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Abstract: Digital surface models (DSM) have become one of the main sources of geometrical infor-
mation for a broad range of applications. Image-based systems typically rely on passive sensors
which can represent a strong limitation in several survey activities (e.g., night-time monitoring,
underground survey and night surveillance). However, recent progresses in sensor technology allow
very high sensitivity which drastically improves low-light image quality by applying innovative
noise reduction techniques. This work focuses on the performances of night-time photogrammetric
systems devoted to the monitoring of rock slopes. The study investigates the application of different
camera settings and their reliability to produce accurate DSM. A total of 672 stereo-pairs acquired
with high-sensitivity cameras (Nikon D800 and D810) at three different testing sites were considered.
The dataset includes different camera configurations (ISO speed, shutter speed, aperture and image
under-/over-exposure). The use of image quality assessment (IQA) methods to evaluate the quality
of the images prior to the 3D reconstruction is investigated. The results show that modern high-
sensitivity cameras allow the reconstruction of accurate DSM in an extreme low-light environment
and, exploiting the correct camera setup, achieving comparable results to daylight acquisitions. This
makes imaging sensors extremely versatile for monitoring applications at generally low costs.

Keywords: digital surface model; low-light photogrammetry; slope monitoring; imaging sensor;
stereo vision; accuracy; image quality assessment; ISO

1. Introduction

Digital surface models (DSM) have become one of the main sources of geometrical in-
formation for many different applications. Recent substantial improvements in processing
hardware and software allow obtaining a detailed three-dimensional (3D) reconstruction
of generic objects with millions (and sometimes billions) of 3D point coordinates. The
final product of a DSM reconstruction, which can be a point cloud, a raster representation
of heights or distances from the observer, a 3D triangular mesh (triangulated irregular
network—TIN) or a more complex structured surface (quad- or poly-mesh, non-uniform
rational B-spline (NURBS), etc.), can be obtained with several different techniques [1–4].

In recent years, leveraging on innovative algorithms that have automated the entire
processing pipeline, image-based techniques, along with LiDAR (light detection and
ranging), have become the most used approach for close-range and proximity surveys.
In these contexts, image-based systems have become the preferable solution for many
applications due to the low cost of instrumentation, their portability and usability and the
availability of free or low-cost processing software (i.e., less than five thousand dollars).
However, image-based systems are typically based on a passive sensor, i.e., the device
used to acquire image data relies on external light sources (e.g., the sun or an artificial
illuminator), and an adequate illumination of the object is required to obtain accurate
results. The problem is overcome by performing the image acquisition in a controlled
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environment, or in an environment with direct sunlight. Perfect conditions are hardly
achievable during several survey activities such as night-time monitoring [5,6], traffic
accident reconstruction [7], underwater [8,9] and underground [10,11] photogrammetry
and night surveillance [12,13], to name a few.

Nicolae et al. [14] reported several case studies concerning 3D reconstruction of
museum artefacts, where very long exposure times (and narrow aperture) were considered:
the use of artificial light, in that case, would have produced strong shades and reflection,
preventing an accurate object reconstruction. In Pappa et al. [15], long exposures combined
with a dot projector were required to reconstruct the shape of large membrane reflectors
and other space structures.

Several recent digital single lens reflex (DSLR) cameras are equipped with full frame
sensors, which are less prone to noise effects [16], with very high sensitivity that also
allow capturing images in exceptional low-light environments. For instance, the Canon
ME20F-SH camcorder can reach a remarkable ISO of over 4 million and supports infrared
filming. The Nikon D5 can shoot a maximum ISO of up to 3.28 million. The Canon 5D
mark IV reaches an ISO of 102,400 and the Nikon D810 an ISO of 51,200. The ISO value
expresses the sensitivity of the sensor to the incoming light. For digital cameras, different
sensitivities can be implemented, amplifying the signal from the sensor [17] before and/or
after analog-to-digital conversion (ADC). High ISO values increase the light sensitivity, but
also result in noisy and grainy images, associated with the amplified image noise. Some
cameras are equipped with a high ISO noise reduction (HI-NR) function, which reduces
the graininess of the image acquired with a high amplification level by post-processing the
image data [18]. However, such operation generally results in a loss of sharpness. More
recently, the use of machine and deep learning algorithms to enhance image quality in
low-light conditions has also been investigated (e.g., [19]).

The light energy collected by the sensor can be increased in an imaging system
operating on two parameters: exposure, i.e., the period the sensor is exposed to light and
absorbs radiant energy, and aperture, i.e., the area through which the radiant flux travels
inside the optics, which can usually be controlled by a device such as a diaphragm.

The use of longer exposure times allows collecting more radiant energy but might
produce blurred images if a relative motion between the object and observer cannot be
prevented. Additionally, with long exposures, there exists the potential for the camera
sensor to heat up, which can result in noisy images. The image is affected by a random
pattern of odd colored pixels (commonly referred to as “hot pixels”) which reduces the
quality of the image itself. In many DSLR cameras, a long exposure noise reduction (LE-NR)
feature might reduce the presence of hot pixels, operating a dark frame subtraction [20].
However, as with HI-NR, the result might not be optimal and, after the LE-NR application,
the resulting image might have a lower level of detail or be affected by additional artefacts.

An increase in the optics’ aperture allows collecting more radiant energy but can
also generate a shorter depth of field, which might produce unfocused elements in the
image. Moreover, optical aberrations can occur, affecting the actual image resolution (and
sharpness): blurs might occur with narrow aperture diffraction, and while a wide aperture
defocuses the blurs, the image can still be affected by vignetting and astigmatism.

To the authors’ best knowledge, very few quantitative analyses [21] can be found in
the literature focusing on the photogrammetric accuracy achievable with different exposure
setups (i.e., varying appropriately ISO speed, shutter speed and aperture). Certainly, as
far as daylight photogrammetry is concerned, a fairly easy setup can be obtained using
intermediate apertures (f/5.6 or f/8), a low ISO speed (200 or lower) and a fast shutter
speed (shorter than 1/30 s), granting an optimal image quality. However, some open issues
remain on the optimal settings required to achieve the highest photogrammetric accuracy
for low-light environments.

This work focuses on the analysis of the performances of low-light and night-time
images. The study explores different settings of a DSLR camera during night-time acquisi-
tions accounting for different values of ISO, aperture and time of exposure. Their effect
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on image quality and reliability to produce accurate DSM for change detection analyses is
investigated. The cameras considered in this study are a Nikon D800 and a Nikon D810.
The investigation of the performance of different cameras/sensors/optics is out of the
scope of the current research. In particular, the current study aims at identifying the optimal
setup for “extreme” low-light acquisition in fixed photogrammetric systems for accurate
rock slope monitoring applications, where the possibility of operating the system also
during the night-time would considerably extend the analysis of the phenomena (usually a
rockfall event). In this case, the adjective “extreme” low-light refers to a condition where,
during the night-time, artificial lighting is totally missing. Recently, on-site permanent
installations of cameras for monitoring purposes have received increased attention in the
scientific literature [22–28] and by the industry. The focus of this paper is on the influence
of different camera settings using current mid-level DSLR cameras (Nikon D800 and D810).
It should be pointed out that several newer models have a wider native ISO speed (e.g.,
the Nikon D850 has a maximum native ISO of 25,600, 2 stops higher than the Nikon D800
which allows a native ISO of up to 6400, and the Nikon D6 reaches a native ISO of 102,400,
which is 4 times higher) and would probably perform better than the cameras considered
in the paper.

In this context, it is also important for the system data to be reliably collected at
each acquisition period. For this reason, the paper also investigates the possibility of
implementing image quality assessment (IQA) methods to check each single image right
after the acquisition in order to predict if an accurate reconstruction can be obtained at
the end of the photogrammetric processing pipeline. It will be shown that, considering
the general purposes of IQA methods, such approach requires a careful tuning of the
procedure and, in some cases, can provide different performances depending on peculiar
characteristics of the acquisition. The development, however, of a specific night-time IQA
method to provide a more general and robust solution to the problem is out of the scope of
the present work.

2. Materials and Methods
2.1. Description of Test Sites

Images acquired by three fixed terrestrial monitoring systems were considered in this
paper. One system, thoroughly described in [29], was installed in front of an artificially
excavated rock face in a surface mine site in Australia, while the other two were set up in
front of two natural rock slopes in Italy.

The Australian site (indicated as Site A—Figure 1a) is located in an open cut coal
mine in the Hunter Valley, 15 kilometres south of Singleton (New South Wales—Australia).
The monitored rock slope (i.e., highwall) is ca. 60 m wide and 47 m tall with a ground
sampling distance (GSD) of ca. 8.2 mm. The slope is composed of horizontally bedded
layers of sandstone, claystone, mudstone and coal. The rock face is around 70◦ deep and
presents two joint sets of discontinuities whose intersection with the rock face can produce
significant wedge sliding instabilities. In particular, blocks detaching from the massive
layer of sandstone at the center of the surface can represent an important safety issue for
working personnel, equipment and machineries located at the bottom of the wall. The
system, specifically developed for the monitoring of sub-vertical rock surfaces in mine
environments and the assessment of the spatial–temporal occurrence and magnitude of
rock instability events, consists of two stand-alone units (see Section 2.2 for details). The
camera stations were set up in a slightly convergent pose to ensure maximum overlap.

The second site (Site B—Figure 1b) is a peculiar geological formation near Reggio
Emilia (north of Italy): the south crag of the Pietra di Bismantova (literally Stone of
Bismantova). The surveyed outcrop is approximately 100 × 70 m2 and is composed of
yellowish calcarenite over a marl basement. The location is a renowned tourist destination
for both climbers and trekkers, and the setup of the fixed photogrammetric system was
allowed only at late afternoon with the requirement of removal before the following
morning. One-night acquisition only was therefore considered for test Site B. The images
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were acquired from an object distance of approximately 245 m, resulting in a GSD between
ca. 13.2 and 14.1 mm, and a block configuration similar to the one of Site A.
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Figure 1. Typical daylight images taken with the fixed photogrammetric systems: (a) Site A—mine
site (New South Wales—Australia); (b) Site B—Pietra di Bismantova (Reggio Emilia—Italy); (c) Site
C—Leverogne cliff (Valle d’Aosta—Italy); (d) detail of one of the fixed photogrammetric systems.

