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Abstract: With the development of satellite communication networks and the increase of satellite
services, security problems have gradually become some of the most concerning issues. Researchers
have made great efforts, including conventional safety methods such as secure transmission, anti-
jamming, secure access, and especially the new generation of active defense technology represented
by MTD. However, few scholars have theoretically studied the influence of active defense technique
on the performance of satellite networks. Formal modeling and performance analysis have not been
given sufficient attention. In this paper, we focus on the performance evaluation of satellite network
moving target defense system. Firstly, two Stochastic Petri Nets (SPN) models are constructed to
analyze the performance of satellite network in traditional and active defense states, respectively.
Secondly, the steady-state probability of each marking in SPN models is obtained by using the
isomorphism relation between SPN and Markov Chains (MC), and further key performance indicators
such as average time delay, throughput, and the utilization of bandwidth are reasoned theoretically.
Finally, the proposed two SPN models are simulated based on the PIPE platform. In addition,
the effect of parameters on the selected performance indexes is analyzed by varying the values of
different parameters. The simulation results prove the correctness of the theoretical reasoning and
draw the key factors affecting the performance of satellite network, which can provide an important
theoretical basis for the design and performance optimization of the satellite network moving target
defense system.

Keywords: satellite network; moving target defense; stochastic Petri nets; Markov chain; performance
analysis

1. Introduction

With the rapid development of aerospace and wireless communication technology as
well as the gradual deepening of information construction, the space satellite network is
developing at an unprecedented speed. As an important link network in the international
communication network, satellite network is widely applied in remote sensing, detection,
meteorology, communication, navigation, emergency rescue and other fields, as shown
in Figure 1. Especially in the field of communication, which is an important means of
information transmission and exchange in human social life, satellite communication, as a
supplementary communication method of terrestrial communication, has achieved great
success and has become an indispensable part of people’s life. Under the dual action of
social demand and technology development, satellite communication in the 21st century is
climbing to a new level.

Satellite communication refers to the communication between two or more earth
stations by using artificial earth satellites as relay stations to transmit radio waves, and it is
a wireless communication technology developed on the basis of microwave communication
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and space technology [1]. Satellite network is a special kind of communication network,
which has many unique advantages compared with traditional terrestrial networks [2]:

1. Long distance communication. The cost of communication is independent of distance,
so it is particularly suitable for correspondence over the long haul and in areas with
few human activities;

2. Wide communication coverage. Each satellite can cover 42.4% of the global surface,
and three GEO satellites can cover the global surface;

3. Wide communication band and large capacity;
4. Flexible. Satellite communications can be set up anywhere, regardless of geographical

conditions, whether in large cities or remote mountainous areas;
5. Reliable communication link and strong resistance to natural disasters.

All of these unique merits make satellites play an irreplaceable role when terrestrial
communication networks are unavailable or seriously damaged. In recent years, satellite
networks have developed rapidly and have become an important pillar in the construction
of global information infrastructure. In some countries, satellite Internet has been included
in the category of “New Infrastructure” [3].
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Figure 1. Wide application of satellite networks.

In today’s life, the increasing level of information technology has brought great
convenience to society, but the threat of cyber attacks is also growing. Satellite networks are
more vulnerable to the threat of break-ins and attacks due to the openness of its channels.
Compared to traditional terrestrial network equipment, satellite equipment is expensive
and extremely difficult to repair and recover. Once attacked, it will cause incalculable losses
to the country and society [4,5]. More and more scholars have started to pay attention to
the security of satellite networks, and build satellite network security protection systems
by adopting effective security mechanisms to avoid as much as possible the degradation of
network performance or even complete paralysis caused by various attacks. Traditional
cyber security techniques such as information encryption, identity authentication and
access control can enhance the communication security of satellite networks to some extent,
while they can no longer meet the increasingly diversified needs of space tasks. As a result,
researchers have begun to explore the application of active defense techniques such as
End Hopping (EH) [6,7], Moving Target Defense (MTD) [8], and Mimic Security Defense
(MSD) [9] in satellite networks. These strategies create a new way to achieve a shift from a
threat-based reactive defense system to a risk-based proactive defense system, and also
provide a new idea for space network security protection.

However, network security and performance are often in conflict with each other.
Increasing security will lead to degradation of performance metrics (e.g., latency and
throughput). Moreover, this situation is even worse in satellite networks, where on-board
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resources are severely limited and communication links can be easily blocked. As we
all know, “there is no such thing as a free lunch”. Active network defense can achieve
a high level of security in satellite networks through randomization, dynamization, and
diversification, but it is also predictable that the dynamicization mechanism will bring a
non-negligible additional load, thus reducing availability of the network. It is necessary for
us to have a clear understanding of the cost it brings. Currently, researchers mostly focus
on how to further improve the security of satellite networks, and rarely analyze the impact
of these defense measures on network performance from a theoretical perspective. This
motivates us to evaluate the performance of the satellite networks in a quantitative way.

Aiming to provide theoretical support for rational configuration of active defense
strategies and optimization of satellite networks, in this paper, we propose to use SPN to
model and analyze the performance of satellite network moving target defense system
from a theoretical perspective. We develop SPN models for the communication process
of satellite network in the traditional and active protection states, respectively. Then, we
evaluate the performance of the satellite network moving target defense system based
on the two corresponding SPN models. Through the analysis of models, performance
evaluation indexes such as average time delay, throughput, and bandwidth utilization are
obtained, and the impact of relevant parameters of active defense technology on network
performance is further discussed.

The main contributions of this paper are summarized as follows:

• We propose two scenarios of traditional satellite network and satellite network based
on Moving Target Defense technology, respectively;

• We propose a performance evaluation scheme of satellite network moving target
defense system based on Stochastic Petri Nets (SPN). We establish SPN models for
these two scenarios and evaluate their performance separately;

• We conduct extensive simulations to validate the correctness of theoretical reasoning
results and analyze the influence of various factors on the performance indexes of
satellite networks. Finally, the challenges and recommendations for deploying active
protection technique are given.

The remainder of this paper is organized as follows: in Section 2, we give a brief
introduction to Petri Nets and active defense techniques. Then, a literature review of related
work is given in Section 3. In Section 4, we establish the SPN models in two scenarios,
and then conduct their performance evaluation, respectively. In Section 5, our models are
simulated by the PIPE platform, based on which the results of key performance metrics are
compared and analyzed, and some specific recommendations are made. In Section 6, we
describe the shortcomings of our experiments and the future work. Concluding remarks
are given in Section 7.

2. Background

In this section, we give some preliminaries. First, a summary of Petri Nets is given,
and then a description of Stochastic Petri Nets is provided. Finally, several active defense
technologies are presented.

