long et al. [39] simulta-
neously reduced the differences in both the marginal and conditional distribution between
domains. With the development of deep learning methods, Tzeng et al. [36] applied deep
networks for domain adaptation and constructed a basic framework, deep domain confu-
sion (DDC), with maximum mean discrepancy (MMD) [40] for deep metric-based methods.
On the basis of the framework of DDC, Long et al. [37] proposed deep adaptation net-
works (DANs) and considered multiple layer adaptation with multiple kernel variants of
MMD [41]. The theory of these methods has been widely used in remote scene classification.
Li et al. [42] proposed cross-domain distance metric learning to achieve knowledge transfer
for a limited target domain. Zhang et al. [19] proposed a correlation subspace dynamic
distribution alignment method with subspace correlation maximization and dynamic sta-
tistical distribution alignment to improve domain alignment. Song et al. [43] proposed a
subspace alignment based on convolutional neural network (CNN) framework through
adding a new subspace alignment layer and fine-tuning the modified CNN model to the
aligned feature subspace which helped to relieve the domain distribution discrepancy.
However, manually designing a proper metric is difficult, especially for remote sensing
images; some complex characteristics increase the difficulty of matching different data
domains, such as texture, radiation change, and background. Therefore, many studies have
focused on adversarial-based methods and applied the concept of generative adversarial
networks (GANs) [44] that set a domain discriminator to discriminate whether the sample
is from the source or target domain and set a generator which improves the extracted
features to make the discriminator confused and unable to distinguish the sample domain.
Then, after training the model, the two domains are adaptively aligned when a balance
between the discriminator and generator is established. The idea of adversarial-based
methods was first proposed by Ganin et al. [45]. Then, it was widely applied in remote-
sensing scene classification. Recently, Pan et al. [31] applied GANs to improve image
diversity, and therefore classification performance for more diverse scene structures and
essential features. Rahhal et al. [46] used a minmax entropy approach based on optimizing
in an adversarial manner the conditional entropy of the target samples with respect to
each source classifier. Bejiga et al. [47] introduced a domain adversarial neural network
for large-scale land cover classification. Liu et al. [48] proposed an adversarial domain
adaptation method boosted by a domain confusion network to adapt the images from
different domains to appear as if drawn from the same domain. Lu et al. [18] used multiple
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complementary source domains to form the categories of the target domain based on an
adversarial manner between feature extractor and the cross-domain alignment module.

Although these works have achieved improvements using adversarial networks, the
discriminator only distinguishes input data samples into a special domain rather than a
class. When the source and target domains are matched, a classifier boundary trained
on the source domain is applied directly to the target domain, but it is not specific to the
target domain and can lead to some improper discrimination, as shown on the left side
of Figure 1. It reduces the performance of satisfactory matching for the two domains,
since the data distribution in each domain has individual characteristics. In addition, on
the one hand, some target samples that are easily classified into incorrect classes have
distinguished uncertainty and can cause confusion for a specific classifier boundary, which
also reduces the performance of target-domain-specific boundaries. On the other hand,
they extract semantically meaningful features merely based on the adversarial manner
between the generator and the discriminator, but they ignore selecting the domain invariant
features from each domain. In fact, it is well known that overlap information benefits a
cross-domain task. Thus, a key for cross-domain methods is to learn more comprehensive
features in two domains. A previous work by [49] has proven that the shallow layers in a
convolutional neural network (CNN) contain common features that can be universally used
for detecting the objectives, which provide a way to learn the domain invariant features.
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Figure 1. Comparison of previous adversarial methods and the proposed method. In previous
methods, some target samples cannot be distinguished correctly (some cross signs and dots are
classified into the incorrect side); In the proposed method, the error-correcting boundaries mechanism
can redress the incorrect distinction (red dot) by target-domain-specific boundaries. Namely, classifier
1 and classifier 2 both distinguish it into an incorrect class, but classifier 3 can make error-correcting
to redress it.