The third series of tests was conducted on an exposed rock surface of the cliff of
Leverogne (named Site C—Figure 1c) in the Valle D’Aosta region (Italy). The rock wall is
about 90 m high and 100 m wide; it is bounded by NW-dipping tectonic mélanges and
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it lies onto blueschist facies ophiolites. Two acquisition periods were considered and the
images were acquired at a distance from the rock wall of approximately 145 m and with a
base-length of about 40 m. The site has been previously used by the authors to conduct a
preliminary investigation [5]. The initial study showed that, even if the site was specifically
identified to eliminate any kind of source of illumination and the environment could have
been depicted as very dark (pitch black) by the operator, the images acquired during the
night-time were affected by the lights coming from the nearby small town of Arvier (ca.
1 km far from the site), with mild shadows visible on the rock surface.

2.2. Acquisition System

A fixed photogrammetric monitoring system, designed for the monitoring of rockfalls
in surface mining [29], was chosen to ensure the highest control and repeatability of the
acquisition. The system consists of two stand-alone units that acquire images simulta-
neously at scheduled times. Each unit includes a camera box, a battery box and a solar
panel (Figure 1d). Each camera box contains a DSLR camera, a single-board Raspberry
Pi 3 model B (RPi3B) and an uninterruptible power supply (UPS). Each unit is powered
by a solar panel and a pack of two batteries stored in the battery box. The Rpi3B has an
integrated wireless LAN module that allows connecting the system to an external WI-FI
network from where it can be controlled. The user, through the SSH (Secure Shell) protocol,
controls all the acquisition parameters, as well as the battery status, temperatures, etc.
This allowed the system to be controlled remotely throughout all the experiments. The
system is permanently connected to the Internet, and every fifteen minutes, the system
clock is updated to have a good synchronization between the two acquisition units. The
system is capable of acquiring high-resolution images at predefined times and the user can
remotely control all the acquisition parameters (ISO speed, shutter speed, aperture, HI-NR,
LE-NR, etc.) by sending commands directly to the acquisition unit or uploading a trigger
table (i.e., a table consisting of a list of acquisition times along with the corresponding
acquisition parameters). The system installed at Site A (Australia) was equipped with
Nikon D810 DSLR cameras and Nikkor f/1.8 50 mm lenses. The systems at Site B and C
(Italy) used Nikon D810 DSLR cameras with Sigma f/2.8 90 mm and Nikkor f/1.8 50 mm
lenses, respectively. Testing the performance of different sensor/optics combinations is out
of the scope of the present work, as stated in the introduction. However, in Site B, it was
considered necessary to use lenses with different focal lengths to achieve a comparable
GSD with the other two test sites. The most relevant camera parameters are reported in
Table 1. The image block parameters for the relevant optics and sites are summarized in
Table 2.

Table 1. Nikon D810 specifications (D800 specifications indicated in parenthesis if different).

Sensor 36.3 MP FX Native ISO 64–12,800 (100–6400)
Sensor Size 35.9 × 24 mm Boost High ISO 25,600–51,200 (12,800–25,600)
Resolution 7360 × 4912 pixels

Table 2. Site specific image acquisition and block parameters.

Site A Site B Site C

Optics Nikkor f/1.8 Sigma f/2.8 Nikkor f/1.8
Focal length 50 mm 90 mm 50 mm

Distance 84 m 245 m 145 m
Base length 26.7 m 55.5 m 39.4 m

GSD 8.2 mm 13.2 mm 14.1 mm

2.3. Image Acquisition and Pre-Processing

One of the main objectives of this work is to evaluate the influence of the camera
parameters on the final DSM reconstruction accuracy in very low light conditions that
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can occur in real in situ outdoor applications. Low-light or very low light condition is
not a definition per se, but, for outdoor in situ applications during the night-time (when
low-light conditions are experienced), the global illumination of the object can vary quite
drastically. Some artificial illumination can be received from nearby areas (e.g., machineries
and working equipment), the sky can be sufficiently clear and the images can be acquired
during full moon, or no light sources of any kind could be available (i.e., the area of
interest, if very far from any artificial illumination, and the images are acquired during
new moon phases).

In our investigation, the images were acquired during a full-moon phase. For Site A,
four datasets were acquired at different periods with different weather conditions: the first
sequence of images (identified in the following as A1) was acquired on 23 November 2018
and the sky was cloudy; the second (identified in the following as A2) on 24 November
2018 (partly cloudy); the third (identified in the following as A3) on 19 February 2019 with
clear sky; and the fourth (identified in the following as A4) during the night of 20 February
with a partly cloudy sky. For Site B, only one acquisition was possible (in the following B1)
during the early morning hours of 5 September 2020, with a clear sky. Finally, two datasets
were acquired during two consecutive nights for Site C (indicated in the following as C1
and C2, respectively), on 28 and 29 October 2020. During both acquisitions, the sky was
very cloudy.

The start time of the acquisition was chosen to ensure a similar (full moon) lighting
of the scene for all three sites, even though the slope orientation and inclination are not
exactly the same (the rock walls are all sub-vertical but their orientation varies by about
30◦). The acquisitions started ca. five hours after moonrise and at least four hours after
the sunset.

Time between consecutive shots is needed for image acquisition and transfer; therefore,
any acquisition period (ca. 80–120 pairs of images, varying all the exposure parameters)
required approximately one and a half hours.

The exposure features of each single shot are quantitatively evaluated by the exposure
equation implemented in reflected light meters:

N2

t
=

LS
K

(1)

where N is the relative aperture (f-number), t is the exposure time (shutter speed) in
seconds, L is the average scene luminance, S is the ISO arithmetic speed as defined in ISO
2720:1974 and K is the reflected light meter calibration constant (12.5 cd/m2 is commonly
used by Nikon). Equation (1) can also be rewritten as

N2

St
=

L
K

(2)

Given a specific average scene luminance, which is assumed constant throughout
every single experiment (hypothesis not always verified during partly cloudy acquisitions),
the same exposure can be obtained with different combinations of ISO speeds, exposure
times and apertures.

An absolute exposure value (EV) can be defined as

EV = log2
N2

t
− log2

S
100

(3)

Note that the absolute exposure value (ISO 100), according to [30,31], of a natural
outdoor scene with full-moon light and a clear sky is usually in the range of −3 to −2
(while the EV during the daytime of a cloudy day is usually around +12), while the absolute
EV of a scene illuminated by a quarter moon is ca. −6. In Table 3, the absolute exposure
values measured during each acquisition are reported.
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Table 3. Summary of test conditions.

Name Date Moon Weather Absolute
EV

Distance
(m)

Base
Length (m)

Focal
Length (mm) GSD (mm)

A1 23/11/2018 (0:30 AM) Full Cloudy −4 84 26.7 50 8.2
A2 24/11/2018 (0:30 AM) Full Partly Cloudy −4 84 26.7 50 8.2
A3 19/02/2019 (1:30 AM) Full Clear −4 84 26.7 50 8.2
A4 20/02/2019 (1:30 AM) Full Partly Cloudy −4 84 26.7 50 8.2
B1 05/09/2020 (2:30 AM) Full Clear −4 245 55.5 90 13.2
C1 28/10/2020 (21:30 PM) Full Cloudy −5 145 39.4 50 14.1
C2 29/10/2020 (21:30 PM) Full Cloudy −5 145 39.4 50 14.1

For sake of simplicity, we prefer to define a relative exposure value (EVr):

EVr = log2
k N2

S t
(4)

where k is an ISO speed constant such that EVr equals zero (EVr = 0) for every combination
of acquisition parameters satisfying Equation (2).

To test the influence of different exposures (i.e., considering over- or under- exposed
images), all the possible (1-stop) combinations of EVr = 0 and also EVr = −1 (over-exposed)
and EVr = +1 (under-exposed) were considered.

For Sites B and C, half-stops (EVr = −0.5 and EVr = +0.5) were also considered during
image acquisitions. Apertures considered for the experiments varied between f/2 and
f/16 (except for Site B since the optics have a minimum f-number of f/2.8), shutter speeds
ranged between 1/8 s and 30 s and ISO speeds ranged between ISO 200 and ISO 25,600
(for Site A, the use of the Nikon D810 allowed acquiring images also with ISO 51,200).

Figure 2 shows samples of the images acquired at EVr = +1, EVr = 0 and EVr = −1 along
with their radiometric histogram. The average gray value registered was, respectively, 47,
63 and 109. The histograms show quite clearly that EVr = 0 has the best dynamic range in
all the color components, while EVr = 1 presents a more compact histogram (less contrast)
and EVr = −1 has some cut-off (over-exposed), especially in the red band.
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neutral exposure in the center and EVr = −1 over-exposed on the right) along with their respective Red, Green and Blue
channel (RGB) histograms.

The ISO speed, aperture and shutter of each image were recorded in the metadata
of the image file. The images were transferred to a remote server and further processed.
A Wallis filter [32] was applied to all incoming images to enhance and equalize their
histogram. Both images, the original and the Wallis-filtered one, were stored on the server.

Wallis filters are commonly used in photogrammetry and remote sensing applications
to perform a local adaptive correction of image brightness and contrast. The filter is also
useful since it flattens the different exposures to achieve a similar brightness in the images.
It can significantly improve feature extraction procedures [33], since the higher (local)
dynamic range of the images allows identifying and matching a greater number of features.



Remote Sens. 2021, 13, 1261 8 of 30

However, as far as dense image matching is concerned, the effect of the Wallis filter should
be verified, since several matching algorithms (e.g., least squares matching—LSM [34]) use
the same radiometric model correction.