2.1. Petri Nets

Petri Nets is a graphical and mathematical modeling tool that can be applied to many
systems, and it is also a promising tool to describe and study information processing
systems with concurrent, asynchronous, distributed, parallel, uncertain, or random charac-
teristics [10]. Petri Nets has been widely focused on by researchers as soon as it is proposed,
and has been widely used in a variety of fields, especially in the analysis and processing
of large-scale complex systems. More and more experts and scholars use Petri Net for
research. In this paper, we will use this technology to evaluate the performance. In order to
make it easier to understand our follow-up work, we present here the relevant knowledge
of Petri Nets.
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Definition 1. A Petri Net is represented by a five-tuple, PN = (P, T, F, W, M0), where:

P = (P1, P2, ..., Pm)
T = (t1, t2, ..., tn)

F ⊆ (P× T) ∪ (T × P)
W : F → {1, 2, 3, ...}

M0 : P→ {0, 1, 2, 3, ...}
P ∪ T = � and P ∩ T = �

P represents the finite set of places, which means the possible local state of the system;
T represents the finite set of transitions, which describes the event that can trigger a change
in the state of the system; F represents the finite set of directed arcs, which denotes the
connection between the state of the system and the event, with the direction either pointing
from place to transition or from transition to place. If there exists an arc that goes from a
place P to a transition t, then P is termed as an input place of t. Conversely, if there exists an
arc that goes from t to P, then P is termed as an output place of t. A transition may have one
or more input and output places; W is called weight, which is the weight (positive integer)
carried on the arc, and is 1 by default; M0 represents the initial marking, understood as the
initial state of the whole system, is an m-dimensional vector, m denotes the total number of
place P, and the p th content of M, denoted M(P), represents the number of tokens in the p
th place; Tokens are usually contained in places, and can be transferred over different places
as the transition occurs. In order to simulate the dynamic behavior of the system, the state
or tokens in the Petri Net change according to the following transition (trigger) rules:

1. If the input position P of each transition t contains at least W(p, t) tokens, where
W(p, t) is the weight of the arc from P to t, then the transition t is said to be enforceable;

2. The trigger of an enforceable transition t will result in the removal of W(p, t) tokens
from each input place of t and the addition of W(t, p) tokens to each output place of t,
where W(t, p) is the weight of the arc from t to P .

In the Petri Nets model, places are drawn in the form of circles, transitions are drawn
as bars or boxes, and arcs are represented by arcs with arrows; a token is represented by a
solid black dot. They are shown in Figure 2.

Figure 2. Model elements of Petri Nets.

With the continuous study of Petri Nets, researchers have found that the classical PN
has many defects. For example, without considering the time factor, the transition will be
triggered as soon as the trigger condition is met, i.e., there is no delay, so the time-related
performance metrics cannot be obtained. In addition, the scale of the model is easy to
become very large, so it is difficult to reason and analyze the model. Therefore, to overcome
these shortcomings and describe complex systems more conveniently, many high-level
Petri Nets have emerged, including Colored Petri Nets (CPN), Time Petri Nets (TPN),
Stochastic Petri Nets (SPN), and so on. Among them, SPN introduces the concept of time
into traditional Petri Nets, which is well known for its capability and flexibility in modeling
complex systems. Although the dynamic behavior of the model will be affected by the time
parameter, the introduction of time reduces the state space and enhances the description
ability of Petri Nets. Therefore, in this paper, SPN is used to analyze the performance of
satellite networks.
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2.2. Stochastic Petri Nets

Stochastic Petri Nets (SPN) [11] is extended by Molly on the basis of traditional Petri
Nets. By introducing the concept of time, its description ability and solving efficiency are
improved, and time-dependent performance metric measures can be obtained as well. Any
real-time system can be modeled as a SPN process and can be analyzed by deriving the
underlying Markov Chain [12].

Definition 2. A Stochastic Petri Net is represented by a six-tuple, SPN = (P, T, F, W, M0, λ);
among them, the meaning of P, T, F, W, M0 is the same as that of traditional Petri Net, λ represents
the set of average transition firing time rate, indicating the average number of implementations of
the transition per unit time under the enforceable case, the average firing time rate corresponding to
a transition ti , i.e., λi. Here,

λ={λ1,λ2,...λn}

SPN introduces a time delay (τi) between the non-implementable and implementable
of each transition, and the average time delay corresponding to a transition ti , i.e., τi .
Typically, the time delay is assumed to be a continuous random variable with exponential
distribution, so it can be isomorphic to a Markov Chain (MC). Furthermore, using the
theory of Markov Smooth Distribution, the performance analysis of the system modeled
by SPN can be executed by solving the steady-state probability of each marking. This is
also the principle of SPN for performance analysis.

The performance evaluation of a system using the SPN model is carried out in the
following three steps:

• Step1: Modeling the target system with SPN. This is the first step in conducting a
performance evaluation, and the model depends on the concrete system you want
to analyze.

• Step2: Constructing the Markov Chain (MC) that is isomorphic to the SPN model.
• Step3: Working on the system performance evaluation with the steady-state probabil-

ity based on the MC. Specifically, we can use Markov’s theory to obtain the steady-state
probabilities of each marking and then obtain the relevant parameters.

Here are some formulas to further get those parameters. They are as follows:

1. Token density function:

P[M(P) = i] = ∑
j

P(Mj)

There, Mj ∈ [M(P) = i], Mj(P) = i
(1)

2. Average number of tokens on a place:

ūi = ∑ j× P[M(Pi) = j] (2)

3. Utilization rate of the transition:

U(ti) = ∑
M∈E

P(M) (3)

There, E represents the set of all reachable markings that make ti enforceable.
4. Token velocity of the transition:

R(ti, Pj) = W(ti, Pj)×U(ti)× λi (4)

On the basis of all the performance parameters mentioned above, we can do further
research on the average time delay, throughput, and so on.



Remote Sens. 2021, 13, 1262 6 of 25

2.3. Active Defense Techniques

As a new technology against cyber attacks, active defense adopts a completely different
defense idea from traditional defense techniques, and overcomes the shortcomings of
traditional passive defense. Typical active defense technologies include End Hopping (EH),
Moving Target Defense (MTD), Mimic Security Defense (MSD), and so on.

EH [6] technology was proposed by Shi in 2008. It refers to military frequency hopping
communication countermeasure technology. In the end-to-end data transmission, both
sides or one party of the communication pseudorandom change the port, IP address, time
slot, protocol, and other End Information according to the agreement to realize the active
network defense.

MTD [8] technology is a revolutionary “game-changing” technology in cyberspace
proposed by Federal Networking and Information Technology Research and Development
(NITRD) in 2011. Unlike prior efforts in cybersecurity research, MTD does not rely on
increasing the complexity of the security system to achieve protection of the target. The core
idea of MTD is to make the system dynamic, seeking to convert the fixed network into a
flexible one, so as to raise the difficulty and cost for attackers and effectively restrict the
vulnerabilities exposure and the opportunities for attack.

