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Abstract: Recently, many convolutional networks have been built to fuse a low spatial resolution (LR)
hyperspectral image (HSI) and a high spatial resolution (HR) multispectral image (MSI) to obtain HR
HSIs. However, most deep learning-based methods are supervised methods, which require sufficient
HR HSIs for supervised training. Collecting plenty of HR HSIs is laborious and time-consuming.
In this paper, a self-supervised spectral-spatial residual network (SSRN) is proposed to alleviate
dependence on a mass of HR HSIs. In SSRN, the fusion of HR MSIs and LR HSIs is considered a
pixel-wise spectral mapping problem. Firstly, this paper assumes that the spectral mapping between
HR MSIs and HR HSIs can be approximated by the spectral mapping between LR MSIs (derived from
HR MSIs) and LR HSIs. Secondly, the spectral mapping between LR MSIs and LR HSIs is explored
by SSRN. Finally, a self-supervised fine-tuning strategy is proposed to transfer the learned spectral
mapping to generate HR HSIs. SSRN does not require HR HSIs as the supervised information in
training. Simulated and real hyperspectral databases are utilized to verify the performance of SSRN.

Keywords: hyperspectral image super-resolution; data fusion; spectral-spatial residual network;
multispectral image; self-supervised training

1. Introduction

Hyperspectral imaging sensors collect hyperspectral images (HSIs) across many nar-
row spectral wavelengths, which contain rich physical properties of observed scenes [1].
HSIs with high spectral resolution are beneficial for various tasks, e.g., classification [2] and
detection [3]. However, as the amount of incident energy is limited, observed HSIs usually
have low spatial resolution (LR) [4]. Contrary to HSIs, observed multispectral images
(MSIs) have high spatial resolution (HR) but low spectral resolution [5,6]. Exploring both
MSIs and HSIs captured in the same scene is a feasible and effective way for improving the
spatial resolution of HSIs [7].

Over decades, many methods [8,9] have been proposed to reconstruct the de-
sired HR HSI by fusing HR MSIs and LR HSIs, including sparse representation-based
methods [10,11], Bayesian-based methods [12,13], spectral unmixing-based methods [1,14],
and tensor factorization-based methods [15,16]. Sparse representation-based, Bayesian-
based, and spectral unmixing-based methods usually first learn spectral bases (or endmem-
bers) from the LR HSI [9,10]. Then, the learned spectral bases are transformed to extract
the sparse codes (or abundances) from the HR MSI. Finally, the desired HR HSI is recon-
structed using the learned spectral bases and sparse codes. These methods usually treat
the HR MSI and LR HSI as 2-D matrices, which result in the spatial structure information
of HR MSIs and LR HSIs not being effectively exploited [15]. Tensor factorization-based
methods [15,16] consider HR MSIs and LR HSIs as 3-D tensors to fully explore the spatial
structure information of HR MSIs and LR HSIs. In general, previous methods mainly
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focus on exploiting various handcrafted priors (e.g., sparsity and low-rankness) to im-
prove the quality of the reconstructed HR HSI [9]. However, sparsity and low-rankness
priors may not hold in real complicated scenarios [17], which can result in unsatisfactory
super-resolved results [18].

Recent works [19–22] usually build various deep learning (DL) architectures to learn
deep priors for fusing HR MSIs and LR HSIs. Due to powerful feature learning capabili-
ties, DL-based methods have shown superior performance. In most DL-based methods,
deep networks are usually utilized to learn the deep priors between LR HSIs and HR
HSIs [22–24]. For example, Li et al. [25] employed a Laplacian pyramid network instead
of the bicubic interpolation to upsample HSIs for the guided filtering-based MSI and HSI
fusion. Dian et al. [21] proposed to utilize a residual network to learn deep priors of HR
HSIs. However, these methods are supervised methods, which require plentiful HR HSIs
as the supervised information to optimize weight parameters of deep networks. It is an
intractable problem to collect a mass of HR HSIs for supervised training [26].