The data accuracy was assessed by comparing the photogrammetric DSM with a
reference 3D model of the slope. A triangulated terrestrial laser scanning (TLS) scan
was acquired the day of the installation/acquisition using a Leica C10 at Sites A and B.
According to its technical specifications [35], the instrument has a good range (300 m for
90% albedo targets and 134 m for 18% albedo) and an estimated accuracy of 4 mm for
single distance measurement and 6 mm for position measurement. It should be noted
that, according to the general requirements for accuracy assessment [36], the reference data
should be at least three times more precise than the precision expected for the test dataset.
According to the precision equation in the normal case of restitution (see, for instance, [37]),
the depth accuracy σ can be estimated by

σ =
Z
c

Z
B

σi (5)

where Z is the distance from the object, c is the principal distance of the camera (can
be approximated with the focal length), B is the base length of the stereo-pair and σi is
the measurement precision of the image coordinates (here optimistically assumed with
±1 pixel [38]). The expected depth accuracy σ is about 2.6 cm, 5.8 cm and 5.2 cm for
Sites A, B and C, respectively. Consequently, for Sites A and B (Figure 3a–b), the TLS
measurement precision is considered adequate if compared to the expected accuracy of
the fixed photogrammetric system. For Site C (Figure 3c), due to the specific reflective
characteristics of the slope, the TLS scan was mostly incomplete and with a high level of
noise. Therefore, the data were discarded and the reference DSM was obtained using a
DJI Phantom 4 Pro UAV, acquiring a highly redundant (ca. 70 images) high-scale (average
distance from the slope was ca. 40 m) image block flying five strips at different altitudes
and pointing the camera horizontally (for lower strips) or slightly downward (up to ca.
10◦, for higher strips). The image block was oriented using 31 ground control points
(GCPs) determined using a Topcon IS200 Total Station. The expected precision of the
UAV block, according to Equation (5), is ca. 1.8 cm and the quality of the reference DSM
was assessed considering 13 check points uniformly distributed on the slope surface. The
average discrepancy between check point coordinates and the DSM is 2.1 cm.

All the reference DSM were considered in a local reference system with a vertical
Z axis and X axis oriented parallel to the average slope orientation. The TLS reference
DSM were triangulated from the point cloud and consist of ca. 1.25 million vertices (ca.
501 points/m2) for Site A, 525,000 vertices (ca. 424 points/m2) for Site B and ca. one million
vertices (403 points/m2) for Site C.
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2.4. Image Quality Assessment

The paper aims at investigating the accuracy of DSM obtained in extreme low-light
conditions, where no or insufficient artificial light sources are present. For this rationale,
the use of a high ISO speed, long exposure times and large apertures may drastically affect
the image quality. One of the main goals is, therefore, to identify an optimal exposure
setup for such critical conditions and evaluate the decrease in accuracy with respect to
DSM reconstruction of the object in optimal lighting conditions (e.g., during daylight in an
open environment). At the same time, the research aims at evaluating if an image quality
assessment (IQA) score can be used to predict the actual loss of accuracy due to the low
quality of the images.

Extensive research has been conducted in the field of computer vision to evaluate the
quality of an image [39]. Although usually focused on the quantitative evaluation of the
image’s perceptual quality (i.e., the quality of an image perceived by a human subject), most
of the metrics proposed in the scientific literature base their score on the identification of
specific distortion effects (blockiness, blur, noise, etc.). IQA algorithms can be divided into
two main categories: full reference IQA (FR-IQA) algorithms, which compare the image
to be assessed with a reference, undistorted image (i.e., without any noise or effect that
can lower its quality); and no reference IQA (NR-IQA, or objective blind IQA), where no
prior knowledge is available and the image quality must be assessed only using the image
itself. To evaluate the performance of an IQA algorithm, several benchmark databases are
available (for instance, the TID2008 [40] and TID2013 [41] databases) containing hundreds
(or thousands) of images affected by different kinds of distortions, with associated scores
obtained by judgements of human observers.

In the experiments presented herein, for each single image, several IQA indicators
were computed to evaluate if a reliable correlation between existing IQA score/s and
reconstruction accuracies exists. In the following subsections, the used IQA metrics are
described. It is worth noting that many of the IQA metrics are influenced by the actual
level of brightness of the image. Consequently, only the equalized Wallis-filtered images
were considered for the IQA scores.

2.4.1. Peak Signal-to-Noise Ratio (PSNR)

The peak signal-to-noise ratio (PSNR) is a measure that indicates the ratio between
the maximum possible power of a signal and the power of corrupted noise that affects the
fidelity of its representation. It should be noted that using the PSNR as an IQA requires
the noise-free reference image to be known, so that any difference from the latter can be
considered as noise (i.e., the metric in this case is an FR-IQA). In the current experiments,
having a reference image strictly not affected by noise is impossible. Nevertheless, it
can be assumed that the image stereo-pair that produces the best results is the one less
affected by noise effects. Its images (indicated in the following with I) can therefore be
considered as a reference for computing the PSNR of the other images Mi. Considering
the equalized Wallis-filtered images, where average brightness and contrast levels are the
same, the differences between the reference image I and the ith image Mi (with m × n
pixels) is calculated. The reference image needs to be chosen according to the level of
noise considering all the limitations previously expressed. The mean squared error (MSE)
between the two data is computed as

MSEi =
1

mn

m−1

∑
i=0

n−1

∑
j=0

(I(i, j)− Mi(i, j))2 (6)

and the resulting PSNR is defined as

PSNRi = 10 log10

(
MAX2

I
MSEi

)
(7)
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where MAXI is the maximum possible pixel value for the image I (in this case 255).

2.4.2. Structural Similarity (SSIM)

Structural similarity [42] (SSIM) is a method originally developed for predicting the
perceived quality of digital images. It can be used for measuring the similarity between
two images. Similar to the PSNR, the SSIM index is a full reference metric (FR-IQA): the
prediction of the image quality is referred to as a distortion-free image. As in the previous
case, in the current experiments, the images providing the best DSM reconstruction are
considered as a reference (although not being distortion-/noise-free). Attempting to
overcome the limitations of traditional methods (such as PSNR), which are based on the
computation of absolute differences, SSIM was designed to consider a perception model
where a comparison of local patterns of pixel intensities (normalized for luminance and
contrast) is considered.

The SSIM is computed on several patches of the image. If x and y are two correspond-
ing windows (patches) on the reference and investigated images, the SSIM is given by

SSIM =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (8)

where µx and µy are the mean value of patch x and patch y, respectively, σ2
x , σ2

y and σxy
are the elements of the covariance matrix of x and y and c1 and c2 are two constants used
to stabilize the division if the denominator tends to zero. In particular, c1 = (k1MAXI)

2

and c2 = (k2MAXI)
2, where MAXI is the maximum possible pixel value for the image

I (in this case 255) and k1 and k2 are two constant factors (usually set to k1 = 0.01 and
k2 = 0.03).

Several modifications and integrations of the original SSIM index have been proposed
in the last decade (e.g., complex wavelet SSIM [43], MS-SSIM [44]) to increase its perfor-
mances or deal with specific issues, such as image scale or rotation. Here, the original SSIM
index as expressed in Equation (8) was used.

2.4.3. BRISQUE

Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) is a completely blind
image quality evaluator developed by Mittal et al. [45]. It is based on the assumption that
some distinctive features of a generic image (the authors consider a normalized luminance
coefficient expressed as a mean subtracted contrast normalized (MSCN) coefficient) should
have a specific statistical distribution with a perturbed result in the presence of distor-
tion. However, each single distortion source modifies the distribution in a different way.
Modeling such a coefficient distribution, considering natural and distorted images, allows
evaluating and quantifying the influence of distortion on the actual quality of an image.
For this purpose, first, a probabilistic support vector classification (SVC) and a subsequent
support vector regression (SVR) model are trained to find the probability of each distor-
tion in the image and correlate feature statistics with actual image quality opinion scores.
For the current experiments, the freely available python routines provided in [46] were
considered using the trained model presented in [45].

2.4.4. ILNIQE

Integrated Local NIQE (ILNIQE) is a completely blind image quality evaluator devel-
oped by Zhang et al. [47] and inspired by the previous work of Mittal et al. [48] on NIQE
(Natural Image Quality Evaluator). ILNIQE collects several scene statistic features, such
as normalized luminance, gradients and color (refer to [47] for an in-depth description of
every single statistic feature), computed from a set of undistorted image patches and fits
the extracted information to a multivariate Gaussian (MVG) model. Such MVG model acts
as a reference to analyze the image quality of a generic picture. To compute the quality of
a test image, several patches are extracted. An MVG model is fitted for each patch and
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compared with the reference MVG. The overall image quality is an average of all the single
patch scores.

Even if some natural scene statistics used by ILNIQE are also implemented in BRISQUE,
the latter is trained on features collected from both natural and distorted images and its be-
havior should be more influenced by the type of distortions used to tune the evaluator. On
the contrary, a greater flexibility should be expected by ILNIQE, particularly for distortion
effects usually not (or scarcely) considered during IQA algorithm training, since it is not
tied to any specific distortion type.

In this study, the freely available routines (written in MATLAB®) provided by [47]
were used to compute the ILNIQE scores.

2.4.5. Metashape Image Quality

The commercial software Agisoft Metashape [49] version 1.5.4 was used to perform
the 3D DSM reconstruction of all the stereo-pairs considered in this study. The software
is well known and widespread in the photogrammetric community. By means of internal
routines, Metashape allows computing an image quality index (in the following indicated
as Metashape image quality index or MIQI) for each single image that builds up the
photogrammetric block. The index should guide the user to evaluate the actual capabilities
of each image to contribute to a successful and accurate reconstruction. The index should
also support the identification of too low quality images or image blocks that have to
be discarded. Unfortunately, the software documentation on how this quality index is
computed is very scarce and generic and does not report which algorithms and methods
are used. According to the online documentation and the software user forums, the image
quality score is calculated based on the sharpness level of the most focused part of the
picture, and usually ranges between 0 and 1 (even if, with particularly sharp and contrasted
pictures, a score higher than 1 can be obtained). The user manual suggests discarding
images with a quality score lower than 0.5. Despite the very limited insight of the IQA
algorithm implemented in Metashape, its quality score was also considered in this study.