MSD [9] technology was proposed by Academician Wu in 2014 with reference to
the way that mimicry octopus protects itself through morphological changes. The main
idea is that, in addition to the service function and performance of the target object not
being able to be hidden, the hardware and software of the system can be camouflaged by
dynamic changes, so as to achieve the state that the system is controllable to the defender
but unknown to the attacker, so as to achieve the purpose of active network defense to
protect the system from attack.

According to the above statement, we can clearly know that unlike traditional passive
defense methods, active defense techniques are dynamic, versatile, and unpredictable,
and are therefore effective in countering direct attacks and interfering with enemy informa-
tion interception. Among them, MTD is the most representative technology in the active
defense system and is a key development direction in the field of future network security.
Through the implementation of multi-level, dynamic, and continuous transfer of the attack
surface of the protected system, the attacker will have to face as much uncertainty as
the defender today, thus reducing the success rate of the intrusion into the system until
the attacker is forced to give up the attack. Here, the attack surface can be understood
as the set of system resources that can be exploited and attacked in the system. MTD is
precisely through the defender to continuously change the resources on the attack surface
to achieve changes in the attack surface, so as to confuse or mislead the attacker, prompting
the attacker to lose the attack target. At present, the dynamic change technology of the
attack surface mainly includes four categories: (1) dynamic change technology based on
data attack surface [13]; (2) dynamic change technology based on software attack surface,
mainly including instruction set randomization, code randomization [14], etc.; (3) dynamic
change technology, based on the platform attack surface, mainly includes platform dynamic
migration, virtualization techniques [15], etc.; (4) dynamic change technology based on
network attack surface. The main idea is to introduce a dynamic change update mechanism.
By collaboratively changing network IP addresses or ports, attackers are always unable to
determine the real addresses of the communicating parties, thus undermining the sniffing
attacks of attackers and achieving privacy protection for hosts. Among the above four types
of attack surface dynamic change technology, the research on MTD based on the change of
network attack surface is the most common and mature, and has been widely used.

3. Related Work

In recent years, the security of satellite networks has been one of the hot topics.
With the popularity of new security technologies of active defense, people’s attention to
satellite network security has started to shift from traditional protection technologies to
active defense techniques.
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The first is the network security situation awareness technology proposed by the
academic circle, which aims to actively defend against network intrusion behavior and
realize network security protection in advance. In [16], the authors introduced situational
awareness technology into safety protection of the satellite, and put forward a situational
awareness technology system for broadband satellite networks. This research provided
support for satellite network security services and also improved the active defense capa-
bility of broadband satellite network infrastructure. In [17], the vulnerabilities of space
network and the functions of active defense were analyzed, then a simulation implementa-
tion method of active defense modeling based on DTN (delay/disruption tolerant network)
was proposed. The proposed method can analyze the performance of space network
defense system in real time, effectively avoiding “zero-day attacks” and improving the
active defense ability of the system. In [18], the authors presented an improved mali-
cious code intrusion detection method for space information network, and the satellite
system can achieve fast determination of malicious code attacks. The proposed method
has the advantages of high detection rate, low satellite resource consumption, and low
latency. In [19], the application design scheme of the endogenous security mechanism
of the space-ground integrated information network based on MSD was proposed. This
work provided a reference for the construction of a space network active defense security
protection system.

Although scholars are gradually exploring the application of active defense technology
in satellite communication networks, the related theoretical analysis has not been well
studied, so the performance evaluation of satellite network based on active defense has
become a necessary and urgent problem. Performance analysis is not only an important
theoretical basis and supporting technology for system research, but also an important
research direction in various fields. As a powerful analytical tool, PN has been used by
scholars to conduct a lot of studies on performance analysis. In the rest of this section, we
conduct a literature review on research work based on PNs.

Research on traditional computer network systems and security skills using PNs
are very extensive. In [20], the authors presented an efficient Petri-net-based modeling
technique for performance evaluation of application mapping. It could precisely represent
the exclusion and pipelining of the communication path. The main advantage of this model
is the consideration of parallelism of concurrent tasks and communication, as well as the
exclusion of computation and communication with public resources. In [21], the authors
developed a configurable CPN model for evaluating the performance and the effectiveness
of the IEEE 802.11e protocol. Then, they used a CPN model to provide a comprehensive
study of the effectiveness of this protocol. Their CPN model sets the basis for further
exploring the performance of the various mechanisms defined by the IEEE 802.11 standard.
The paper [22] established a performance analysis model based on SPN to evaluate the
influence of honeypot on the performance of system. However, this study only stops at
concluding whether it is worth deploying honeypots. The impact of honeypots on network
performance deserves further study. In [23], a single server retrial queueing system with
preemptive priority for modeling and analyzing spectrum occupancy in CR networks
was proposed. They analyzed some performance metrics such as delays, throughput,
queue length, number of customers in system, etc., via simulation with the help of STCPN
(Stochastic Timed Colored Petri Nets). In [24], the authors applied P-Timed Petri Nets to
conduct modeling and robustness research on the railway transportation system to evaluate
the stability and efficiency of the railway transportation network. Ref. [25] used CPN to
model and validate the secure interconnection between industrial control systems (ICS)
and enterprise networks. A secure and effective interconnection model between ICS and
enterprise networks is proposed, which can be applied to any interconnection environment.
There are many other related studies, which will not be listed one by one here.

As for in the area of satellite networks, Petri Nets has been widely used as well,
and have accumulated certain research results. Research on the field of satellite network
based on PNs mainly include:



Remote Sens. 2021, 13, 1262 8 of 25

In [26], the authors applied Generalized Stochastic Petri Nets (GSPN) to the network
control protocols of satellite communication system, and evaluated the reliability and
performance of the protocols by verifying some key characteristics of the protocols. Ref. [27]
proposed a consistency checking method based on Colored Petri Nets (CPN) to address the
possible inconsistency between the protocol specification and the actual protocol execution
status in satellite networks. In [28], authors established two Petri Net models to simulate
the estimation of space debris flux of different sizes in satellite orbit and to study the impact
of debris flux on satellite collision probability prediction, respectively. This is the first work,
in our knowledge, to provide a model for a comprehensive evaluation of space debris flux
and collision prediction of LEO satellites.

In [29], a navigation satellite availability analysis method based on CPN was pro-
posed. Compared with the traditional availability analysis, this method comprehensively
considers the failure factors and performance of the satellite, and is more in line with
the actual situation. Ref. [30] proposed an effective reliability assessment algorithm for
space information networks based on hopping surface nodes and Petri Nets. This work
can guarantee the reliable transmission of data and improve the invulnerability of the
network. In [31], the authors proposed a PNs-based method to evaluate the availability
of a satellite constellation system. This study can provide guidance for the selection of
optimal deployment and maintenance strategies. In [32], the authors simulated a satellite
communication network control system based on CPN. When the satellite network com-
munication failure occurs, the system can appropriately reduce the network performance
and prevent data loss while maintaining the availability. In [33], the authors proposed a
fault diagnosis prototype system of satellite remote control subsystem based on Petri Nets.
Compared with the rule-based expert system method, this one can store knowledge in the
mathematical matrix and reason more quickly and effectively.