In order to resolve the above two issues, we propose an error-correcting boundaries
mechanism with feature adaptation metric (ECB-FAM) structure for remote-sensing scene
classification, which can train significant target-domain-specific boundaries with the help
of error-correcting for the classifier to accurately distinguish the target sample into a
special class, and select domain invariant features from the source and target domains,
and therefore further improve domain alignment. The proposed ECB-FAM structure has
an adversarial manner to balance adversary between the generator and discriminator
through an error-correcting boundaries mechanism (ECB) and a feature adaptation metric
(FAM) structure. Specifically, the ECB involves multiple classifiers and their discrepancy
loss, among which at least one classifier has an error-correcting individuality to rectify
the inaccurate discrepancies of classifier mutual predictions for target samples, as shown
on the right side of Figure 1. It can calculate an error-correcting discrepancy loss to help
the adversary between the generator and discriminator with the target-domain-specific
classifier boundaries to improve applicability for predictions of the target domain. The
FAM structure is made up of an alignment loss and the shallow layers of the backbone
CNN with a fully convolutional network whose kernel size is equal to one. The shallow



Remote Sens. 2021, 13, 1270 4 of 22

layers with fully convolutional network are designed to capture domain invariant features
to enhance domain matching, with the alignment loss used to measure the differences of
ambiguous features between the source and target domains. Finally, when a balance of the
adversarial manner is established, it means that the two domains are better aligned based
on target-domain-specific boundaries and domain invariant features.

The contributions of our model are as follows:

• To improve the performance of aligning data distribution of source domain and target
domain, we propose an adversarial framework with the help of target-domain-specific
classifier boundaries and domain invariant features.

• To improve the ability of target-domain-specific classifier boundaries, we design
an error-correcting boundaries mechanism to correct errors of misclassification for
target samples, which can reduce distinguished uncertainty for difficultly classified
target samples.

• To achieve adaptation for ambiguous features, we propose a feature adaptation metric
structure to build the domain invariant features and semantically meaningful features
simultaneously.

• We conduct comprehensive experiments to demonstrate the effect of the ECB-FAM
structure with optional variants for each component. The results show the proposed
method can enhance feature extraction and domain matching to improve accuracy of
scene classification. In addition, the sub-experiments show the effect of each component.

2. Materials and Methods

As shown in Figure 2, ECB-FAM consists of the following three main components: a
feature extractor, an error-correcting boundaries mechanism, and a feature adaptation met-
ric structure. We introduce the training steps of our model in detail in the next subsections.
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2.1. Notation and Model Overview

We denote Ds as the source domain and Dt as the target domain. In each data domain,
the distribution of data samples is denoted as d(p). xs and xt are the samples from Ds
and Dt, respectively, and y is the data label for xs. If the source domain is similar to the
target domain but ds(p) 6= dt(p), the transfer learning in this condition is called domain
adaptation. Furthermore, if there is no label for the data in the target domain, we call it
unsupervised domain adaptation. The purpose of unsupervised domain adaptation is to
align Ds and Dt, so that the classifier trained on Ds can be used for Dt. In summary, the
aim of the proposed ECB-FAM structure is to improve the matching degree of Ds and Dt,
and distinguish target samples into special classes. Additionally, the multiple classifiers
and the feature extractor are regarded as the discriminator and generator to implement
the adversarial manner, indicated as Ck and G, respectively, where k is the index for the
multiple classifiers. Generally, the default number of classifiers in the ECB-FAM structure
is three. The feature generator is the classical CNNs without the classifier, and we usually
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use ResNet-50 [8]. All data samples are input into the feature extractor. All the notations
are listed in Table 1.

Table 1. Notations in this work.

Notation Description

i, k, m Index
Ds Source domain
Dt Target domain

d(p) Data distribution
xs Sample of source domain
xt Sample of target domain
y Label for source domain sample

Ck Classifier (discriminator)
G Generator (feature extractor)
T Number of classes

N,ns, M, nt Number of samples for source domain or target domain
ŷ Prediction of classifier for y
L Loss

LCk (xs, y) Loss from classifier k for xs

Lad(xt) Adversarial loss
L∗sa Loss of shallow alignment for the source or target domain
p class probability of classifier for

d(pi, pj) Classifier discrepancy
Fsa Output of a certain layer

W or H Width of Fsa or height of Fsa
w or h Index for width or height of the matrix of Fsa

Dsa(Fsa(x∗i ))wh output of alignment module in each location

2.2. The Architecture of Error-Correcting Boundaries Mechanism with Feature Adaptation
Metric (ECB-FAM)
2.2.1. Adversarial Manner

The principle of the adversarial manner of the ECB-FAM is shown in Figure 3. The ad-
versarial manner of ECB-FAM is also applied between the discriminator and the generator,
which is similar to the normal adversarial methods, but the discriminator and generator
have their new special components. The discriminator is formed by multiple classifiers of
the error-correcting boundaries mechanism, and the generator consists of a backbone CNN
(feature extractor) and the feature adaptation metric structure. The adversarial manner in
our proposed framework contains two key steps.
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First of all, before applying adversarial manner, as shown on the left side of Figure 3,
there is only a small region where the target domain is consistent with the source domain,
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namely the overlap area of the source domain circle and the target domain circle. Most
of the target domain is a shadow region which indicates this region needs to be aligned
with the source domain. At this moment, the classifiers (two dotted lines) can distinguish
the source domain but only a part of the target domain, and the two domains have not
been matched.