2.5. Image Block Processing, 3D Reconstruction and Comparisons

As previously mentioned, in this study, the images of a sub-vertical rock surface
acquired by a fixed terrestrial monitoring system were used to assess the quality of the
DSM reconstruction in critical low-light conditions. As soon as an image is captured by the
system, it is transferred to a remote processing server where a fully automatic 3D recon-
struction of the rock surface is performed. Differently from the general-purpose processing
pipeline implemented in the system (please refer to [24] for an in-depth description of
the procedure), the low-light experiments required some additional steps, both during
the image pre-processing stages and during the 3D object reconstruction, as described in
the following.

Firstly, at the beginning of the procedure, whenever a full stereo-pair was received,
its images were converted using the Wallis filter (see Section 2.1). Both versions of the
stereo-pair images (original/raw and filtered) were stored and processed separately. Each
Wallis-filtered image (see Section 2.4) was evaluated using the three previously described
NR-IQA approaches (BRISQUE, ILNIQE and MIQI) and its scores were recorded in a Post-
greSQL [50] relational database management system (RDBMS), along with its acquisition
parameters (ISO speed, shutter and aperture). For the two FR-IQA scores (PSNR and
SSIM), the computation was postponed to a further step, since the reference image (i.e.,
the one that should not be affected by distortion, which is actually the one with the best
reconstruction performance) could be selected only at the end of the reconstruction and
comparison procedure. At the same time, the average score of the two stereo-pair images
(original or filtered) of each IQA method is associated with the stereo-pair.

The monitoring system is capable of identifying and correcting small unwanted
variations in the camera attitude (the change in the exterior orientation (EO) parameters)
caused by environmental factors, such as disturbing mining operations (e.g., blasting
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operation). As far as corresponding points between a reference image (i.e., the one to
whom the original EO parameters refer to) and the rotated image are available, the effects
of such variations can be removed from the image following the procedure described in [51].
In case no reference image is available—in this case, trying to compare a night-time image
with the one acquired during the day can result in being cumbersome—the system can
estimate a refined relative orientation, identifying corresponding points in the stereo-pair
images, in order to improve the subsequent 3D reconstruction.

A first set of preliminary tests (see Section 3.2), however, showed that in extreme low-
light conditions, the number of corresponding points and their location accuracy might
be insufficient to obtain a reliable correction for small camera movements. The issue can
be considered irrelevant for the current study, as all the images were acquired in a short
time interval (maximum 2 h) for which such type of variations due to soil consolidation,
blasting operations and/or heavy vehicles transit did not occur, and all the cameras can
therefore be assumed fixed. However, if the monitoring interval extends for more than just
a few days, or whenever the night-time image block requires an orientation procedure, the
issue should be carefully accounted for. An affordable and easily applicable solution is to
consider, during the night-time, the same EO parameters that can be reliably evaluated
on the same day during daylight (e.g., just before dusk). In this study, even if the EO
parameters of the stereo-pair can be considered fixed (thus not requiring an orientation
step), the number of tie points extracted using a structure from the motion procedure for
image block orientation was estimated and recorded in the database. At the same time, the
3D reconstruction was performed both considering the stereo-pairs fixed and computing a
new relative orientation solution for each.

Using a python script for automating the Metashape process, the 3D reconstruction
of every single stereo-pair is computed. This stage could be quite complicated since
Metashape would require the extraction of tie points and subsequent image block orien-
tation and a preliminary sparse point cloud computation before starting the actual 3D
reconstruction of the DSM. As far as the reoriented stereo-pairs are considered, the process
is straightforward. On the contrary, if the stereo-pair is considered fixed, the orientation
procedure is actually unnecessary. In these cases, the developed automatic process consists
in loading the daylight-oriented image block (i.e., the one from whom the fixed OI and
OE parameters have been estimated) and changing the data path pointing to the consid-
ered low-light images. In this way, the software actually “believes” the orientation stage
has already been processed and allows computing the dense point cloud and the DSM
reconstruction without the orientation step.

All the dense clouds are computed using the “highest-quality” setting which, in
Metashape terminology, means that the images are not down-sampled during the image
matching process. For the depth filtering stage, where the matching algorithm filters
individual pixels of the depth maps, removing the ones that show different behavior with
respect to their local neighborhood, the “aggressive” setting was used. This means the
algorithm tends to filter more often the depth map pixels to remove possible noisy elements,
even if, in some cases, this can also remove fine details of the reconstruction. At the end of
this process, the resulting dense point cloud is exported in an XYZ format and compared
with the reference reconstruction.

The comparison stage consists of two steps: First, the obtained photogrammetric point
cloud is aligned using an iterative closest point procedure [52] with the reference TLS mesh
in order to reduce/remove small systematic translations/rotations that might occur, for
instance, if the hypothesis of absence of small movements of the camera stations is partly
violated during the acquisition (e.g., very small vibration due to wind or other sources).

In all the tested scenarios, the ICP registration converged in very few iterations
(generally 2 to 3 iterations) with final registration residuals very close to the initial ones.
Then, the registered point cloud is compared with the reference DSM using a point-to-mesh
algorithm. Both the ICP registrations and point-to-mesh comparisons were performed
using the open source package CloudCompare [53]. In particular, the cloud-to-mesh
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distance calculation algorithm of CloudCompare was used to calculate the distance between
the two models.

3. Results
3.1. Acquisition and Results Overview

A total of 1344 images (672 stereo-pairs) were acquired for the experiment. Each
stereo-pair was processed considering the raw images and the one enhanced with the Wallis
filter and considering the exterior orientation (EO) of the stereo-pair fixed or computing
a new relative orientation solution, for a total of 2688 DSM. Table 3 summarizes the
test conditions (date and hour of acquisition, weather, lighting conditions, stereo-pair
geometry) for each test, including the absolute exposure value of the scene measured at the
beginning of the image acquisition (see Section 2.3), while Table 4 summarizes the image
acquisition and DSM reconstruction. The structure from motion performances with low-
light conditions, DSM reconstruction accuracy, dense matching failures and reconstruction
accuracy correlation with image quality scores obtained for the collected data are presented
in the following sections.

Table 4. Summary of image acquisition and DSM reconstruction.

Name Stereo-Pairs DSM (Total) DSM (Valid) DSM (Failed)
Relative EV (Number of Stereo-Pairs)

−1.0 −0.5 0.0 +0.5 +1.0

A1 77 308 252 56 32 0 42 0 3
A2 77 308 152 156 32 0 42 0 3
A3 81 324 226 98 32 0 42 0 7
A4 81 324 288 36 32 0 42 0 7
B1 117 468 463 5 21 15 27 21 33
C1 120 480 480 0 21 15 28 21 35
C2 119 476 476 0 21 15 28 20 35

Total 672 2688 2337 351 191 45 251 62 123

It is worth noting that the total number of obtainable DSM reconstructions is four
times the number of the acquired stereo-pairs, since for each one, the reconstruction is
performed considering first the raw images and then the Wallis-filtered ones and, each
time, reorienting the stereo-pair or considering it fixed. The column “DSM (failed)” in
Table 4 refers to the fact that, sometimes (especially for Site A), the dense matching stage
fails. This issue is investigated in more depth in Section 3.4.

3.2. Feature Extraction and Matching Performances in Low-Light Conditions

All tests were conducted using fixed camera station systems (see Section 2.2) whose
stereo-pair orientation was performed in optimal daytime conditions and with the support
of several ground control points (GCP). However, performing an image block orientation
might still be required (e.g., if the stereo-pair relative orientation changes over time). In this
context, it is worth assessing if a standard structure from motion procedure (e.g., the one
implemented in Metashape) can extract enough tie points to estimate a reliable orientation
solution for the stereo-pairs.

Figure 4a,b show the number of valid tie points extracted at each ISO speed setting
for Sites A, B and C (acquisitions A1, A2, A3 and A4 for Site A, acquisition B1 for Site B
and acquisitions C1 and C2 for Site C). The figure refers to the image block for which the
images were not pre-processed with the Wallis filter.



Remote Sens. 2021, 13, 1261 14 of 30

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 31 
 

 

3.2. Feature Extraction and Matching Performances in Low-Light Conditions 

All tests were conducted using fixed camera station systems (see Section 2.2) whose 

stereo-pair orientation was performed in optimal daytime conditions and with the sup-

port of several ground control points (GCP). However, performing an image block orien-

tation might still be required (e.g., if the stereo-pair relative orientation changes over 

time). In this context, it is worth assessing if a standard structure from motion procedure 

(e.g., the one implemented in Metashape) can extract enough tie points to estimate a reli-

able orientation solution for the stereo-pairs. 

Figure 4a,b show the number of valid tie points extracted at each ISO speed setting 

for Sites A, B and C (acquisitions A1, A2, A3 and A4 for Site A, acquisition B1 for Site B 

and acquisitions C1 and C2 for Site C). The figure refers to the image block for which the 

images were not pre-processed with the Wallis filter. 

  

(a) 

 

(b) 

Figure 4. Number of valid tie points extracted during structure from motion using different ISO 

speeds: (a) valid tie points for Site A; (b) valid tie points for Sites B and C. 