In the field of performance analysis, Ref. [34] studied the data processing effectiveness
evaluation of the satellite information application chain. By constructing a Petri Net model,
core indicators such as average queue length and average waiting time were analyzed.
This research provided support for the optimal allocation of resources in the satellite
information application chain. In [35,36], the authors used SPN to construct performance
analysis models for the message transmission process of two-layer and three-layer satellite
network, respectively. However, the results were not very credible as only the average
delay was selected as the network performance evaluation index. In [37], the authors
proposed a SPN-based quantitative model for vulnerability, uncertainty, and probability
(VUP) of satellite interactive networks. Then, the probability of the network at a given time
and the vulnerability and uncertainty of the system under given conditions were calculated
and analyzed. In [38], SPN performance evaluation models of the LEO satellite network in
the case of single-user and dual-user were established separately. The authors concluded
from the theoretical analysis that the satellite network under dual-users makes the average
delay greater due to the presence of resource competition. Ref. [39] modeled each operating
phase of the microsatellite system separately based on Time Petri Nets (TPN). This research
work was very interesting, but unfortunately the results were not very exploitable.

To facilitate a quick overview of these research works, Table 1 summarizes the litera-
ture presented in this section.
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Table 1. Summary of research literature based on Petri Nets.

Research Field Reference Method Content

Traditional Network

Ref. [20] PN Application mapping assessment
Ref. [21] CPN Evaluation of IEEE802.11e protocol
Ref. [22] SPN Performance evaluation of Honeypot technology
Ref. [23] STCPN Modeling of CR networks
Ref. [24] PTPN Robustness research on railway transportation
Ref. [25] CPN Network security interconnection verification

Protocol Correctness Verification
Ref. [26] GSPN Evaluate the reliability and performance of the protocols
Ref. [27] CPN Protocol consistency check
Ref. [28] PN LEO satellite collision prediction

Availability Analysis
Ref. [29] CPN Navigation satellite availability analysis
Ref. [30] PN Reliability assessment
Ref. [31] PN Satellite constellation system availability analysis

Fault Detection
Ref. [32] CPN Simulation of satellite communication network

control system
Ref. [33] PN Fault diagnosis of satellite remote control subsystem

Performance Evaluation

Ref. [34] PN Data processing effectiveness evaluation of satellite
information application chain

Ref. [35] SPN Two-layer satellite network performance analysis
Ref. [36] SPN Three-layer satellite network performance analysis
Ref. [37] SPN Calculation of vulnerability and uncertainty
Ref. [38] SPN Performance comparison between single user and dual user
Ref. [39] TPN Modeling of microsatellite system

In summary, researchers have performed a wide range of applications in protocol
correctness verification, availability analysis, fault detection, and performance evaluation
of satellite networks based on Petri Net. However, in terms of performance evaluation,
the aforementioned works are almost focused on the satellite network itself, application
protocols or its networking mode. As far as we know, there is no research on performance
evaluation of satellite networks based on active defense, and there is a lack of theoretical
guidance for the deployment of proactive security mechanisms. Consequently, in this
paper, we propose a performance evaluation scheme of satellite network moving target
defense system based on SPN.

4. SPN-Based Modeling and Performance Analysis

In this section, to investigate the impact of MTD on the performance of satellite
networks, we give two satellite network communication scenarios based on conventional
state and moving target defense state separately. Furthermore, we describe our proposed
SPN models and demonstrate theoretical reasoning in detail.

4.1. Modeling and Analysis of Traditional Satellite Network with SPN

As shown in Figure 3, a typical satellite network communication system usually
consists of two parts: the space segment and the ground segment.

The space segment consists of all satellites in the outer space of the Earth. The ground
segment can be divided into two parts: the ground base station (including ground uplink
station, ground receiving station, measurement and control station, etc.) and the user
segment. The former is responsible for the communication access of user terminals in the
communication service area, and undertakes the interface function between the satellite
communication system and the terrestrial communication network (such as public tele-
phone exchange network, public exchange data network, Internet). The user segment
includes all kinds of user terminals (vehicle terminals, ship terminals, etc.) with communi-
cation needs. The communication satellite is the core of the entire system. Its main function
is to act as a relay station connecting two or more terrestrial base stations, amplifying
and relaying signals from terrestrial or other satellites, thus providing rich and colorful
communication services with worldwide coverage and meeting the communication needs
of users. The links connecting these devices are called communication links, including
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uplink, downlink, and inter-satellite link. In satellite communication, the link from the
earth station to the satellite is an uplink, and, conversely, the link from the satellite to
the earth station is a downlink. The inter-satellite link refers to the radio link connecting
satellites. Its function is to connect individual satellites into a space-based network to
realize the intercommunication between them, and thus enable the collection, processing,
transmission, and distribution of information.

the ground 
uplink station

the ground 
receiving 

station

user 
terminals

user 

terminals

ground base 
station

ground base 
station

Uplink Downlink

communication 
line

Inter-satellite 
link

communication 
line

Figure 3. The composition of the satellite communication system.

The typical communication process for satellite network is shown in Figure 4. More
specifically, it can be described as follows:

1. The user terminal sends a service request to the satellite L1 through base station and
waits for the service response;

2. Obtaining link bandwidth resources and L1 responds to the service request;
3. Sending data to L1 through the uplink;
4. L1 forwards the received data via the inter-satellite link to L2, which is responsible

for the communication of user segment B;
5. L2 transmits data to B via the downlink, and finally completes the communication

between A and B.

User Segment A

  Send Data

Space Segment

 Forwarding Data

L1 L2

 Forwarding Data

User Segment B

Base 

Station

  Request Service

  Response Service
Base 

Station

Figure 4. Communication process for the satellite network.

We use SPN to study the process by which messages are generated from users on
the ground, then transmitted through the satellite network and finally returned to the
ground. According to the above communication process and referring to the model in [38],
we construct an SPN model of the traditional satellite network communication process,
as shown in Figure 5.
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Pready

trequest tstart ttrans12ttransup ttransdown

Pwait Pconnect

Pband

Prec1 Prec2

Figure 5. SPN model for the traditional satellite network.

The meaning of each place and transition in the SPN model above is listed in Table 2.
We denote λ = {λ2, λ3, λ6, λ7, λ8} as the average transition firing time rate and τ =
{τ2, τ3, τ6, τ7, τ8} as the average implementation delay. The average transition firing time
rate and average implementation delay corresponding to each transition can be clearly
found from Table 2.