To mitigate the dependence on HR HSIs as the supervised information, several
works [26,27] have designed unsupervised deep networks. Yuan et al. [26] transferred the
deep priors between LR and HR nature images to HSIs. Sidorov et al. [27] utilized a fully
convolutional encoder–decoder network to explore deep hyperspectral priors. However,
these methods [26,27] cannot exploit HR MSIs for reconstructing HR HSIs. To leverage
both LR HSIs and the corresponding HR MSI, several works [17,28] attempted to build
two-branch deep networks. Qu et al. [28] designed two sparse Dirichlet autoencoder
networks: one for extracting spectral bases from LR HSI and the other for extracting spatial
representations from HR MSIs. Ma et al. [17] proposed a generative adversarial network
with two discriminators to reconstruct HR HSIs. One discriminator is utilized to preserve
the spectral information of HR HSIs consistent with that of LR HSIs, and the other discrim-
inator is designed to preserve the spatial structures of HR HSIs consistent with that of HR
MSIs. However, these methods [17,28] ignore the potential spectral mapping relationship
between the observed MSI and HSI.

In this paper, the fusion problem of HR MSIs and LR HSIs is considered a problem
of learning the pixel-wise spectral mapping from MSIs to HSIs. The pixel-wise spectral
mapping can be utilized to reconstruct hyperspectral pixels directly from multispectral
pixels. Since the LR HSI and the reconstructed HR HSI contain the same observed scene,
the spectral mapping between the HR MSI and HR HSI is assumed to be approximately
equal to that between the corresponding LR MSI and LR HSI. In this paper, as shown in
Figure 1, a self-supervised spectral-spatial residual network (SSRN) is proposed to learn
the pixel-wise spectral mapping between LR MSIs and LR HSIs. Then, the learned spectral
mapping is transferred to reconstruct the desired HR HSI from HR MSIs. In the proposed
SSRN, the LR MSI utilized for training is the spatial degradation of HR MSIs. Additionally,
SSRN takes the observed LR HSI instead of the HR HSI as supervised information in
training. There are two advantages to consider the fusion problem of HR MSIs and LR
HSIs as the problem of learning the pixel-wise spectral mapping. The first advantage is
that reconstructing HR HSIs directly from HR MSIs, which contains the desired HR spatial
structure information, can mitigate the distortion of spatial structures in HR HSIs. The
second advantage is that there are plentiful multispectral and hyperspectral pixel pairs
naturally between MSIs and HSIs, which are sufficient for training deep networks without
the need to introduce other supervised information.
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Figure 1. Illustration of the proposed spectral-spatial residual network (SSRN) framework. Firstly,
a low spatial resolution (LR) multispectral image (MSI) and an LR hyperspectral image (HSI) are
utilized to train the proposed SSRN to learn the pixel-wise spectral mapping. Then, the learned
pixel-wise spectral mapping is exploited to estimate high spatial resolution (HR) HSIs from HR MSIs.

The proposed SSRN includes two modules: the spectral module and the spatial
module. First, the spectral module is proposed to extract spectral features from MSIs. In the
spectral module, the concatenation operation is employed to explore the complementarity
among multi-layer features. Second, the spatial module is added following the spectral
module to capture spectral-spatial features for facilitating learning of the spectral mapping.
Especially, an attention mechanism is employed in the spatial module to make SSRN
extract spectral-spatial features from homogeneous adjacent pixels, since homogeneous
adjacent pixels in HSIs usually share similar spectral signatures. Finally, a self-supervised
fine-tuning strategy is employed to further improve the performance of SSRN. In fact, the
spatial degradation from the HR image to the LR image usually interferes with the spectral
signatures of the LR image, which makes the spectral mapping between LR MSIs and LR
HSIs slightly different from the spectral mapping between HR MSIs and HR HSIs. The self-
supervised fine-tuning strategy is utilized to obtain the spectral mapping between HR MSIs
and HR HSIs from the spectral mapping between LR MSIs and LR HSIs. The experimental
results demonstrate that SSRN performs better than the state-of-the-art methods.