If Wallis-filtered images are used, the number of extracted keypoints is much higher, 

as expected by the increase in the gray value variance in areas with uniform texture. The 

number of valid extracted tie points, on the other hand, was significantly lower using 

Wallis-filtered images (ca. 50% on average). While, at first sight, this could have been seen 

as contradictory, it should be noted that, especially with an increasing level of noise (i.e., 

with a higher ISO speed), the filter tends to amplify the noise itself, leading to a sort of 

random identification of keypoints. The identification of distinctive features is, therefore, 

driven by the high variability of the gray value where noise occurs, rather than by the gray 

value variability where the object texture shows relevant features. As a consequence, most 

of the keypoints extracted do not result in valid homologous points during feature match-

ing. This hypothesis was confirmed by visual inspection of keypoints and matched tie 

points performed on a sample of both raw and pre-processed (Wallis-filtered) stereo-

pairs. 

It can be observed that the number of extracted tie points is strongly dependent on 

the site and acquisition features: in Site A, the number of tie points is much higher (more 

0

1000

2000

3000

4000

5000

200 400 800 1600 3200 6400 12,800 25,600 51,200

ISO Speed

Number of valid tie points - Site A

A1

A2

A3

A4

0

500

1000

1500

2000

ISO Speed

Number of valid tie points - Site B and C
B1

C1

C2

Figure 4. Number of valid tie points extracted during structure from motion using different ISO
speeds: (a) valid tie points for Site A; (b) valid tie points for Sites B and C.

If Wallis-filtered images are used, the number of extracted keypoints is much higher,
as expected by the increase in the gray value variance in areas with uniform texture. The
number of valid extracted tie points, on the other hand, was significantly lower using
Wallis-filtered images (ca. 50% on average). While, at first sight, this could have been seen
as contradictory, it should be noted that, especially with an increasing level of noise (i.e.,
with a higher ISO speed), the filter tends to amplify the noise itself, leading to a sort of
random identification of keypoints. The identification of distinctive features is, therefore,
driven by the high variability of the gray value where noise occurs, rather than by the
gray value variability where the object texture shows relevant features. As a consequence,
most of the keypoints extracted do not result in valid homologous points during feature
matching. This hypothesis was confirmed by visual inspection of keypoints and matched tie
points performed on a sample of both raw and pre-processed (Wallis-filtered) stereo-pairs.

It can be observed that the number of extracted tie points is strongly dependent on
the site and acquisition features: in Site A, the number of tie points is much higher (more
than 4600 for acquisition A1 using ISO 200) than Sites B and C (less than 1000 for Site B
and around 1400 for Site C). It is worth noting that during the daytime, a total of 5800 tie
points were extracted for Site A, whereas a total of 1800 and 2100 tie points were extracted
for Site B and for Site C, respectively. Even with similar acquisition settings, a significant
variability was experienced for different acquisitions. For instance, in Site A, with lower
ISO speeds (e.g., ISO 200), the number of valid matches for acquisition A3 (cloudy weather
conditions) was approximately half of the one obtained in A1 (clear sky). For the same
site, some acquisitions produced a high number of matches even with a high ISO speed
(e.g., more than 900 valid tie points with ISO 25,600 in A4), while others performed much
worse with a lower ISO speed (see, for instance, the 190–200 matches in A2 and A3 at
ISO 6400). For Site A, the reduced number of valid tie points with a higher ISO speed was
evident from the beginning (e.g., the valid matches for ISO 3200 are one third of the ones
for ISO 200), while, for Sites B and C, the number of extracted tie points tended to slightly
decrease for ISO speeds lower than 6400.
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The number of extracted valid tie points is not necessarily a good indicator of the actual
achievable quality of the image orientation. Image point accuracy, spatial distribution in
the image frame and the possibility of identifying a lower or greater number of GCP on
the image strongly affect the final result. Moreover, to correctly assess the quality of the
orientation solution, the most reliable approach would be to identify a good number of
check points and compare their estimated coordinates (dependent on the actual accuracy
of the stereo-pair orientation) with known coordinates surveyed during the daytime with
independent (and hopefully more precise) instrumentation. Unfortunately, such approach
was quite impractical at the tested sites given the intrinsic difficulty in correctly identifying
natural object features on the night-time images (identifying the GCP for every single
acquisition represented a great effort already) and the time required to perform the check
point identification on all 672 stereo-pairs.

3.3. DSM Reconstruction Accuracy

In this section, the DSM reconstruction accuracy obtained with different camera setups
and exposition values is presented and analyzed.

As introduced in Section 2.3, the influence of pre-processing image equalization and
enhancement provided by the use of a Wallis filter should be carefully verified. Many
dense matching algorithms for point cloud reconstruction use a similar (or the same)
local radiometric model correction for brightness and contrast invariance during template
matching and, therefore, the use of Wallis-filtered images might not improve the results.

Table 5 reports the aggregated average RMS (Root Mean Square) differences with
respect to (w.r.t.) the reference model for each test site considering the DSM generation by
using both original (raw) or pre-processed (with the Wallis filter) images.

Table 5. Aggregated (by site) average RMS differences using raw and Wallis-filtered images.

Site Raw (m) Wallis (m) Difference (%)

A 0.044 0.044 −0.7
B 0.048 0.049 −3.4
C 0.047 0.048 −2.6

It is worth noting that regardless of the site, the Wallis pre-processed images always
produced worse results, even if the differences from the two datasets were very small (at
maximum, for Site B, Wallis-filtered images produced 3.4% worse results). This seems to
indicate that the improved average value and variance of the gray value, even if they make
the textures of the object surface for a human observer more evident, do not positively
affect the matching algorithm performance. On the contrary, probably due to roundoff
truncation during the radiometric transformation, the results are slightly worse.

It might be interesting to evaluate the response for all the ISO speed settings of the
images. Figure 5 shows the average RMS differences for every single site and ISO speed.
The DSM obtained for the three sites clearly showed different behaviors. For Site A, the
use of Wallis-filtered data produced slightly worse results (maximum 1.3% worse). As far
as Sites A and B are considered, for low ISO speeds, up to ISO 1600, the higher the ISO
speed, the worse the results. For higher speeds, the behavior was reversed: the differences
were smaller for higher ISO speeds. Site A ISO speed 51,200 (the cameras used at Sites B
and C have a maximum ISO speed of 25,600) is the only case for which the Wallis DSM are
slightly better than the raw image-generated ones (0.1% better). On the contrary, for Site C,
the lower the ISO speed considered, the worse the difference between Wallis-filtered and
raw image DSM.

In the following, since in any case the discrepancies between raw and Wallis-filtered
image DSM accuracies are very small (the worst case being for Site B with a low ISO speed
where Wallis DSM were only 5% less accurate), only the raw image-generated DSM will
be considered.
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Figure 5. Aggregated (by site and ISO speed) average RMS differences (in percentage) using raw
and Wallis-filtered images. Negative values indicate that raw image DSM are more accurate.

The box plots reported in Figure 6a–c for Sites A, B and C, respectively, represent the
level of accuracy achieved for the different test sites using different ISO speed settings.
For Site B, having just one acquisition period and this at lower ISO (i.e., ISO 200 and ISO
280), only a single camera parameter combination can be obtained (shutter speed = 30 s,
aperture = f/2.8 and EVr = +1).

As expected, the RMS of the differences tends to increase with a higher ISO speed for
all the different sites. The images with a higher ISO speed become noisier and, consequently,
the image point matching becomes less accurate. At the same time, with higher ISO values,
the repeatability of the results is lower with a wider range of variation. In Site A, for
instance, the reconstructed DSM with ISO 200 report an RMS of the differences between
35 and 43 mm (mean RMS is 38.7 mm and the standard deviation is 3.9 mm), while for
ISO 12,800, for which the maximum range of variation is reported, the differences vary
between 34 and 67 mm (mean RMS is 47.7 mm with a standard deviation of 8.3 mm). For
the highest ISO speed (ISO 51,200), the range is between 42 and 67 mm with an average
RMS of 55 mm (ca. 40% higher than ISO 200) and a standard deviation of 7.2 mm.

For the other sites, the ranges of variation appear significantly more compact for
the same ISO speed settings. However, the number of acquisitions (B1, C1 and C2) and
stereo-pairs considered (117 for Site B and 239 for Site C) was lower than for Site A (four
different acquisitions with a total of 316 stereo-pairs). For Site B, the average RMS is almost
constant up to ISO 6400 (ranging between 43 and 47 mm) and starts growing for higher
ISO speeds. The average RMS for ISO 25,600 is 57.3 mm (ca. 32% higher than the best
average RMS obtained for ISO 2200). As in the previous case, higher ISO values increase
the variability of the results in the same class: excluding ISO 200 and ISO 280, for which
only one stereo-pair was considered, the standard deviations range between 3.9 (ISO 400)
and 10.3 mm (ISO 25,600).

Similar results, although with smaller standard deviations, can be observed for Site
C. The average RMS, for lower ISO speeds, is almost constant, varying from 42 (ISO 280)
to 44 mm (ISO 3200). Then, the accuracy of the DSM becomes significantly lower with
higher ISO values: for ISO 25,600, the evaluated RMS ranges between 44 and 70 mm with
an average value of 55.1 mm (ca. 31% worse than ISO 280) and a standard deviation of
6.2 mm.

For Site A, if every single acquisition (A1, A2, A3 and A4) is considered independently,
it can be shown that in two cases (A1 and A2), the RMS is higher, for most of the ISO speed
settings, than the other two acquisitions (A3 and A4). Figure 7a,b report the average RMS
and standard deviation of RMS, respectively, for each acquisition and for each ISO speed.
It can be seen that acquisition A3 has some issues, especially for high ISO speeds.
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Figure 6. Box plot (minimum, first quartile, median, average, third quartile and maximum values) of
the RMS differences for the three sites: (a) Site A; (b) Site B; and (c) Site C.