(1) The discriminator tries its best to search target samples whose distributions are not
aligned with the source domain. To this end, we calculate an error-correcting discrepancy
among the classifiers of the ECB and maximize the discrepancy to find out more unaligned
target samples. The concrete calculation is shown in the next section. As shown on the left
side of Figure 3, with maximizing the discrepancy, the classifiers are trained to distinguish
more ambiguous target samples, namely the solid lines displaced from the dotted line,
which causes the shadow region above the classifiers expanding.

(2) The generator tries its best to improve the extracted feature quality to make the
classifiers distinguish the target samples correctly, which matches the distributions between
the unaligned target samples and the source domain. To this end, we minimize the error-
correcting discrepancy and optimize the feature extractor. Furthermore, another designed
alignment loss is also added in the optimization of the feature extractor. The concrete
calculation is shown in the next section. As shown in the middle part of Figure 3, with
minimizing the error-correcting discrepancy and alignment loss, on the one hand, more
target samples are matched with the source domain, namely the overlap of the two domain
circles expanding; on the other hand, the classifiers can distinguish more target samples
correctly, namely the region below the classifiers expanding. As we can see, at this moment,
unaligned region of target domain is reduced.

When iterations of the two above steps are implemented, the final alignment of the
source domain and the target domain will be achieved, as on the right side of Figure 3.
Note that the adversarial manner used for matching the source and target domains is on
the premise of correct classification of classifiers for the source domain. The details of the
ECB, the FAM structure, and the calculations of the proposed framework are shown in the
next section.

2.2.2. Error-Correcting Boundaries Mechanism

In detail, the ECB consists of the discrepancy loss and multiple classifiers (default is
three classifiers) in which one of these classifiers is an error-correcting classifier and the
others are discrepancy classifiers.

The core of the ECB is the calculation of the error-correcting discrepancy. As we know,
different classifiers with the same extracted features for a target sample may assign different
predictions, which provide the basis for calculating the error-correcting discrepancy. Each
classifier applies Softmax to calculate the class probabilities through a T-dimensional vector
of the classifier (T is equal to the number of classes of target domain), and it is given
as follows:

pk = softmax(Ck(G(xt))) (1)

Furthermore, we set a probability distance to measure the discrepancy between two
classifiers, as shown in the following:

d(pi, pj) =
1
M

M

∑
m=1

∣∣pim − pjm
∣∣ (2)

Equation (2) is used to find out more target samples which are not matched with the
source domain. When the discrepancy loss is 0, it means the target samples are classified
correctly by both classifiers.

However, when we use two classifiers to calculate discrepancy, some prediction errors
will reduce the accuracy of the discrepancy. When d(pi, pj) = 0 for a target sample xt

m,
it originally means the classifiers assign the same prediction and they consider xt

m has
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been aligned with the source domain. However, if the classifiers both assign xt
m the same

incorrect prediction, the discrepancy will provide distortion although d(pi, pj) = 0.
To indicate this error, we show an example. Obviously, there are four conditions

for a pair of classifiers for the prediction of the same target sample xt
m, as Figure 4a–d

show. Only the different predictions (a and c) or the same correct prediction (d) for xt
m can

achieve the positive discrepancy calculation. However, the same incorrect prediction for
xt

m (b) is inconsistent with the ground-truth, while it is considered as a correct prediction
since d(p1, p2) = 0. Therefore, we set another error-correcting classifier to redress the
distortion. When we use three classifiers, the probability of all three classifiers giving
the same incorrect prediction can be reduced as compared with that of two classifiers,
which improves the accuracy of the classifier discrepancy for searching more unaligned
target samples.
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Thus, the new error-correcting discrepancy is calculated as Equation (3) as follows:

Lad(xt) = d(p1, p2) + d(p1, p3) + d(p2, p3) (3)

The error-correcting discrepancy is also a part of adversarial loss to optimize the framework.