Table 2. List of SPN objects in Figure 5.

Place/Transition Marking/Rate Meaning

Pready 1 Ready
Pwait 0 Waiting for transmission link

Pconnect 0 Communication/Connection
Prec1 0 Message arriving to satellite L1
Prec2 0 Message arriving to satellite L2
Pband 1 On-Star Bandwidth Resources

trequest λ2 Requesting service
tstart λ3 Starting service

ttransup λ6 Transmitting message from ground to satellite L1 via uplink
ttrans12 λ7 Transmitting message from L1 to L2 via inter-satellite link

ttransdown λ8 Transmitting message from L2 to ground via downlink

According to the performance evaluation process in [40], the performance of the
established SPN model can be analyzed by using Petri Nets theory and Markov theory.
First, we can get the reachable marking set as M = {M0, M1, M2, M3, M4 } of the traditional
satellite network SPN model, as shown in Table 3.

Table 3. Reachable marking set of the SPN model.

Pready Pwait Pconnect Prec1 Prec2 Pband

M0 1 0 0 0 0 1
M1 0 1 0 0 0 1
M2 0 0 1 0 0 1
M3 0 0 0 1 0 0
M4 0 0 0 0 1 0

Since the SPN reachable graph is isomorphic to a Continuous Time Markov Chain
(CTMC), the isomorphic MC can be obtained by replacing each transition in the reachable
graph with its corresponding average firing time rate as shown in Figure 6 [40]. The iso-
morphic MC contains five markings: M0(100001), M1(010001), M2(001001), M3(000100),
M4(000010).
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M0

M1

M2M3

M4

λ8 λ2

λ7

λ6

λ3

Figure 6. Isomorphic Markov chain.

According to the definition of the transition matrix: Q = [qi,j] , i ≤ n j ≤ n, there:

qi,j =


λk, the rate on the arc f rom Mi toMj when i 6= j

0, no arc f rom Mi to Mj when i 6= j

−∑
k

λk, i = j
(5)

We can estimate the SPN model as follows, the transition matrix Q of the SPN model is:

Q=


−λ2 λ2 0 0 0

0 −λ3 λ3 0 0
0 0 −λ6 λ6 0

λ2 0 0 −λ7 λ7
λ8 0 0 0 −λ8


We assume that P = (p0, p1, p2, p3, p4) , pi represents the steady-state probability of

the Marking Mi . According to Markovian Smooth Distribution theory, we have:
P×Q = 0

4

∑
0

pi = 1
(6)

By solving the linear equation system from (6), the steady-state probability of each
marking can be obtained as follows:

P(M0) = p0 = λ−1
2 /(λ−1

2 + λ−1
3 + λ−1

6 + λ−1
7 + λ−1

8 )
P(M1) = p1 = λ−1

3 /(λ−1
2 + λ−1

3 + λ−1
6 + λ−1

7 + λ−1
8 )

P(M2) = p2 = λ−1
6 /(λ−1

2 + λ−1
3 + λ−1

6 + λ−1
7 + λ−1

8 )
P(M3) = p3 = λ−1

7 /(λ−1
2 + λ−1

3 + λ−1
6 + λ−1

7 + λ−1
8 )

P(M4) = p4 = λ−1
8 /(λ−1

2 + λ−1
3 + λ−1

6 + λ−1
7 + λ−1

8 )

Furthermore, by applying the steady-state probabilities of markings and Formulas (1)–(4)
in Section 2.2, the basic performance metrics such as token density function in each place,
average number of tokens on a place, utilization rate of the transition, token velocity of the
transition, etc. can be derived easily.

1. Token density function in each place is as follows:

P(M(Pready) = 1) = P(M0) = p0
P(M(Pwait) = 1) = P(M1) = p1

P(M(Pconnect) = 1) = P(M2) = p2
P(M(Prec1) = 1) = P(M3) = p3
P(M(Prec2) = 1) = P(M4) = p4

P(M(Pband) = 1) = P(M0) + P(M1) + p(M2) = p0 + p1 + p2

2. The average number of tokens on a place in the steady-state can be calculated as:
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ūready = 1× P(M(Pready) = 1) = p0
ūwait = 1× P(M(Pwait) = 1) = p1

ūconnect = 1× P(M(Pconnect) = 1) = p2
ūrec1 = 1× P(M(Prec1) = 1) = p3
ūrec2 = 1× P(M(Prec2) = 1) = p4

ūband = 1× P(M(Pband) = 1) = p0 + p1 + p2

The average number of tokens contained in the set of all places from the time the
service is requested by the user to the time it is completed is calculated as:

N = ūwait + ūconnect + ūrec1 + ūrec2 + ūband = 1 + p1 + p2

3. The utilization rate of trequest is:

U(trequeest) = P(M0) = p0

4. The rate from trequest to Pwait is:

R(trequest, Pwait) = W(trequest, Pwait)×U(trequest)× λ2 = λ2 p0

On the basis of all the performance parameters mentioned above, we can further
calculate the average time delay by applying Little’s theorem and principle of balance [41],
Little’s theorem is formulated as:

N = λT (7)

N represents the average queue length, λ denotes the average arrival rate, and T
means average time delay of the queue. Consequently, the average time delay of the
network is:

T = N/R(trequest, Pwait) = (1 + p1 + p2)/λ2 p0 = λ−1
2 + 2λ−1

3 + 2λ−1
6 + λ−1

7 + λ−1
8 (8)

The average throughput is defined as the average number of tasks completed by the
system per unit of time, and it is an important indicator characterizing the performance
of the system. The formula for calculating the throughput of each transition t in the
steady-state is:

O(t) = ∑
M∈H

P(M)× λt (9)

H is the set of markings that enable the implementation of transition t, and λt is
the average firing time rate of the transition t under marking M. The SPN model of
satellite network communication completes one data communication service after the
implementation of transition ttransdown. Therefore, the average system throughput is:

O = P(M4)× λ8 = λ8 p4 =
1

λ−1
2 + λ−1

3 + λ−1
6 + λ−1

7 + λ−1
8

(10)

Utilization of on-board bandwidth resources, which is used to measure the consump-
tion of bandwidth resources on satellite networks, is calculated as:

U = P(M(Pband) = 0) = p3 + p4 =
λ−1

7 + λ−1
8

λ−1
2 + λ−1

3 + λ−1
6 + λ−1

7 + λ−1
8

(11)

Since the stochastic process used in the SPN model is a Poisson process, the occurrence
of the transition satisfies the Poisson distribution, so the reciprocal of the average firing
time rate of each transition in the model is its average implementation delay, i.e., τi = 1/λi .
To facilitate the analysis of the factors affecting each performance indicators, the following
explanation is given: λ−1

2 denotes request delay τ2 , λ−1
3 denotes waiting service delay τ3 ,

λ−1
6 , λ−1

7 , and λ−1
8 denotes uplink propagation delay τ6, inter-satellite link propagation

delay τ7, and downlink propagation delay τ8, respectively.
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It can be seen that the average delay and throughput of satellite network communica-
tion process are closely related to the request duration, service latency, propagation delay
of uplink, downlink, and inter-satellite link. The average network delay is the sum of each
process delays, while the throughput rate is inversely proportional to this, which is con-
sistent with the actual situation. As a result, in traditional satellite networks, accelerating
service response, processing speed, and improving the transmission efficiency of the links
between users and satellites can effectively reduce the average network delay, increase the
throughput, and improve the network performance.