The previous results have shown that using a high ISO strongly influences the overall
accuracy and repeatability of the DSM reconstruction. The study of the influence of the
other two acquisition parameters (shutter speed and aperture) would also provide more
insights into the best camera configuration for low-light conditions. Therefore, in the
current experiments, several combinations of shutter and aperture were considered for
image acquisition while keeping the ISO speed and the exposure level (EVr) fixed. As an
example, considering an ISO speed of 12800 and a specific relative exposure value (e.g.,
EVr = 0), Equation (4) is satisfied using a shutter speed of 30 s and setting the aperture
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to f/11. Decreasing the shutter interval by one stop and simultaneously increasing the
aperture by one stop (e.g., shutter is now 15 s and aperture is set to f/8), Equation (4) is
still satisfied and, as far as the exposure value is concerned, the two acquisition parameter
sets can be considered equivalent.
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Figure 7. RMS of the differences between the DSM at different ISO speeds and reference models for
Site A: (a) average RMS differences; (b) standard deviations of the RMS.

Figure 8 shows the average increment (or decrement if negative) of the RMS of the
differences between the night-time DSM and the reference 3D model considering different
shutter/aperture combinations for each site. Please note that, for simplicity, in Figure 8, the
combination with the highest possible shutter (30 s) is considered as a reference (i.e., all the
RMSs are compared to the ISO and EVr corresponding to the 30 s shutter DSM).

Figure 8 clearly shows that using longer exposure times (shutter), and consequently
smaller apertures, usually leads to better results. This is also observed for a limited to low
RMS increase (i.e., indicating a worse DSM accuracy) for Site A and, to a minor extent, for
Site C. On the contrary, combinations of longer exposure time for Site B outperform the
others, and a significant decrease in accuracy is experienced (almost 50% worse) with very
short exposure times. This result seems a bit counterintuitive compared to best practices
for daytime acquisition, for which it is well known that the use of a too small aperture
(which in this context would consequently mean setting longer exposure times) reduces
the sharpness of the image.

Finally, the influence of over- or under-exposition on DSM accuracy was considered.
Following the same line of thoughts as in the previous analysis, the DSM accuracy obtained
with different exposure values was analyzed. Considering a DSM obtained with a neutral
relative exposure value (EVr = 0) as a reference, its accuracy can be compared with the
accuracy of all the under-exposed (EVr = +1) or over-exposed (EVr = −1) models with
similar exposure settings. In particular, the results shown in Figure 9 refer to the sum of
models acquired with a one stop higher or lower ISO speed and the same shutter and
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aperture, models with a one stop higher or lower aperture and the same ISO speed and
shutter and models with the same ISO speed and aperture but with one stop longer or
shorter exposure times. The use of correctly exposed images involves the best gray value
dynamic range and, most likely, well-contrasted features on the images. This should
increase the accuracy of the image matching algorithm during the DSM reconstruction.
However, as previously pointed out, higher exposure levels (e.g., obtained using a higher
ISO speed) can also imply a greater level of noise. As shown in Figure 2, under-exposed
shots usually produce a more compact gray value histogram (less contrast).
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different combinations of shutter and aperture.
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Figure 9 shows the increment in RMS (a positive value indicates less accurate results)
of DSM comparisons for the different sites. Results are also presented for all three sites
together (All sites) using under- or over-exposed images. Note that for Site A, only full-
step EV over-/under-exposed images were acquired (EVr = −1 and EVr = +1), while for
Sites B and C, also half-step EVs were considered (EVr = −0.5 and EVr = +0.5). For Site
A, the images correctly exposed generate the worst results. If under-exposed generated
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DSM are considered only, an RMS of 3.4% can be observed. For the other two sites,
such behavior is also confirmed: for Site B, the over-exposed images are less accurate
while the under-exposed ones are more accurate than EVr = 0. For Site C, over-exposed
and correctly exposed DSM produce similar results, but the under-exposed ones are, on
average, more accurate (1.8%). In all cases, the average differences range from −3.4% (Site
A—under-exposed (more accurate)) to +2.0% (Site B—over-exposed (less accurate)).

3.4. Failed DSM Reconstruction

According to Table 4, the proposed processing workflow did not always produce
a valid DSM reconstruction with the matching parameters indicated in Section 2.5. The
problem was particularly evident for Site A but different for each acquisition period: for
acquisition A1, 18% of the DSM cannot be processed, whereas this is 50% for acquisition
A2 and 30% for acquisition A3, while acquisition A4 produced the highest number of valid
DSM with a failure ratio of only 11%. On the contrary, for the other two test sites, just few
(i.e., 1% for Site B) or no (for Site C) models failed.

It should be noted that, by changing the dense matching parameters used for DSM
processing and, in particular, down-sampling the images of the stereo-pair, many of (if not
all) the DSM could be reconstructed. Table 6 shows the number of invalid (failed) DSM
as a function of the down-sampling ratio used: down-sampling = 1, corresponding to the
Metashape “matching quality” = “Ultra High”, means that no down-sampling occurred,
while, for instance, down-sampling = 4 (matching quality = “Medium”) means the image
size was reduced four times along its width and height.

Table 6. Number of failed DSM reconstructions (Site A) based on image down-sampling ratio.

1 (Ultra High) 2 (High) 3 4 (Medium)

A1 56 (18.2%) 4 (1.3%) 0 0
A2 156 (50.6%) 30 (9.7%) 17 (5.5%) 1 (0.3%)
A3 98 (30.2%) 13 (4.0%) 4 (1.2%) 2 (0.6%)
A4 36 (11.1%) 0 0 0

TOTAL 346 (27.4%) 47 (3.7%) 21 (1.7%) 3 (0.2%)

Figure 10 shows the number of failed models for the highest-quality dense matching
settings (no down-sampling) grouped by ISO speed: in all cases, a dense matching failure
occurred more frequently for higher ISO speeds (usually more than 6400).
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Figure 10. Number of failed models at the highest dense matching setting (no down-sampling) as a function of the
stereo-pair ISO speed.

At first, the hypothesis that failure in the reconstruction was caused by some move-
ments of the camera during the image acquisition phase was considered. This would
reasonably explain why the issue has become relevant for Site A only, where mining opera-
tions were active during the acquisition. To verify this assumption, the same models were
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processed estimating the relative orientation of the stereo-pair, acquiring a set of tie points,
as illustrated in Sections 2.5 and 3.2. It should be noted that, at least for acquisitions A1 and
A4, even with a high ISO speed, the process uses a high number of tie points and should
be considered reliable. Except for one single case, however, for all the failed models, dense
matching failure occurred regardless of stereo-pair fixed or relative orientation. These
results indicate that the failure of the dense matching process seems not to be related to
some unwanted movement of the cameras.

The use of Wallis-filtered images to improve or worsen the successful rate of the dense
matching procedure was also considered. In two cases, the DSM reconstruction failed using
the raw image pairs but was successful using the Wallis-filtered data. On the contrary,
the Wallis dataset failed on 12 stereo-pairs, whereas the raw image set was successfully
reconstructed. This seems to confirm the results obtained in Section 3.3: Wallis filtering, as
far as Metashape’s dense matching algorithms are concerned, does not improve the final
outcome of the process. On the contrary, to some extent, it generally produces worst results
and, in some cases, leads to a failed reconstruction.

3.5. Correlation between Reconstruction Accuracy and Image Quality Scores

Section 2.4 presents several image quality assessment methods and their correspond-
ing image quality scores. According to the results in Section 3.3, the influence of a selected
ISO speed on the accuracy of the final photogrammetric product is evident. However, it is
worth noting that with a higher ISO, beside a decrease in average accuracy, the results in
the same class (i.e., captured with the same ISO speed) tend to show also a much greater
variability (see Figure 6). In some cases, the best results (minimum RMS) obtained with a
very high ISO (e.g., ISO 25,600 or ISO 51,200) are more accurate or at least comparable with
the results obtained with much lower ISO speeds. Finding a correlation between the actual
level of accuracy achievable during DSM reconstruction and one (or more) image quality
score(s) would help in predicting the optimal image for the subsequent processing for a
particular low-light camera setup.

All the IQA methods considered in this work are not designed for this specific purpose
(with the exception of the Metashape image quality index, MIQI) and some are specifically
devoted to express a quality score that simulates the human perception. It is likely (but it is
out of the scope of the present work) that the design of a specific image quality assessment
method for night-time images focused on the DSM reconstruction accuracy would produce
much better results.

To evaluate the correlation between the DSM reconstruction accuracy and the different
image quality scores, a simple linear regression between IQA scores (more precisely, the
average IQA score of the two images of the stereo-pair) and the corresponding RMS of
the difference in the DSM with the reference model was computed by least squares. Then,
the coefficient of determination, R2, was used to evaluate the robustness of the prediction
of the regression and, consequently, the reliability of a specific IQA score to describe the
variability of the DSM accuracy.

The analysis has to be performed considering that different sites have different image
block geometries and, consequently, different behaviors in terms of photogrammetric
accuracy. It is therefore useless trying to fit a single model to all the data. Additionally,
even for the same site, different conditions (e.g., weather, cloud cover) might influence the
acquisition and, consequently, the quality of the images. In the following, all the results are
considered by first aggregating the data by each single site and then by single acquisition.

Many of the IQA scores considered are strongly dependent on the image average
intensity and contrast which makes the raw images, acquired with different relative expo-
sures, prone to provide significantly different IQA scores but similar RMS. It is therefore
suggested to use the Wallis-filtered dataset only, so that the images are equalized to a
similar intensity and local level of contrast. This should make the IQA score sensitive to the
actual noise level of the data only (which should be the main parameter affecting the final
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DSM accuracy) and not to the image exposure. Table 5 shows that using Wallis-filtered,
instead of raw, images slightly affects the RMS (less than 4%).

Finally, it is worth noting that some methods (i.e., PSNR and SSIM) are FR-IQA, which
means that the score computation requires a comparison with a reference image (in this
case, the night-time images that provided the lowest RMS are used), while others are
objective blind NR-IQA and do not have this limitation.

Table 7 shows the coefficients of determination obtained using the different IQA scores,
aggregating all the data by site. The best result for each site is presented in bold.