The major contributions of this paper are as follows:

• A spectral-spatial residual network is proposed to consider the fusion of HR MSIs and
LR HSIs as a pixel-wise spectral mapping problem. In SSRN, the HR HSI is estimated
from the HR MSI at the desired spatial resolution, which can effectively preserve
spatial structures of HR HSIs.

• A self-supervised fine-tuning strategy is proposed to promote SSRN learning optimal
spectral mapping. The self-supervised fine-tuning does not require HR HSIs as the
supervised information.

• A spatial module configured with the attention mechanism is proposed to explore
the complementarity of adjacent pixels. The attention mechanism can explore the
spectral-spatial features from homogeneous adjacent pixels, which is beneficial to the
learning of pixel-wise spectral mapping.

The remaining sections are as follows. In Section 2, recent HSI super-resolution
methods are reviewed. In Section 3, the proposed SSRN is introduced. The experimental
results of SSRN and the compared methods are reported in Section 4. The performance of
SSRN is discussed in Section 5. Finally, Section 6 concludes this paper.

2. Related Work

Many methods have been proposed to reconstruct HR HSIs by fusing the observed
LR HSI and HR MSI. In light of whether deep networks are utilized, the existing methods
are roughly categorized into traditional methods and DL-based methods.
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2.1. Traditional Methods

According to different technique frameworks, traditional methods can be further
divided into sparse representation-based methods, Bayesian-based methods, spectral
unmixing-based methods, and tensor factorization-based methods.

Sparse representation-based methods [29] learn a dictionary from the observed LR
HSI. The dictionary represents the reflectance spectrum of the scene and is then employed
to learn the sparse code of HR MSIs. Akhtar et al. [30] proposed a generalization of the
simultaneous orthogonal matching pursuit (GSOMP) method. Wei et al. [31] proposed a
variational-based fusion method and designed a sparse regularization term.

Bayesian-based methods [32] intuitively interpret the process of fusion through the
posterior distribution. Eismann et al. [33] proposed a maximum a posteriori probability
(MAP) estimation method. Wei et al. [34] proposed a hierarchical Bayesian fusion method
to fuse spectral images. Irmak et al. [35] proposed a MAP-based energy function to enhance
the spatial resolution of HSI.

Spectral unmixing-based methods usually employ nonnegative matrix factorization to
decompose HR MSIs and LR HSIs [36,37]. A classic method is coupled nonnegative matrix
factorization (CNMF) [36]. In CNMF, HR MSIs and LR HSIs are alternately decomposed.
Then, the estimated endmember matrix of the LR HSI and the estimated abundance matrix
of the HR MSI are multiplied to reconstruct the HR HSI. Borsoi et al. [1] embedded an
explicit parameter into a spectral unmixing-based method to model the spectral variability
between the HR MSI and LR HSI.

Tensor factorization-based methods treat HSIs as a 3-D tensor to estimate a core tensor
and the dictionaries of the width, height, and spectral modes [15,16]. Dian et al. [16] intro-
duced the sparsity prior into tensor factorization to extract non-local spatial information
from HR MSIs and spectral information from LR HSIs, respectively. Li et al. [38] proposed
a coupled sparse tensor factorization to estimate the core tensor.

Traditional methods have achieved favorable performances by exploiting the priors
(e.g., sparsity and low-rankness), but such priors may not hold in some complicated
scenarios [9,17,18].

2.2. Deep Learning-Based Methods

Recently, many works have designed various deep networks for fusing HR MSIs and
LR HSIs, which can be divided into supervised DL-based methods [39] and unsupervised
DL-based methods [40].