2.2.3. Feature Adaptation Metric Structure

In detail, FAM consists of the shallow layers of the feature extractor with feature
adaptation module and an alignment loss, and it is a part of the generator to confuse the
discriminator. On the one hand, the feature extraction ability of the generator is improved
by minimizing the error-correcting discrepancy; on the other hand, we can improve the
feature extractor using the FAM structure.

The features in the shallow layers of CNNs are often the common local structures for
the objectives [50], which can be seen as ambiguous features since they are similar to each
other. Previous studies have usually aimed to align semantic information among high-level
features in CNNs, but these features contain a lot of special semantics for particular objects
and their alignments usually cause alignment attenuation. On the contrary, common
features do not contain obvious semantics for the objects in a scene as compared with the
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high-level features, therefore, we are forced to align them so the source and target domains
do not cause negative influence but benefit the adaptation. Therefore, we set a feature
adaptation metric for alignment of the shallow layers in the feature extractor.

The structure of the alignment module contains a fully convolutional network, Fc,
whose kernel size is equal to one, which helps to nonlinear the extracted features. The
input of the feature adaptation module is the feature map from the shallow layers, Fsa,
for the source domain samples, xs, and the target domain samples, xt, respectively. Note
that parameter sharing is used in the module. Through Fc, the outputs from the two
domains are aligned empirically with a least-squares loss [50,51] which is used to measure
the differences between the feature maps of the shallow layer from the source and target
domain as follows:

Ls
sa =

1
nsWH

ns

∑
i=1

W

∑
w=1

H

∑
h=1

Dsa(Fsa(xs
i ))

2
wh (4)

Lt
sa =

1
ntWH

nt

∑
i=1

W

∑
w=1

H

∑
h=1

(1− Dsa(Fsa(xt
i ))wh)

2 (5)

where L∗sa denotes the loss of alignment, and W and H are the width and height of the
input; Dsa(Fsa(x∗i ))wh denotes the output of the feature adaptation module in each location;
ns and nt are the sample number for the source and target domain, respectively; xs and
xt are the sample of the source and target domains, respectively; and i, w, and h are the
indexes for n∗, W, and H. As we can see, in the process of alignment, Fsa is the feature map
from the shallow layers and it is obtained by inputting xs and xt into the shallow layers
of the feature extractor Dsa, that is, the module is designed to align each receptive field of
features with another domain.

2.3. Training Step

In this section, according to the principle of ECB-FAM, we detail a three-step method
which includes training the model on the source domain, maximizing cross-classifier
discrepancy for the target domain, and optimizing the feature extractor. The first step is to
train good classifiers that can distinguish source domain correctly, so that the classifiers
can have the ability to identify the target domain samples that are different from the source
domain. The second step is to try the best to find out the target domain samples that
are different from the source domain, which is one hand for the adversarial manner. The
third step is to improve the feature extractor, so that it can confuse the classifiers and align
the source domain and the target domain, and train a task-specific classifier boundary
simultaneously, which is another hand for the adversarial manner. Note that the second
step will optimize the classifiers based on fixing the feature extractor. On the contrary,
the third step will optimize the feature extractor based on fixing the classifiers. Finally,
the alternate iteration of the second and third steps is implemented until a balance of
adversarial manner is established. In detail the three-step method is as follows:

Step 1 Training the model on the source domain.
As Figure 5 shows, in this step, we feed the model source domain samples with

labels, which is similar to other adversarial domain adaptation frameworks to train the
model on source data. We set three classifiers under the same construction but different
initial parameters which can guarantee the classifiers have some minor decision for the
target domain in the next step. This step can make the classifiers distinguish the source
domain correctly when achieving model convergence. In this phase, cross-entropy is used
to measure the discrepancy between the prediction and the ground-truth label as follow:

LCk (xs, y) = − 1
N

N

∑
i=1

(yki log(ŷki) + (1− yki) log(1− ŷki)) (6)

where y is the label and ŷki is the prediction of the corresponding y for the kth classifier.
Note that we need to train all three classifiers and the generator, and loss function should
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be separately used for every classifier. The generator and discriminator are both optimized
as Equation (7) as follows:

min
C1,C2,C3,G

LCk (xs, y) (7)
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Step 2 Maximizing cross-classifier discrepancy for the target domain.
As Figure 6 shows, in this phase, only the discriminator is updated with the fixed

generator. All three classifiers are attached behind the feature extractor to predict the label
of the current target sample. The discrepancy is the sum of the whole distance functions
among multiple classifiers, as shown in Equation (3).