Table 7. Coefficient of determination R2 of the fitted IQA–RMS model for the different sites. The best
results are indicated in bold.

PSNR SSIM BRISQUE IlNiqe MIQI

Site A 4.7% 25.2% 34.3% 48.7% 9.6%
Site B 16.5% 71.6% 7.8% 3.1% 11.7%
Site C 32.4% 76.5% 68.4% 32.3% 11.7%

The SSIM score performs quite well (70–75%) for Sites B and C but provides unsatisfac-
tory results for Site A, where IlNiqe seems to be the most resilient IQA method. However,
IlNiqe performs quite poorly for the other two test sites. At Site A, all the other IQA
scores give very low predictability of the DSM accuracy as a function of the image quality
score, which seems to confirm the need to evaluate their performance considering the data
grouped by single acquisition (Table 8).

Table 8. Coefficient of determination R2 of the fitted IQA–RMS model for the different acquisitions.
The best results are indicated in bold.

PSNR SSIM BRISQUE IlNiqe MIQI

A1 0.3% 4.1% 51.4% 71.0% 15.6%
A2 1.9% 42.3% 70.6% 38.5% 12.2%
A3 12.6% 56.3% 64.5% 56.2% 29.2%
A4 5.2% 11.2% 38.9% 63.1% 0.1%
B1 16.5% 71.6% 7.8% 3.1% 11.7%
C1 22.7% 79.1% 64.7% 30.8% 7.1%
C2 38.2% 86.2% 70.8% 32.0% 15.8%

An in-depth analysis of the dispersion of IQA score vs. RMS highlights some issues
affecting the dataset. Figure 11 shows a selection of some of the most common problems
found in the investigation.

Figure 11a shows a very low PSNR score for some image pairs collected at Site A
(visible in the lower left region of the chart), even if the images, after an operator check, do
not seem affected by a high level of noise or by other distortion effects. The dashed red
line represents the estimated regression model (R2 coefficient is 4.2%). The same problem
seems to affect, in some acquisitions, the RMS of individual image pairs: e.g., in acquisition
C2 (see Figure 11b), a single image pair produced a DSM with a much higher RMS than
all the others. It is worth noting that, in Site C, BRISQUE and IlNiqe showed a different
behavior if compared with the other test sites, with lower scores (which should indicate a
higher image quality) for the image pairs that produced the worst (higher) RMS.

Finally, Figure 11c shows that the use of MIQI produced, in all sites and acquisitions
(in particular, in Site C), two distinct clusters of data points. Following a thorough check
of the data, it was concluded that the lower cluster (i.e., with lower image quality) was
produced by all the image pairs with an aperture of f/2. It seems, therefore, that the loss of
image sharpness, apparently quite drastic, passing from an aperture of f/2.8 to f/2, was
well caught by the MIQI algorithm but did not affect the final DSM accuracy.
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Figure 11. (a) Peak Signal-to-Noise Ratio (PSNR) for Site A; (b) BRISQUE for acquisition C2; (c) MIQI
for Site C.

Considering these issues, all the linear regressions and their corresponding coefficients
of determination were computed using a robust regression fitting algorithm, capable of
filtering the most evident outliers. For MIQI, the dataset was split considering image pairs
with f/2 apertures individually. Tables 9 and 10 show the R2 of the robust fitted IQA–RMS
models: for MIQI, two values are reported, the first referring to the f/2 subset, and the
second to the remaining dataset. For the other scores, the difference (in percent) in the
coefficient w.r.t. in the not robust fitted test is provided in brackets.

Table 9. R2 of the robust fitted IQA–RMS model for the different sites. Values in brackets indicate differences compared to
not robust fitted results.

PSNR SSIM BRISQUE IlNiqe MIQI

Site A 18.1% (+13.5%) 37.9% (+12.8%) 47.2% (+13.0%) 62.2% (+13.5%) 23.4–43.0%
Site B 75.8% (+59.3%) 80.3% (+8.7%) 10.6% (+2.8%) 0.0% (−3.1%) N/A–18.8%
Site C 78.2% (+45.8%) 81.4% (+4.9%) 80.4% (+12.0%) 45.9% (+13.7%) 32.1–56.4%
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Table 10. R2 of the robust fitted IQA–RMS model for the different acquisitions. Values in brackets indicate differences
compared to not robust fitted results.

PSNR SSIM BRISQUE IlNiqe MIQI

A1 35.9% (+35.6%) 13.0% (+9.0%) 56.2% (+4.8%) 80.6% (+9.6%) 27.2–94.7%
A2 27.4% (+25.4%) 49.0% (+6.7%) 78.3% (+7.6%) 52.5% (+14.0%) 32.5–67.2%
A3 72.4% (+59.8%) 67.0% (+10.7%) 73.0% (+8.5%) 68.6% (+12.4%) 53.9–74.7%
A4 13.8% (+8.7%) 30.6% (+19.4%) 57.1% (+18.2%) 76.4% (+13.4%) 0.1–57.6%
B1 75.8% (+59.3%) 80.3% (+8.7%) 10.6% (+2.8%) 0.0% (−3.1%) N/A–18.8%
C1 78.8% (+56.1%) 82.0% (+2.9%) 76.7% (+12.0%) 39.7% (+8.8%) 51.0–60.1%
C2 79.7% (+41.5%) 91.4% (+5.2%) 84.2% (+13.4%) 48.1% (+16.1%) 41.5–57.8%

It can be concluded that the actual capability of the IQA scores to explain the accuracy
variability of the DSM is strongly site-dependent (and for Site A also acquisition-dependent).
SSIM provided very good results for Sites B and C, for both site- and acquisition-grouped
data, but its prediction capability results in being much lower for Site A. It should be
highlighted once more that SSIM and PSNR are FR-IQA methods and require reference
images to evaluate the score. For Site A, on the contrary, IlNiqe and BRISQUE provided
the best results: for acquisition A1 (cloudy) and A4 (partly cloudy), where IlNiqe scores an
R2 of ca. 80%, the other IQA methods showed much lower performances (BRISQUE being
the second best with ca. 56–57%). For acquisition A2 (partly cloudy), BRISQUE performed
much better than the others, while for acquisition A3 (clear sky), the R2 coefficient resulted
in being almost the same for all the IQA scores, with BRISQUE still being the best. Accord-
ing to the results in Tables 7 and 8, MIQI provided very low R2 coefficients for all sites
and acquisitions. However, if the analysis is performed considering two distinct datasets,
one with all the images captured with the wider aperture (f/2) and one with all the other
images, much better results can be observed.

4. Discussion

The results show that photogrammetry in extreme low-light conditions poses several
challenges that should be carefully evaluated during image acquisition. At the same time,
the experiments demonstrated that in optimal conditions (i.e., with an accurate image
orientation and with proper acquisition parameters), good accuracies can also be achieved
during the night-time. The best results obtained for each test site (and acquisition) are
similar to the expected precision computed using Equation (5) and provide comparable
RMSs with the ones obtained using daylight images. For instance, for Site A, Equation (5)
predicts an expected precision (assuming an image coordinates measurement precision
of ca. ±1 pixel) of 26 mm. Daytime DSM reconstructions, compared to the reference TLS
model, show an RMS of the differences equal to 35.3 mm on average. The night-time
results, if only considering the DSM reconstructed using images with an ISO up to ISO
1600, show an average RMS of 38.9 mm (only 10% higher than the daytime). In one case
(using ISO 800), the RMS is even smaller, 32.2 mm. For Site B, Equation (5) predicts a
photogrammetric accuracy of ca. 52 mm and comparisons between the daytime DSM and
the reference TLS model, on average, show an RMS of 40 mm, while night-time acquisitions
(ISO <= 1600) show an average RMS of ca. 46.6 mm (16.5% higher) with a minimum RMS
(for a stereo-pair acquired using ISO 1600) equal to 34.9 mm. For Site C, the difference
between day and night acquisitions is stronger. The daytime average RMS is ca. 29.6 mm,
whereas the night-time RMS is 42.7 mm (44% higher), with a minimum RMS of 39.7 mm
(ISO 800). In this case the expected photogrammetry accuracy was 52 mm.

The most affecting parameter on the overall performance of the photogrammetric
system is the ISO setting: using higher ISO speeds always increases the level of noise of
the images, making the matching process less accurate and reliable. This is well known
by every experienced photographer who would always prefer longer exposures and/or
wider apertures rather than an increased ISO speed, unless strictly indispensable (e.g., with
longer exposures, the image might result in being blurred due to camera movement). It is
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interesting to note that up to ISO 3200–6400, the impact on the average DSM reconstruction
accuracy is limited: for Site A, for instance, the average ISO 6400 accuracy is 16% worse
than the best (43.9 mm vs. 38.6 mm (ISO 400)). For the other two test sites, the difference
is lower: 5% lower for Site B (45.5 mm vs. 43.5 mm (ISO 2200)) and 9% lower for Site C
(45.8 mm vs. 42.6 mm (ISO 400)). It is also worth noting that the best results are never
achieved with the lowest ISO speed, even if, in that case (ISO 200), few stereo-pairs were
considered for the test (four for Site A, only one for Site B and two for Site C), always under-
exposing (i.e., using EVr = 1) the images. Setting the cameras with an ISO higher than
6400 tends to worsen the results quite drastically: for Site A, the only site where ISO 51200
was tested, the average RMS is equal to 55 mm (51.8 mm for ISO 25600), which is 37% (29%
for ISO 25600) worse than the average accuracy using an ISO in the range 200–6400. Similar
results are highlighted by the tests for Site B (25% higher RMS for ISO 25600) and Site C
(27%). More importantly, however, high ISO speeds negatively impact the variability of the
results: Figures 6 and 7 show that, although strongly site- and acquisition-dependent, the
RMS range of variability and standard deviation is limited for a lower ISO and drastically
bigger for an ISO higher than 6400. For instance, in Site A, comparing the results obtained
with ISO 400 and ISO 12800, the average RMS is not much different (38.6 mm vs. 47.7 mm,
23% higher), but considering all the stereo-pairs analyzed, with the former ISO, the RMS
ranges between 32.7 and 43.3 mm, while for the latter, it ranges between 34.3 and 66.4 mm,
the maximum RMS being almost 40% worse than the average value. For Sites B and C, the
same analysis shows an even increased variability: for ISO 400, the RMS for Site B ranges
between 42 and 49 mm (average RMS is 46.4 mm), while for ISO 12800, the RMS average
value is 50.5 mm (only 8% higher), but the RMS varies between 38.9 and 71.6 mm (46%
higher than the worst result with ISO 400). For Site C, the RMS of ISO 400 stereo-pairs
ranges between 40.6 and 45 mm (average RMS is 42.6 mm), while for ISO 12800, RMS
ranges between 41.7 and 59.3 mm.