4.2. Modeling and Analysis of Active Defense-Based Satellite Network with SPN

From Section 2.3, we know that the research on MTD based on the change of network
attack surface is the most common and mature. Therefore, this paper focuses on the
modeling and analysis of the satellite network moving target defense system based on the
change of network attack surface. The communication scenario is shown in Figure 7.

MTD

L1

L2

A B

Space Segment

Base Station

Vehicle 

Terminals

Laptop 

Terminals

Hand-held 

Terminals
Desktop 

Terminals

Landline 

Terminals

Base Station

Ground Segment

satellite-ground  links

inter-satellite links

Figure 7. Communication scenario for the satellite network security protection system based on
Moving Target Defense.

When there is a communication demand between two user segments A and B,
the MTD-based satellite network communication process is as follows:

1. The ground user terminal in user segment A sends a synchronization authentication
request to satellite L1 according to the established rules;

2. L1 responds to the user with authentication and turns on the synchronization ser-
vice to ensure the legitimacy of the access entity and to resist spoofing by unautho-
rized users;

3. The authenticated trusted user terminal sends a service request to L1 and waits for
the service response;

4. Both parties obtain link bandwidth resources and L1 responds to the service request;
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5. Both parties switch to Moving Target Defense communication mode, and the client
transmits data to L1 through the uplink. Whenever the current satellite service
time slot ends, the service provider performs hopping (IP Address, Port) and data
migration, then both parties continue the unfinished communication until this uplink
message transmission is completed;

6. L1 forwards the received data via the inter-satellite link to satellite L2, which is
responsible for the communication of user segment B;

7. L2 transmits the data to B via the downlink, thus completing the communication
between A and B.

Based on the above analysis and the study in [42], the corresponding SPN model is
obtained as shown in Figure 8. The meaning of each place and transition as well as the corre-
sponding number of tokens is shown in Table 4. We denote λ = {λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8}
as the average transition firing time rate and τ = {τ1, τ2, τ3, τ4, τ5, τ6, τ7, τ8} as the average
implementation delay. From Table 4, we can see that the corresponding relationship be-
tween the transition and the above two parameters is consistent with those described in
Section 4.1.

 
 

 
 

Pready

trequest tstart

ttrans12ttransup ttransdown

Pwait

Pconnect

Pband

Prec1 Prec2

Psyn

Pswap
tendswaptstartswap

tsyn

Figure 8. SPN model for satellite networks based on Moving Target Defense.

Compared with the model in Figure 5, the SPN model based on Moving Target Defense
adds a synchronization place (Psyn) and a migration place (Pswap). Different from the
traditional satellite network communication process, the user needs to send a synchronous
authentication request (tsyn) before the communication is established, and only after the
authentication is successful can the connection, service, and other processes be carried
out. During the service process, when the satellite time slot (τ4) of the current service
is exhausted, service hopping, and data migration will be conducted, this process will
consume additional bandwidth resources. After all the messages from client have been
received for this communication, the uplink transmission ends and the system enters a
new state Prec1. Through analysis, we can easily get the reachable set of markings as shown
in Table 5, and, furthermore, we can construct its isomorphic MC as shown in Figure 9.
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Table 4. List of SPN objects in Figure 8.

Place/Transition Marking/Rate Meaning

Pready 1 Ready
Psyn 0 Synchronization
Pwait 0 Waiting for transmission link

Pconnect 0 Communication/Connection
Pswap 0 Migration / Service switching
Prec1 0 Message arriving to satellite L1
Prec2 0 Message arriving to satellite L2
Pband 1 On-Star Bandwidth Resources
tsyn λ1 Requesting synchronization

trequest λ2 Requesting service
tstart λ3 Starting service

tstartswap λ4 Staring swap
tendswap λ5 Ending swap
ttransup λ6 Transmitting message from ground to satellite L1 via uplink
ttrans12 λ7 Transmitting message from L1 to L2 via inter-satellite link

ttransdown λ8 Transmitting message from L2 to ground via downlink

Table 5. Reachable marking set of the SPN model.

Pready Psyn Pwait Pconnect Pswap Prec1 Prec2 Pband

M0 1 0 0 0 0 0 0 1
M1 0 1 0 0 0 0 0 1
M2 0 0 1 0 0 0 0 1
M3 0 0 0 1 0 0 0 1
M4 0 0 0 0 1 0 0 0
M5 0 0 0 0 0 1 0 0
M6 0 0 0 0 0 0 1 0

M0 M1 M2 M3

M4

M5 M6

λ1 λ2 λ3

λ4

λ5

λ6

λ7

λ8

Figure 9. Isomorphic Markov chain.

The isomorphic MC contains seven markings: M0(10000001), M1(01000001), M2(00100001),
M3(00010001), M4(00001000), M5(00000100), M6(00000010), the corresponding transition
matrix Q of this SPN model is:

Q=



−λ1 λ1 0 0 0 0 0
0 −λ2 λ2 0 0 0 0
0 0 −λ3 λ3 0 0 0
0 0 0 −λ4 − λ6 λ4 λ6 0
0 0 0 −λ5 λ5 0 0
0 0 0 0 0 −λ7 λ7

λ8 0 0 0 0 0 −λ8


Similarly, let P = (p0, p1, p2, p3, p4, p5, p6) be the row vector corresponding to the

steady-state probability of each marking, and according to Equation (6), the steady-state
probability of each marking is obtained as:
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P(M0) = p0 = λ−1
1 /(λ−1

1 + λ−1
2 + λ−1

3 + λ−1
6 + λ−1

5 λ4λ−1
6 + λ−1

7 + λ−1
8 )

P(M1) = p1 = λ−1
2 /(λ−1

1 + λ−1
2 + λ−1

3 + λ−1
6 + λ−1

5 λ4λ−1
6 + λ−1

7 + λ−1
8 )

P(M2) = p2 = λ−1
3 /(λ−1

1 + λ−1
2 + λ−1

3 + λ−1
6 + λ−1

5 λ4λ−1
6 + λ−1

7 + λ−1
8 )

P(M3) = p3 = λ−1
6 /(λ−1

1 + λ−1
2 + λ−1

3 + λ−1
6 + λ−1

5 λ4λ−1
6 + λ−1

7 + λ−1
8 )