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 23 
 

 

 
Figure 5. Training the model on the source domain. 

1

1 ˆ ˆ( , ) ( log( ) (1 ) log(1 ))
k

N
s

C ki ki ki ki
i

L x y y y y y
N =

= − + − −  (6)

where y  is the label and ˆkiy  is the prediction of the corresponding y  for the kth 
classifier. Note that we need to train all three classifiers and the generator, and loss func-
tion should be separately used for every classifier. The generator and discriminator are 
both optimized as Equation (7) as follows: 

1 2 3, , ,
min ( , )

k

s
CC C C G
L x y  (7)

Step 2 Maximizing cross-classifier discrepancy for the target domain. 
As Figure 6 shows, in this phase, only the discriminator is updated with the fixed 

generator. All three classifiers are attached behind the feature extractor to predict the 
label of the current target sample. The discrepancy is the sum of the whole distance 
functions among multiple classifiers, as shown in Equation (3). 

 
Figure 6. Maximizing cross-classifier discrepancy for the target domain. 

In this step, we optimize the classifiers with the error-correcting discrepancy loss 
and classification loss, as shown in the following Equation (8) (note that minimizing 

( )tadL x−  is equal to maximizing the error-correcting discrepancy): 

1 2 3, ,
min ( , ) ( )

k

s t
C adC C C
L x y L x−  (8)

Step 3 Optimizing the feature extractor. 
As Figure 7 shows, in this step, we only update the generator with the fixed param-

eters of the three classifiers. The loss of improving the feature extractor contains two 
parts. One is the alignment loss in the shallow layers. The other is to minimize the er-
ror-correcting discrepancy loss to make the discriminator classify the target samples 
better. Therefore, integrated loss is shown by Equation (9) as: 

Figure 6. Maximizing cross-classifier discrepancy for the target domain.

In this step, we optimize the classifiers with the error-correcting discrepancy loss and
classification loss, as shown in the following Equation (8) (note that minimizing −Lad(xt)
is equal to maximizing the error-correcting discrepancy):

min
C1,C2,C3

LCk (xs, y)− Lad(xt) (8)

Step 3 Optimizing the feature extractor.
As Figure 7 shows, in this step, we only update the generator with the fixed parameters

of the three classifiers. The loss of improving the feature extractor contains two parts. One
is the alignment loss in the shallow layers. The other is to minimize the error-correcting
discrepancy loss to make the discriminator classify the target samples better. Therefore,
integrated loss is shown by Equation (9) as:

min
G

Lsa(Fsa, Dsa) + Lad(xt) (9)
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Then, all steps are repeated until the best model parameters are obtained. The entire
algorithm of the proposed ECA-FAM structure is listed in Algorithm 1.

Algorithm 1. Algorithm for training the ECA-FAM structure.

Training Steps
Input: xs, y, and xt,
Output: accuracy of classifying xt

1. input xs, y, xt

2. for i in epoch:

3. calculate LCk (xs, y) = − 1
N

N
∑

i=1
(yki log(ŷki) + (1− yki) log(1− ŷki))

4. optimize G and Ck with min
C1,C2,C3,G

LCk (xs, y)

5. for k in number of classifiers:

6. calculate pk = so f tmax(Ck(G(xt))) and d(pi, pj) =
1
M

M
∑

m=1

∣∣∣pim − pjm

∣∣∣
7. calculate Lad(xt) = d(p1, p2) + d(p1, p3) + d(p2, p3)
8. calculate LCk (xs, y)− Lad(xt)
9. optimize Ck with min

C1,C2,C3
LCk (xs, y)− Lad(xt)

10. for w, h in W, H:

11. calculate Ls
sa = 1

nsWH

ns

∑
i=1

W
∑

w=1

H
∑

h=1
Dsa(Fsa(xs

i ))
2
wh

12. calculate Lt
sa = 1

ntWH

nt

∑
i=1

W
∑

w=1

H
∑

h=1
(1− Dsa(Fsa(xt

i ))wh)
2

13. calculate Lsa(Fsa, Dsa) + Lad(xt)
14. optimize G with min

G
Lsa(Fsa, Dsa) + Lad(xt)