It is worth noting that the other acquisition parameters (i.e., shutter, aperture, the
use of Wallis-filtered images) have a much lower impact on the reconstruction accuracy.
Analyzing the results of Section 3.3, as a general rule of thumb, it seems that using longer
exposure times and lower ISO speeds (less than ISO 3200)—also in case of producing
an under-exposed shot—should provide the best results. It cannot be excluded that,
when using different cameras/sensors, this “sweet spot” can change a little: in these
cases, two different cameras (but the sensor is basically the same) and two different optics
were considered. Differently from the findings reported in other works (see, for instance,
ref. [54]), the use of Wallis-filtered data seems to always provide worse results. Almost
50% less valid tie points are obtained if a structure from the motion procedure is used to
compute the relative orientation of the stereo-pair (see Section 3.2). Wallis data also produce
worse results in DSM reconstruction, even if the RMSs are just a little bit higher in this case.
Depending also on the ISO speed used (with a lower ISO, the impact of Wallis-filtered data
is more evident), the decreased accuracy is always in the range −5–0% (see Figure 5).

Considering the ISO speed as the most significant influencing parameter to evaluate
the reconstruction accuracy, it is important to highlight the best camera configuration in
terms of shutter and aperture. Figure 8 shows the RMS increment considering “fixed”
or “similar” conditions, i.e., using the same ISO and exposure level, varying these two
parameters: interestingly, the impact of these parameters tends to be significantly different
for the three sites: in Site A, for instance, the maximum increment is found for an interme-
diate setting of both the parameters, i.e., not too long exposure intervals and intermediate
aperture (note that the shutter and aperture values indicated in Figure 8 are only for il-
lustrative purposes), but is very limited (+3.6%). In Site C, with the RMS increment still
quite limited (+7.1% at maximum), its trend is clearer, with higher increments when shorter
shutter intervals and wider apertures are considered. In Site B, the same trend is confirmed
but, this time, with a much higher impact on the final DSM reconstruction accuracy. The
combination of long exposure intervals and a higher f-number always provides the best
results. Using opposite settings (fast exposure/wide aperture) generates results 47.8%
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worse on average. It should be noted that the acquisition in Site B used a system equipped
with different optics than the ones used in Sites A and C (see Table 2). To check if the
extreme behavior of Site B can be supposedly influenced by the optics, the results can be
evaluated from a different point of view: in Section 3.3 and, in particular, in Figure 8, the
RMS increments were considered by aggregating the results with the same ISO and EVr
and different combinations of shutter/aperture. From that, it can be concluded that, even
if with a different (site-/experiment-dependent) impact, choosing longer exposures always
seems to produce the best results. Figure 12 shows the average RMS increment/decrement
(aperture f/5.6 is considered as a reference since it produces the best picture sharpness for
most optics), aggregating the results with the same EVr and considering the longest shutter
intervals (i.e., 30 s), varying the ISO speed and aperture. In this way, the results are com-
pared considering combinations with a low ISO (that should imply an increased accuracy)
but with wide apertures and combinations with a higher ISO and higher f-numbers.
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The trend lines depicted in Figure 12, here used to increase the chart readability, show
quite clearly the different behavior of the two optics: in Sites A and C, where Nikkor
f/1.8 optics were used, wide apertures do not impact the overall accuracy, while the use of
apertures with f-numbers higher than f/5.6 used in conjunction with higher ISO values
tends to decrease the quality of the results quite rapidly. On the contrary, the other tested
optics (90 mm Sigma f/2.8), used in Site B, produced the worst results with lower apertures,
even if, in these cases, a lower ISO speed was used.

The strong variability in the results for high ISO settings should be carefully considered
in a practical application: whenever environmental constraints impose the use of very
high sensitivities (e.g., possible camera movements/vibrations require the use of short
exposure intervals, the acquisition is performed in extreme low-light conditions), the
actual quality of the results cannot be easily predicted, and the monitoring process is
more error-prone. An attempt to overcome such limitation has been investigated in the
present work, evaluating the possibility of implementing an IQA method trying to infer
the reconstruction capabilities of the stereo-pair on the basis of some image quality score.
From a practical point of view, the system could acquire a set of images, compute the
IQA scores and process only the ones that should provide the best accuracy. It is already
pointed out that, at this stage of the work, the use of generic-purpose IQA methods would
probably fail to ensure the best and most reliable indicator. Designing, developing, training
and testing a new IQA algorithm for this specific purpose would be necessary but is out
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of the scope of the current research. The results confirm that the use of the selected IQA
methods is far from being flawless: it is interesting to highlight that, in some specific
datasets, high correlations between the IQA score and DSM accuracy were observed. For
instance, for Sites B and C, SSIM provides quite a good predictability of the RMS variability,
with coefficients of determination in the range of 72% and 77%. However, for Site A, SSIM
performs much worse (R2 is 25.2%), but also the other methods do not seem to provide
good results. It is worth noting that PSNR and SSIM, being FR-IQA, require a reference
image (ideally noise-/distortion-free) to evaluate the score, which poses some additional
problems. By analyzing the results presented in Table 8, it is evident that, even if the
environmental/lighting conditions are quite different for the four acquisitions of Site A, the
selected reference image pair (which was acquired in A2) also works quite effectively for
acquisition A3 (the R2 coefficient is actually higher than A2), at least if SSIM is considered.
On the contrary, the determination performances of the IQA score drop drastically for the
other two acquisition sets, passing from 42–56% to 4–11%, even if acquisition A4 has a very
similar condition to acquisition A2. The use of NR-IQA methods (e.g., in this experiment,
BRISQUE, IlNiqe and MIQI), which do not require a reference image for computing their
score, seems a preferable option. However, their behavior seems again strongly site- and
acquisition-dependent which significantly limits their usability. For instance, BRISQUE
and IlNiqe perform very poorly in Site B; BRISQUE provides good results (although not
as good as SSIM) for Site C, while IlNiqe does not. For acquisitions A2 and A3, BRISQUE
provides the best results (R2 is ca. 71% and 65%, respectively), while for the two other
acquisitions, the best results are provided by IlNiqe. It is not possible to identify which
elements make the behavior of each single IQA so strongly affected by the acquisition
conditions. Hence, it should be concluded that, at this stage of the investigation, none of
the tested IQA methods can be considered general enough to provide a viable solution for
DSM accuracy prediction for low-light applications.

5. Conclusions

The paper investigated the DSM reconstruction accuracy obtainable using DSLR
camera acquisitions during the night-time without the use of artificial lighting. These
conditions can be considered quite extreme, and at first, it might seem a little ambitious
to use passive sensors without proper lighting conditions. However, leveraging the high
sensitivity of modern off-the-shelf DSLR cameras, it has been demonstrated that, with
a proper camera setup, good-quality reconstruction can also be achieved in an extreme
low-light environment. The work is principally devoted to fixed camera monitoring
systems for rock slope risk assessment applications where the possibility of extending the
monitoring period to 24 h is extremely appealing. In these contexts, photogrammetry is
often preferred over other (active) sensors/systems (e.g., terrestrial laser scanning (TLS),
ground-based interferometric synthetic-aperture radar (GBInSAR)) when low costs and
ease of installation are required. However, should the system require specific illumination
equipment for night-time operations, most of its benefits in terms of costs and installation
would be reduced.

The study, in particular, highlights some of the challenges of applying photogrammet-
ric techniques in extreme low-light conditions during image acquisition. Investigations
conducted in three different testing sites (named Site A, Site B and Site C) show accuracies
comparable with acquisitions obtained using daylight images. Results clearly demonstrate
the significant effect of the ISO speed on the overall performances of the photogrammet-
ric system and evidence how the application of higher ISO speeds always produces an
increase in the level of noise of the images, reducing the accuracy and reliability of the
matching process. The results also show that using long exposures with ISO speeds up to
3200–6400 (the maximum native ISO of the camera used) leads to satisfactory accuracy and
allows coping with conditions where lighting is extremely low. It cannot be excluded that,
when using different cameras/sensors, this “sweet spot” can vary. For this purpose, two
different cameras (but basically the same sensor) and two different optics were considered.
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Testing a wider combination of camera/sensors/optics to test their performances in a
low-light environment would be of particular interest also for more general applications.
A careful setup of the camera and optics would be required to identify the best parameter
combination. However, this aspect was out of scope in the present work.

Some issues, which will be investigated in future works, still remain: in particular,
with high ISO settings, the random nature of image noise implies that the variability of the
actual accuracy of the reconstruction grows remarkably. For instance, in the experiments,
boosting the ISO value to the maximum provided results that, for some stereo-pairs, were
two times less accurate than the daytime reconstruction. The attempt at predicting the
final DSM accuracy by evaluating an IQA score before processing did not provide results
reliable enough to be used in a practical workflow. It should be noted, however, that
these problems, and the need for boosting the camera sensitivity to the maximum, arise in
very extreme conditions. Most likely, in those scenarios, the actual reconstruction accuracy
might not be the most critical feature to be considered. Instead, the continuity of acquisition
should have priority.
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