Supervised DL-based methods usually exploit massive HR HSIs as training images to
learn potential HSI priors or the mapping relationship between LR and HR HSIs [20,25].
Xie et al. [20] exploited the low-rankness prior of HSIs to construct an MSI and HSI fusion
model, which can be optimized iteratively with the proximal gradient. Subsequently, the
iterative optimization is unfolded into a convolutional network structure for end-to-end
training. Wei et al. [23] proposed a residual convolutional network to learn the mapping
relationship between LR MSIs and HR MSIs. To mitigate dependence on the point spread
function and spectral response function, Wang et al. [24] proposed a blind iterative fusion
network to iteratively optimize the observation model. Li et al. [39] proposed a two-
stream network to reconstruct HR HSIs, where one is a 1-D convolutional stream to extract
spectral features and the other is a 2-D convolutional stream to extract spatial features.
However, in practice, collecting plenty of HR HSIs as supervised information for training
is time-consuming and laborious [26,27].

Unsupervised DL-based methods are dedicated to leveraging spectral and spatial
ingredients from the given HR MSI and LR HSI to reconstruct the desired HR HSI [17,28,41].
Huang et al. [42] utilized a sparse denoising autoencoder to learn the spatial mapping
relationship between LR and HR panchromatic images, where LR panchromatic images
are obtained from the spectral degradation of LR MSIs. Then, the learned spatial mapping
relationship was exploited to improve the spatial resolution of each spectral band of LR
MSIs. Fu et al. [40] proposed a plain network simply composed of five convolution layers
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to fuse HR MSIs and LR HSIs. The HR MSI was concatenated with the feature maps of
every convolution layer to guide the spatial structure reconstruction of HR HSIs. Although
recent methods have achieved superior performance [17,28], designing deep networks
suitable for HSI super-resolution that do not require additional supervision information
for training is still an open problem.

3. Materials and Methods
3.1. Proposed Method
3.1.1. Problem Formulation

The goal of the proposed SSRN is to estimate the HR HSI by fusing the observed
HR MSI and LR HSI of the same scene. Let the HR HSI be XH ∈ RB×W×H , the observed
LR HSI be XL ∈ RB×w×h, and the observed HR MSI be YH ∈ Rb×W×H , where B and b
represent spectral band numbers, W and w represent the width, and H and h represent
the height. The observed LR HSI has a higher spectral resolution and a lower spatial
resolution than the observed HR MSI, i.e., W = D× w, H = D× h, and B � b (D is the
scaling factor). In fact, one pixel YH(i, j) ∈ Rb of YH uniquely corresponds to one pixel
XH(i, j) ∈ RB of XH , where (i, j) represents the spatial location in the ith row and the
jth column. This paper exploits a convolutional network to learn a nonlinear pixel-wise
spectral mapping F : Rb → RB that maps YH(i, j) to XH(i, j). The pixel-wise spectral
mapping can be formulated as

XH = F(YH). (1)

Since HR HSIs are difficult to obtain in practice [26,28], the proposed SSRN does not
use HR HSIs as supervised information. In this paper, the spectral signatures of LR HSI
XL are first used as the supervised information to learn the spectral mapping F̂ : Rb → RB

between LR MSIs and LR HSIs. During the training phase, the input of SSRN is the LR MSI
YL ∈ Rb×w×h and the output is the LR HSI XL. YL is obtained by spatially blurring and
then downsampling YH .

YL = E(YH), (2)

where E(·) represents the spatially blurring and downsampling operations [12]. Then, the
learned spectral mapping F̂ between the LR MSI YL and LR HSI XL is transformed to the
spectral mapping F with a self-supervised fine-tuning strategy, which can reconstruct the
HR HSI XH from the HR MSI YH .