15. end for
16. return accuracy of classifying xt

3. Results
3.1. Datasets and Experimental Setting

The experimental datasets used are UC Merced (UCM) [52], NWPU-RESISC45 (NWPU) [53],
RSI-CB256 (RSI) [54], and WHU-RS19 (WHU) [55]. They are manually extracted from aerial
orthoimages covering various urban areas or Google Earth. UCM contains 21 classes;
each class consists of 100 images with the size 256 × 256 pixels and RGB bands. NWPU
contains 45 classes; each class is composed of 700 images with the size 256 × 256 pixels and
RGB bands. RSI contains 35 classes; each class consists of about 690 images with the size
256 × 256 pixels and RGB bands. WHU contains 19 classes; each class consists of 50 images
with the size 600 × 600. We conduct experiments on these datasets because they have more
scenes than other public datasets.
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Because there is no specialized dataset for transfer learning research in remote-sensing
scene classification, we combine the four different public datasets of scene classification
and build some new sub-datasets with the common classes to test knowledge transfer.
Specifically, we randomly select two datasets as the source domain and target domain,
respectively, and the corresponding common categories of the two datasets are used for
training and test data. Due to containing far fewer samples, WHU is only used as a target
domain. As a result, the detailed common classes are listed in Table 2, and we form nine
pairs of source and target domain, and they are shown in Table 3. For convenience, we
abbreviate the four datasets to U (UCM), N (NWPU), R (RSI), and W (WHU). The detailed
samples of common categories for the two datasets are listed in Figures 8–13. Furthermore,
the dataset as the target domain is divided into a training set and a test set at the ratio of
80% and 20%. The results are the average for five times. We used Adam [56] to optimize
our model and the learning rate is set to 0.001 with 0.5 decay per 10 epochs. We set the
batchsize to 128. ResNet-50 [8] is used as the backbone CNN for the generator. We conduct
the experiment in Pytorch and on GPU NVIDIA Tesla T4.

Table 2. Common categories of datasets.

Datasets Common Categories

U and N

Airplane, baseball diamond, beach, chaparral, dense residential, forest,
freeway, golf course, harbor, intersection, medium residential, mobile
home park, overpass, parking lot, river, runway, sparse residential, storage
tank, and tennis court

U and R Airplane, beach, forest, harbor, intersection, parking lot, residential,
river, and storage tank

U and W Beach, dense residential, forest, parking lot, and river

N and R Airplane, beach, bridge, desert, forest, harbor, intersection, medium
residential, mountain, parking lot, river, and storage tank

N and W
Airport, beach, bridge, commercial area, dense residential, desert, forest,
harbor, industrial area, meadow, mountain, parking lot, railway station,
and river

R and W Beach, bridge, desert, forest, harbor, mountain, parking lot, residential,
and river

3.2. Experimental Results

We compare the ECB-FAM with some recent state-of-the-art methods for unsuper-
vised domain adaptation, including TCA [38], joint distribution adaptation (JDA) [39],
DAN [37], CORAL [57], cycle consistent generative adversarial network (CycleGAN) [52],
generate to adapt (GTA) [58], deep adversarial neural network (DANN) [45], and unsu-
pervised adversarial domain adaptation method boosted by a domain confusion network
(ADA-BDC) [49]. The hyperparameters of these comparisons are set according to their
original references to get the best results, as shown in Table 3. We test these methods on
the combinations of the four datasets, and the results are presented in Table 4. Compared
with other recent unsupervised domain adaptation methods, we can see that the ECB-FAM
structure outperforms other baselines with a relatively large margin. Specifically, as com-
pared with classical transfer learning without deep learning (TCA and JDA), other methods
based on deep learning are almost beyond them, which indicates deep learning methods
offer effective improvements in unsupervised domain adaptation. Then, the methods
through an adversarial manner generally outperform the methods with distance metric
based on deep networks (DAN and CORAL), which accords with the present situation
that adversarial methods perform better than distance metric methods because manually
designing a proper metric is usually difficult. Furthermore, our proposed ECB-FAM struc-
ture outperforms other adversarial methods on the whole experimental items, and most
of performances exceed about 2%, except the result on U→W, and some performances
are better than others with 5% around, which indicate our framework can improve the
matching degree of source and target domains by learning a target-specific classification
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boundary for improving the accuracy of scene classification and finding out the domain
invariant features of the two domains. We suppose that the different accuracies on various
experimental items are because the image distributions of the datasets are different from
each other. It is common that some complex factors can often change the data distribution
a lot, such as background ratio, shooting angle, and seasonal variation, even though they
do not look very different by the naked eye.

Table 3. Main hyperparameters of competitors in this work.