P(M4) = λ−1
5 λ4λ−1

6 /(λ−1
1 + λ−1

2 + λ−1
3 + λ−1

6 + λ−1
5 λ4λ−1

6 + λ−1
7 + λ−1

8 )

P(M5) = p5 = λ−1
7 /(λ−1

1 + λ−1
2 + λ−1

3 + λ−1
6 + λ−1

5 λ4λ−1
6 + λ−1

7 + λ−1
8 )

P(M6) = p6 = λ−1
8 /(λ−1

1 + λ−1
2 + λ−1

3 + λ−1
6 + λ−1

5 λ4λ−1
6 + λ−1

7 + λ−1
8 )

1. Token density function in each place is as follows:

P(M(Pready) = 1) = P(M0) = p0
P(M(Psyn) = 1) = P(M1) = p1
P(M(Pwait) = 1) = P(M2) = p2

P(M(Pconnect) = 1) = P(M3) = p3
P(M(Pswap) = 1) = P(M4) = p4
P(M(Prec1) = 1) = P(M5) = p5
P(M(Prec2) = 1) = P(M6) = p6

P(M(Pband) = 1) = P(M0) + P(M1) + p(M2) + p(M3) = p0 + p1 + p2 + p3

2. The average number of tokens on a place in the steady-state can be calculated as:

ūready = p0, ūsyn = p1
ūwait = p2, ūconnect = p3
ūswap = p4, ūrec1 = p5

ūrec2 = p6, ūband = p0 + p1 + p2 + p3

The average number of tokens contained in the set of all places from the request made
by the client to the completion of the service is calculated as:

N = ūwait + ūswap + ūconnect + ūrec1 + ūrec2 + ūband = 1 + p1 + p2 + p3

3. The utilization rate of trequest is:

U(trequeest) = P(M1) = p1

4. The rate from trequest to Pwait is:

R(trequest, Pwait) = W(trequest, Pwait)×U(trequest)× λ2 = λ2 p1

Therefore, the average latency of the satellite network security protection system
based on the Moving Target Defense technique is:

T = N/R(trequest, Pwait) = λ−1
1 + λ−1

2 + 2λ−1
3 + 2λ−1

6 + λ−1
5 λ4λ−1

6 + λ−1
7 + λ−1

8 (12)

Average throughput is:

O = P(M6)× λ8 = λ8 p6 =
1

λ−1
1 + λ−1

2 + λ−1
3 + λ−1

6 + λ−1
5 λ4λ−1

6 + λ−1
7 + λ−1

8
(13)

Utilization of on-board bandwidth resources is:

U = P(M(Pband) = 0) =
λ−1

5 λ4λ−1
6 + λ−1

7 + λ−1
8

λ−1
1 + λ−1

2 + λ−1
3 + λ−1

6 + λ−1
5 λ4λ−1

6 + λ−1
7 + λ−1

8
(14)

λ−1
2 ,λ−1

3 ,λ−1
6 ,λ−1

7 ,λ−1
8 have the same meaning as described in Section 4.1, λ−1

1 denotes
the synchronous authentication delay i.e., τ1 , λ−1

4 denotes the single service hopping time
slot i.e., τ4 , and λ−1

5 denotes the data migration delay i.e., τ5 .
From the theoretical reasoning results, we can see that the network time delay, through-

put, and bandwidth utilization of the satellite network moving target defense system are
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not only related to the link transmission duration, request delay, and service delay, but also
affected by synchronization delay, hopping rate, and data migration delay introduced
by MTD strategy. Compared with traditional satellite networks, the MTD-based satellite
network has the following relationship in terms of average delay, average throughput, and
bandwidth utilization:

λ−1
1 + λ−1

2 + 2λ−1
3 + 2λ−1

6 + λ−1
5 λ4λ−1

6 + λ−1
7 + λ−1

8 ≥ λ−1
2 + 2λ−1

3 + 2λ−1
6 + λ−1

7 + λ−1
8

1
λ−1

1 + λ−1
2 + 2λ−1

3 + 2λ−1
6 + λ−1

5 λ4λ−1
6 + λ−1

7 + λ−1
8

≤ 1
λ−1

2 + 2λ−1
3 + 2λ−1

6 + λ−1
7 + λ−1

8

λ−1
5 λ4λ−1

6 + λ−1
7 + λ−1

8

λ−1
1 + λ−1

2 + 2λ−1
3 + 2λ−1

6 + λ−1
5 λ4λ−1

6 + λ−1
7 + λ−1

8

≤
λ−1

7 + λ−1
8

λ−1
2 + 2λ−1

3 + 2λ−1
6 + λ−1

7 + λ−1
8

(15)

Consequently, the synchronous authentication technology, service hopping, and data
migration introduced by MTD will reduce the overall performance of the satellite network,
specifically, increase the average network latency, reduce the average throughput, and
increase the consumption of bandwidth resources on the satellite network.

5. Model Simulation and Experiments

In order to verify the impact of MTD technology on satellite network performance,
and to explore the variation of average delay, average throughput, and on-star bandwidth
resource utilization with different parameters, in this section, simulations are performed for
proposed models and a large number of experiments are carried out for the performance
analysis work.

First, the two proposed SPN models are simulated separately based on PIPE (Platform
Independent Petri Net Editor), one of the simulation tools for Petri Nets, which can draw
Petri Net models, simulate the dynamic effects of Petri Nets, and can verify the correctness
and usability of the models. The initial reference values of each model are set as shown in
Table 6.

Table 6. Initial parameters’ values.

Parameters Values Parameters Values

λ1 2 λ5 2
λ2 1 λ6 0.6
λ3 0.4 λ7 0.8
λ4 2 λ8 0.6

Figures 10 and 11 show the reachable graphs obtained from the simulation of the two
SPN models, respectively. By replacing each transition with its corresponding average
firing time rate, the same isomorphic Markov Chain as in the theoretical analysis can be
obtained, as shown in Figures 6 and 9, where Si corresponds to Mi, thus verifying the
correctness of the theoretical inference results. Furthermore, based on the initial parameter
values in Table 6, the simulation results of the steady-state probabilities of each marking
are shown in Table 7.
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Figure 10. Reachability diagram of SPN model 1.
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Figure 11. Reachability diagram of SPN model 2.

Table 7. Steady-state probabilities of each marking.

Steady-State Probabilities SPN Model 1 SPN Model 2

P(M0) 0.12371 0.04878
P(M1) 0.30928 0.09756
P(M2) 0.20619 0.2439
P(M3) 0.15464 0.1626
P(M4) 0.20619 0.1626
P(M5) — 0.12195
P(M6) — 0.1626

We use the data obtained from the above simulations and the formulas in Section 4 to
calculate the average delay T, average throughput O, and bandwidth utilization U of the
network under each scenario. The results are shown in Table 8.