Previous methods [10,28,30,36] usually focus on extracting spectral ingredients (spec-
tral bases or endmembers) from the LR HSI XL and extracting spatial ingredients (sparse
codes or abundances) from the HR MSI YH . Then, the spectral ingredients of XL and the
spatial ingredients of YH are utilized to reconstruct the HR HSI XH . However, the observed
scene in the HR MSI YH usually contains complex spatial distributions of land-covers;
hence, there are still many challenges in accurately extracting spatial ingredients from HR
MSI YH [8,9]. In previous methods, inaccurate spatial ingredients extracted from the HR
MSI YH can cause spatial distortion of the reconstructed HR HSI. Different from previous
methods [10,28,30,36], the proposed SSRN avoids the process of spatial ingredient extrac-
tion from HR MSI YH . The proposed SSRN considers the fusion problem of HR MSI and
LR HSI as a problem of spectral mapping learning. Based on the learned spectral mapping
F, HR HSI XH is directly reconstructed from HR MSI YH . All the spatial ingredients of HR
MSI YH can be used to reconstruct the HR HSI XH . Therefore, compared with previous
methods, the proposed SSRN can better preserve the spatial structures of the reconstructed
HR HSI.

The proposed method is similar to recent spectral resolution enhancement
methods [43,44] that focus on learning the spectral mapping between MSIs and HSIs.
However, the methods for spectral resolution enhancement are usually supervised training
methods [45,46], which learn the spectral mapping from plentiful MSI and HSI pairs that
are collected in other observed scenes. In contrast, in the HR MSI and LR HSI fusion task,
the HR MSI and LR HSI are captured in the same observed scene. Our proposed method is
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a self-supervised training method specially designed for the HR MSI and LR HSI fusion
task. The details of SSRN are introduced in the following subsections.

3.1.2. Architecture of SSRN

A detailed architecture of SSRN is shown in Figure 2. SSRN consists of two mod-
ules: the spectral module and the spatial module. In SSRN, the input is an MSI patch
Ŷ ∈ Rb×K×K and the output is an HSI patch X̂ ∈ RB×K×K, where b and B represent spectral
band numbers and K × K represents the spatial size. First, a 1× 1 convolution layer is
used to generate initial shallow spectral features from the MSI patch Ŷ. Then, the spectral
module is utilized to extract spectral features from the initial shallow spectral features,
and the spatial module is added following the spectral module to extract spectral-spatial
features to facilitate learning of spectral mapping.
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Figure 2. Architecture of the proposed SSRN. A spectral module and a spatial module are utilized to
learn the pixel-wise spectral mapping between MSIs and HSIs. ⊕ represents the residual connection.

In this paper, spectral features refer to the features of multispectral pixels in the
spectral dimension, which do not involve any information of the spatially adjacent pixels.
The spectral module mainly consists of several residual blocks and a multi-layer feature
aggregation (MLFA) component. As shown in Figure 3, the setting of the residual blocks
is similar to that in the literature [47], where the residual connection can facilitate the
convergence of SSRN. In residual blocks, the kernel size of all convolution layers is set to
1× 1 to ensure that spectral feature extraction is only performed in the spectral dimension
of MSI. The different residual blocks can extract different spectral features, which are
beneficial for learning spectral mapping [48,49]. To explore the complementarity among
the features of different residual blocks, an MLFA component is employed to integrate
these features into the final spectral feature. The MLFA component is composed of a
concatenation layer and 1× 1 convolution, which do not introduce any information from
the spatially adjacent multispectral pixels.
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Figure 3. Structures of the residual block and the self-attention module. ⊕ represents the residual
connection. ReLU represents the rectified linear unit.