Methods Settings

TCA 1. Following the settings of JDA with classes which are set to 0

JDA

1. Subspace bases is set to 100
2. Regularization parameter is set to 1.0
3. Gaussian kernel with a bandwidth in a range of [0.001,1]

DAN

1. Stochastic gradient descent (SGD) with 0.9 momentum
2. Learning rate with annealing strategy: base rate between 10−5 and

10−2 with a multiplicative step-size 101/2

CORAL
1. Base learning rate is set to 10−3, weight decay to 5 × 10−4, and

momentum to 0.9

CycleGAN 1. Learning rate of 0.0005 with 0.8 and 0.999 momentums for Adam

GTA
1. Base learning rate of 0.0005 and momentum 0.8 for Adam
2. Cost coeffificient α and β are both set as 0.01.

DANN
ADA-BDC

1. Learning rate 0.001 with 0.9, batch size for Adam
2. Learning rate of 0.0005 with 0.8 and 0.999 momentums for Adam

Table 4. Detailed results of the proposed framework comparing with the baseline methods. Accuracy (% as the unit) is used
as the metric.

Methods U→N N→U U→R R→U U→W N→R R→N N→W R→W

TCA 35.68 67.41 71.52 62.27 42.09 44.55 45.64 80.38 54.69
JDA 41.57 63.74 76.07 63.36 67.33 45.67 48.05 81.24 61.48
DAN 48.85 62.34 81.91 74.35 71.57 55.26 43.72 77.68 70.03

CORAL 36.73 57.85 78.61 66.04 82.37 55.17 45.38 78.62 70.33
CycleGAN 55.83 61.72 87.53 77.71 73.06 62.51 47.69 67.35 74.08

GTA 57.42 73.63 86.13 81.23 89.51 74.65 55.77 84.03 74.98
DANN 52.33 66.58 84.93 76.57 88.14 72.28 52.91 79.36 71.18
ADA-
BDC 56.01 74.44 88.47 82.04 91.15 79.58 59.66 82.49 76.57

ECB-FAM 59.10 79.37 90.81 83.74 91.31 81.54 62.64 86.38 79.77
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4. Discussion
4.1. Influence of Feature Adaptation Metric Structure

To demonstrate the effect of the FAM structure, we tested the ECB-FAM structure with
feature adaptation module by changing the number of convolutional layers participating
in the adaptation, including the variant without feature adaptation module (ECB), the
variant with one convolutional layer (ECB-FAM-1), the variant with two convolutional
layers (ECB-FAM-2), the variant with three convolutional layers (ECB-FAM-3), the variant
with four convolutional layers (ECB-FAM-4), and the variant with five convolutional layers
(ECB-FAM-5). As Figure 14 shows, the results for ECB-FAM-N are generally better than the
ECB for the corresponding experimental items, which show the positive influence of the
domain invariant features for domain alignment. We suppose the common structures of the
two domains have relevance but also provide ambiguously semantic features before feature
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adaptation. After achieving feature adaptation, domain invariant features are learned and
help to improve domain matching. Especially, ECB-FAM-4 gets the best performance in
general, which shows the alignment effect has a positive correlation with the number
of layers increasing but much more layers will reduce the adaptation. We suppose that
the reduction may be because the deeper layer has many specific features for a certain
data domain, and force alignment for it may cause a negative influence. It may need an
advanced metric to measure the discrepancy for the specific features. In fact, the features
learned in the shallow layers of a neural network are the common objective structures for
different data distributions and learning to match the common features of the source and
target domain is reasonable.

4.2. Influence of Multiple Classifiers on the Error-Correcting Boundaries Mechanism

To explore the influence on the number of classifiers, we compared the ECB-FAM with
three classifiers to its variant with two classifiers and its variant with four classifiers. The
principle of variant applies two classifiers or four classifiers to calculate the discrepancy
of the target domain which is similar to that of ECB-FAM with three. As Figure 15 shows,
we can see that ECB-FAM with three classifiers achieves the best results as compared with
others and ECB-FAM with four classifiers is better than ECB-FAM with two classifiers.
These results demonstrate that the proposed error-correcting boundaries mechanism has a
positive effect to redress the incorrect predictions. The results of the ECB-FAM with three
classifiers and the ECB-FAM with four classifiers are similar, and we suppose the reason
is because three classifiers reduce the incorrect predictions to a good performance, and
more classifiers may achieve a minor improvement but have some impact on each other for
predicting target samples due to the parameters, which cause a slight reduction in accuracy.
In summary, the results demonstrate that more classifiers to measure the discrepancy of
the target domain can decrease the probability of mistaken classification. This supports our
proposal of applying multiple classifiers, which is reasonable and effective.