Table 8. Results of performance indicators.

Indicators SPN Model 1 SPN Model 2

T (Average Time Delay) 12.250 14.417
O (Average Throughput) 0.124 0.098

U (Utilization of Bandwidth) 0.361 0.447
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We can see from Table 8 that the introduction of the MTD mechanism has led to a
decline in the performance of the satellite network system, which is consistent with the
theoretical reasoning results. More specifically, the average delay and bandwidth resource
utilization have increased by 17% and 23%, respectively, while the average throughput
of the system has decreased by about 20%. To illustrate the influence relationship of
parameters on the selected three performance metrics more clearly and quantitatively,
further experiments are conducted by varying values of parameters.

Experiment 1. With the other parameters fixed, the changes of the average delay of the whole
network with the increase of synchronization rate, hopping rate, and migration efficiency are
investigated, respectively. The results are shown in Figure 12. The horizontal coordinate represents
the change rate, and the vertical coordinate represents the average delay.

Figure 12. Effect of change rate on Average Time Delay.

Experiment 2. Under the condition of Experiment 1, the variation of the average throughput of
the whole network is examined. The results are shown in Figure 13, where the horizontal coordinate
represents the rate of change and the vertical coordinate stands for the average throughput.

Figure 13. Effect of change rate on Average Throughput.

From Figures 12 and 13, we can see that the average delay and average throughput
of the network vary drastically with the hopping rate, while the synchronization rate and
the data migration efficiency have little effect on them. As the hopping rate increases,
the average network throughput decreases significantly, while the latency increases signifi-
cantly. Since the hopping rate, synchronization rate, and migration efficiency depend on the
specific hopping strategy, synchronization technique and migration scheme, respectively,
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the hopping strategy plays an important role in delay and throughput. Good synchro-
nization authentication and data migration scheme imply higher synchronization and
migration efficiency. Therefore, designing and implementing an efficient synchronization
strategy and migration scheme can really improve the latency and average throughput
reduction brought by MTD technology to some extent.

Experiment 3. Under the conditions of Experiment 1, the change in bandwidth resource uti-
lization of the whole network is investigated, and the results are shown in Figure 14, where the
horizontal coordinate represents the rate of change, and the vertical coordinate represents the
bandwidth utilization.

Figure 14. Effect of change rate on utilization of bandwidth.

As shown in Figure 14, hopping rate continues to be the main factor affecting the
consumption of bandwidth resources. As the hopping rate increases, the bandwidth uti-
lization of the network link also grows. The reasons for this phenomenon can be explained
as follows: faster hopping speed, shorter duration of single service, and more frequent
data migration, which consumes bandwidth resources additionally. Thus, the competition
between normal business and data migration to use network bandwidth makes the con-
sumption of bandwidth resources more apparent. The increase in migration efficiency can
reduce the utilization of bandwidth, so an efficient data migration scheme will go some
way to alleviating the consumption of bandwidth resources caused by high-speed hopping.

Finally, one more work has been done to illustrate the superiority of our scheme. In the
field of performance evaluation, the three most representative mathematical theoretical
analysis methods are Queueing Theory, Markov Process, and Petri Nets. We made a
horizontal comparison between our method and the work in [43,44]. Results are shown in
Table 9.

Table 9. Comparison of features of different performance evaluation schemes.

Feature Reference [43] Reference [44] This Paper

Description ability Medium Strong Strong
Modeling ability Medium Medium Strong
Portrayal ability Medium Strong Strong

We can see that the performance analysis method we use has excellent performance
in terms of descriptive, modeling, and characterization capabilities. Queueing Theory
in [43] has limitations in modeling relatively complex structures and cannot portray the
parallel, asynchronous, and distributed characteristics of information operations. The
Markov Process of [44] performs slightly worse in modeling and has difficulty in modeling
the corresponding stochastic process level.
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Summary: the deployment and implementation of MTD mechanism in satellite net-
works can effectively improve the security of the network on the one hand. On the other
hand, it also brings performance loss. Hopping rate is the key factor influencing network
performance. Extending to the category of active defense technology, which is typically
characterized by “proactive change,” a high frequency of change is required to keep the
system dynamic and defensive. Therefore, to deploy active defense technology in the spe-
cial environment of satellite networks, the setting of change frequency is the key bottleneck,
and it is necessary to comprehensively consider the network environment and security re-
quirements in practical applications, so as to obtain availability–security–overhead balance.
In addition, it is crucial to study efficient satellite-ground synchronization authentication
technology and data migration scheme, and to improve the transmission efficiency of
satellite-ground and inter-satellite links, and to improve the service response as well as
satellite processing business capacity, in order to reduce the impact of active protection
technology on network performance and to achieve low overhead processing capability of
satellite networks.

6. Discussion

With the gradual application of active defense technologies on satellite networks, it
is particularly necessary to study their impact on network performance. Since it is too
costly to study satellite networks by physical experiments, a mathematical approach to
modeling and evaluating their performance is a proven research method. In this paper,
a new scheme is provided for evaluating the performance of satellite network moving
target defense system using SPN. Based on the advantages of SPN’s powerful mathematical
model simulation and graphical modeling, the network model is established visually and
intuitively, and some instructive conclusions are drawn through theoretical reasoning and
experimental analysis. Nevertheless, there are still some issues and limitations that need to
be considered and understood:

1. MTD technology has a more complex and extensive defense scheme, and the scheme
studied in the paper based only on the change of the network attack surface, which
is still simple and general, and cannot fully reflect the impact of the application of
moving target defense technology on the network.

2. When the problems studied and the network structure involved are more complex,
modeling with Stochastic Petri Nets is prone to state space explosion, low efficiency,
and complex calculation.

In future work, we can further model and analyze the satellite network moving target
defense system based on the change of three other attack surfaces (i.e., data, software,
platform), and optimize the configuration of defense techniques based on the research
results, so as to provide more comprehensive guidance for satellite network system secu-
rity protection.

7. Conclusions

This paper focuses on the performance evaluation of satellite networks with active
defense technology. SPN is used to build performance evaluation models of satellite net-
works. Then, we theoretically inferred and analyzed the proposed SPN models. After that,
we conduct extensive simulations on the PIPE platform, and the influence of different pa-
rameters of the active defense technique on the performance of the whole satellite network
is evaluated.

The conclusions are as follows: the deployment of MTD technology reduces the overall
performance of the satellite network. Change frequency is the key factor to the performance
loss and security of the entire satellite network. To maintain the balance of performance-
security, the trade-off between communication performance and change frequency will be
one of the main points of research on active defense technology. Improving synchronization
and migration efficiency, link anti-interference, and transmission capacity, as well as satellite
processing service capacity can effectively alleviate this problem. The results we get can be
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used for further improvement of active defense technologies, as well as for the design and
optimization of satellite network moving target defense systems.
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