The spatial module aims to extract complementary spatial information from adjacent
pixels to learn spectral mapping. In this paper, the spatial information from adjacent pixels
refers to the spatial structure information and spectrums contained in adjacent pixels.
In practice, due to that adjacent pixels in real MSIs or HSIs potentially corresponding
to the same object, adjacent pixels may have similar spectral signatures [50–52], which
can be used as a prior to refine the reconstruct HR HSI. The adjacent pixels with similar
spectral signatures are called homogeneous adjacent pixels. The spatial information of
homogeneous adjacent pixels in HR MSI is beneficial in the learning of the pixel-wise
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spectral mapping between MSIs and HSIs [53]. Previous methods [43,44] usually use 3× 3
convolution to extract spatial information. However, the 3× 3 convolution can introduce
the interference information from inhomogeneous adjacent pixels [2]. In this paper, the
spatial module employs a self-attention module [54] to extract spectral-spatial features from
the homogeneous adjacent pixels. The self-attention module can capture homogeneous
adjacent pixels based on the correlation between different pixels [54] and then aggregate the
information from these homogeneous adjacent pixels to generate spectral-spatial features.
The details of the self-attention module are shown in Figure 3. The self-attention module
takes the final spectral feature from the spectral module as the input and outputs the
spectral-spatial features. The final spectral feature is denoted as S ∈ RC×K×K, where C is
the channel number and K× K is the spatial size. First, S is fed into three 1× 1 convolution
layers to generate abstract features f (S) ∈ RC×K×K, g(S) ∈ RC×K×K, and n(S) ∈ RC×K×K,
respectively. Second, f (S), g(S), and n(S) are reshaped to f̄ (S), ḡ(S), and n̄(S) ∈ RC×M,
where M = K × K. Each column of the reshaped f̄ (S), ḡ(S), and n̄(S) represents the
spectral feature of a certain pixel. The correlation among pixels in spectral features is
calculated as follows

N = f̄ (S)T ḡ(S), (3)

where (·)T denotes the transpose and N ∈ RM×M. A softmax function is employed to
normalize the value of all elements in N to the range [0, 1]. Then, the spectral-spatial
features are generated by multiplying n̄(S) with the normalized correlation N. With the
normalized correlation N, the homogeneous pixels from adjacent regions can be aggregated
to facilitate the learning of the spectral mapping. Finally, the shape of spectral-spatial
features is reshaped to RC×K×K for the following operations. After the self-attention
module, a 1× 1 convolution layer with B kernels is utilized to reconstruct the desired HR
HSI from the spectral-spatial features.

In the proposed SSRN, the kernel size of all convolution layers is set to 1× 1, which
can mitigate the difficulty of training SSRN caused by too many weight parameters.

3.1.3. Loss Function

In the proposed SSRN, a reconstruction loss Lrec and a cosine similarity loss Lcos are
employed as the loss functions. Let U represent the generated HSI and V represent the
ground truth. For convenience, U and V are reshaped to RP×Q, where P is the number
of spectral bands and Q is the number of pixels. Each column of U and V represents the
spectral vector of a hyperspectral pixel. The reconstruction loss Lrec is a classic metric
function that measures the numerical differences between two HSIs. Lrec is defined as

Lrec(U, V) = ‖U−V‖2
F, (4)

where ‖·‖F represents the Frobenius norm. The cosine similarity loss Lcos measures the
spectral distortion based on the angle between two spectral signatures. Lcos is defined as

Lcos(U, V) = 1− 1
Q

Q

∑
i=1

U(i) ·V(i)

‖U(i)‖2‖V(i)‖2
, (5)

where U(i) is the ith column of U that denotes the spectral vector of the ith pixel of U and
V(i) is the ith column of V that denotes the spectral vector of the ith pixel of V (1 6 i 6 Q).

In the training phase, the LR MSI YL and the LR HSI XL are cropped into small patches
for training. Let ŶL ∈ Rb×K×K be the LR MSI patch cropped from YL, X̂L ∈ RB×K×K be
the corresponding LR HSI patch cropped from XL, and X̄L = F̂(ŶL) ∈ RB×K×K be the
reconstructed LR HSI patch. To facilitate calculation of the loss, ŶL is reshaped to Rb×M,
and X̂L and X̄L are reshaped to RB×M, where M = K× K. The details of the loss function
in SSRN are as follows.
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First, the loss LossHSI between the reconstructed X̄L and the ground truth X̂L are
measured by the reconstruction loss Lrec and the cosine similarity loss Lcos.