4.3. Influence of Different Convolutional Neural Networks (CNNs)

To explore the influence on different backbone CNNs as the feature extractor, we apply
ResNet-50 [8], Inception-v3 [7], VGG-16 [6], and AlexNet [59] to ECB-FAM. As Figure 16
shows, the results on ResNet-50 are slightly better than those on other CNNs, but there is
no essential change in the range of variation on accuracy. In general, the special structure
of ResNet-50, residual structures, can significantly improve the accuracy as compared with
other CNNs, which has been proven in many studies that have focused on the traditional
supervised learning methods. We suppose that the residual structure causes the differences
among the results based on various CNNs. In addition, the different results based on other
CNNs are due to the same reason. However, different CNNs only have a slight impact on
the accuracy, which demonstrates the performance of the proposed ECB-FAM structure.
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4.4. Time Complexity

To explore the time complexity among our proposed method and competitors, we
recorded the execution time of all the methods, and the average of their execution times
are shown in Table 5. It can be observed that the execution time of our model is worse
than the methods without deep learning (TCA and JDA) but is better than some methods
(CycleGAN and ADA-BDC) and is similar to the methods which are also based on adver-
sarial manner for transfer learning. We suppose that the methods without deep learning
usually have low computational complexity because of huge parameters for deep learning,
but they always get worse accuracies as compared with deep learning-based methods. For
deep learning-based methods, there are some differences in the execution times but they
often are in the same time range. DAN and CORAL have less execution time, and we think
their model structures are relatively simple and have less parameters because they both
insert adaptation layers based on normal CNNs. CycleGAN, DANN, GTA, ADA-BDC,
and our model have similar execution times because they are mainly based on generation
adversarial networks, with many more parameters that increase time complexity. In sum-
mary, our method does not have an obvious advance regarding execution time but we
achieve the highest accuracies with more time complexity, which is also worthwhile as
compared with the baseline methods.
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Table 5. Execution time of the proposed framework as compared with the baseline methods.

Methods TCA JDA DAN CORAL CycleGAN GTA DANN ADA-BDC ECB-FAM

Execution
Time 315 s 1 h 19 min 3 h 47 min 4 h 18 min 12 h 26 min 9 h 3 min 8 h 46 min 10 h 14 min 9 h 52 min

5. Conclusions

In this study, we propose a new UDA approach based on adversarial learning ap-
proach for remote-sensing scene classification, which utilizes an error-correcting boundaries
mechanism and feature adaptation metric structure to improve the performance of align
distributions. We propose to utilize target-domain-specific classifier boundaries and error-
correcting discrepancy loss to identify target samples that have large discrepancy with the
source domain. Additionally, we employ the shallow layers of the CNN and alignment
loss to build the domain invariant features. The proposed error-correcting boundaries
mechanism and feature adaptation metric structure improves domain matching, and our
method outperforms other existing UDA methods with a large-margin on four public
datasets. Through extensive experiments, error-correcting boundaries mechanism and fea-
ture adaptation metric structure are verified to achieve distinctive effectiveness for domain
alignment. In the future, we plan to optimize the discrepancy function for deeper layer
alignment and introduce encoding methods to improve the performance of our model.
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Abbreviations
The following abbreviations are used in this manuscript.
CNN Convolutional Neural Network
ECB-FAM Error-correcting boundaries with feature adaptation metric
TCA Transfer component analysis
DDC Deep domain confusion
MMD Maximum mean discrepancy
DAN Deep adaptation network
DANN Deep adversarial neural network
UCM, U UC Merced
NWPU, N NWPU-RESISC45
RSI, R RSI-CB256
WHU, W WHU-RS19
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JDA Joint distribution adaptation
CycleGAN Cycle consistent generative adversarial network
GTA Generate to adapt
ADA-BDC Unsupervised adversarial domain adaptation method boosted by a

domain confusion network
ECB Error-correcting boundaries
ECB-FAM-1 ECB with shallow distribution alignment with one convolutional layer
ECB-FAM-2 ECB with shallow distribution alignment with two convolutional layers
ECB-FAM-3 ECB with shallow distribution alignment with three convolutional layers
ECB-FAM-4 ECB with shallow distribution alignment with four convolutional layers
ECB-FAM-5 ECB with shallow distribution alignment with five convolutional layers
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