LossHSI(X̄L, X̂L) = Lrec(X̄L, X̂L) + λLcos(X̄L, X̂L), (6)

where λ is the balancing parameter to control the tradeoff between Lrec and Lcos.
Second, according to the observation model, the LR MSI patch ŶL is the spectral

degradation of the LR HSI patch X̂L [14], which can be formulated as

ŶL = R(X̂L), (7)

where R(·) represents the spectral degradation. This means that the spectral degradation
of the reconstructed HSI patch X̄L should also be consistent with the input MSI patch
ŶL. To maintain the consistency between R(X̄L) and ŶL, another loss function LossMSI is
established in this paper. Similar to LossHSI , LossMSI is formulated as

LossMSI(R(X̄L), ŶL) = Lrec(R(X̄L), ŶL) + βLcos(R(X̄L), ŶL), (8)

where β is simply set to the same value as λ of Equation (6), since the second terms in
Equations (6) and (8) are all the cosine similarity loss. Overall, the loss function of SSRN is
set as

Losstrain = LossHSI(X̄L, X̂L) + φLossMSI(R(X̄L), ŶL). (9)

In the proposed SSRN, LossHSI and LossMSI are equally important for reconstructing HR
HSI. Therefore, φ is simply set to 1 in the following experiments.

3.1.4. Self-Supervised Fine-Tuning

This paper assumes that the pixel-wise spectral mapping F between HR MSI and
HR HSI can be estimated on the basis of the pixel-wise spectral mapping F̂ between LR
MSI and LR HSI. The training process of the proposed SSRN includes two stages: the
pretraining stage and the fine-tuning stage. In the pretraining stage, the pixel-wise spectral
mapping F̂ can be easily learned from the paired LR MSI patches and LR HSI patches
using the proposed SSRN. In this stage, the proposed SSRN is supervised by LR MSIs
and LR HSIs simultaneously. In fact, the spectral signatures of LR MSIs and LR HSIs are
usually influenced by spatial degradation. The spectral mapping F̂ is not exactly equal
to the spectral mapping F. Hence, in this paper, a fine-tuning strategy is proposed to
further estimate the spectral mapping F from the spectral mapping F̂. The SSRN trained
with LR MSIs and LR HSIs serves as a pretrained network. Then, in the fine-tuning stage,
the pretrained SSRN is further fine-tuned with the HR MSI. Since the HR HSI is hard to
be obtained in practice, SSRN does not utilize the HR HSI as supervised information in
training. Therefore, Equation (6) cannot be employed as the loss function in the fine-tuning
stage. Equation (8) is employed as the fine-tuning loss LossFT to maintain the consistency
between R(X̄H) and ŶH , where R(·) has the same definition as that in Equation (7), X̄H
is the reconstructed HR HSI patch, and ŶH is the input HR MSI patch. LossFT can be
expressed as

LossFT = LossMSI(R(X̄H), ŶH). (10)

In the fine-tuning stage, the proposed SSRN is only supervised by HR MSI. Therefore, the
fine-tuning stage is a self-supervised training style. After fine-tuning, the spectral mapping
F between HR MSI and HR HSI is obtained. The desired HR HSI can be reconstructed with
Equation (1).
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3.2. Software and Package

The proposed SSRN is implemented in a computer workstation that is configured
with the Ubuntu 14.04 system, 64G RAM, Intel Core i7-5930K, and NVIDIA TITAN X.
The software used in the experiments is PyCharm. The packages used in the experiments
include Python, TensorFlow, NumPy, and SciPy.

3.3. Databases

To evaluate the performance of SSRN, the experiments are conducted on simulated
databases and real databases, respectively. First, the Pavia University (PU) database (http://
www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes#Pavia_
University_scene, accessed on 16 December 2020) and the Washington DC Mall (WDCM)
database (https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html, accessed
on 16 December 2020) are utilized to simulate MSIs for experiments. Then, the Paris
database (https://github.com/alfaiate/HySure/tree/master/data, accessed on 17 Decem-
ber 2020) [12] and the Ivanpah Playa database (https://github.com/ricardoborsoi/FuVar
Release/tree/master/DATA, accessed on 17 December 2020) [1], which contain both real
MSIs and HSIs, are employed to conduct experiments. Finally, the CAVE database (https://
www.cs.columbia.edu/CAVE/databases/multispectral/, accessed on 19 December 2020) [55]
is employed to further explore the performance of SSRN.

The PU database is captured by the ROSIS sensor over Pavia University. The PU
database contains an HSI with 103 spectral bands and 610 × 340 pixels. The WDCM
database is collected by the HYDICE sensor over the National Mall. The WDCM database
consists of an HSI with 191 spectral bands and 1280× 307 pixels. Similar to the litera-
ture [37], a 200× 200 subimage of the PU database and a 240× 240 subimage of the WDCM
database are utilized for experiments. The original HSIs in the PU and WDCM databases
are regarded as the ground truth. The ground truth is blurred and then spatially down-
sampled with the scaling factor of 4 to simulate the observed LR HSI. The observed HR
MSI is obtained by spectrally downsampling the ground truth. The setting of the spectral
response function is the same as that in the literature [37].

The Paris database contains an HSI captured by the hyperion instrument and an
MSI collected by the ALI instrument [12]. The HSI contains 128 spectral bands. The MSI
contains 9 spectral bands. Both the HSI and the MSI have 72× 72 pixels. The Ivanpah Playa
database consists of an HSI with 173 spectral bands and an MSI with 10 spectral bands.
The HSI and the MSI on the Ivanpah Playa database contain 80× 128 pixels. According
to the literature [1], the HSIs on the Paris and Ivanpah Playa databases are treated as the
ground truth, which are blurred and spatially downsampled with the scaling factor of 4
to generate the observed LR HSI. The MSIs on the Paris and Ivanpah Playa databases are
treated as the observed HR MSI.

The CAVE database contains 32 HSIs, which are captured by the cooled charge-
coupled device (CCD) camera on the ground [55]. On the CAVE database, each HSI
consists of 512× 512 pixels, where each pixel is composed of 31 spectral bands ranging
from 400 nm to 700 nm. Following the literature [56], the original HSIs on the CAVE
database are treated as the ground truth. Then, the ground truth is blurred and spatially
downsampled with the scaling factor of 4 to obtain the observed LR HSI. The ground
truth is spectrally downsampled by the spectral response function of Nikon D700 (https:
//maxmax.com/spectral_response.htm, accessed on 19 December 2020) to obtain the
observed HR MSI.

3.4. Evaluation Metrics

Five quantitative quality metrics are employed for performance evaluation, including
peak signal-to-noise ratio (PSNR), spectral angle mapper (SAM), universal image quality
index (UIQI), erreur relative globale adimensionnelle de synthèse (ERGAS), and root mean
squared error (RMSE). PSNR measures the spatial reconstruction quality of each spectral
band in the reconstructed HR HSI. SAM measures the spectral distortions of each hyper-

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes#Pavia_University_scene
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes#Pavia_University_scene
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes#Pavia_University_scene
https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
https://github.com/alfaiate/HySure/tree/master/data
https://github.com/ricardoborsoi/FuVar
Release/tree/master/DATA
Release/tree/master/DATA
https://
www.cs.columbia.edu/CAVE/databases/multispectral/
https://maxmax.com/spectral_response.htm
https://maxmax.com/spectral_response.htm
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spectral pixel in the reconstructed HR HSI. UIQI measures the spatial structural similarity
between the reconstructed HR HSI and the ground truth based on the combination of
luminance, contrast, and correlation comparisons. ERGAS takes into account the ratio of
ground sample distances between HR MSI and LR HSI to measure the global statistical
quality of the reconstructed HR HSI. RMSE measures the global statistical error between
the reconstructed HR HSI and the ground truth. The larger values of PSNR and UIQI
indicate the better quality of the reconstructed HR HSI. When the values of SAM, ERGAS,
and RMSE are smaller, the quality of the reconstructed HR HSI is better. The best value of
PSNR is +∞. The best value of SAM is 0. The best value of UIQI is 1. The best values of
ERGAS and RMSE are 0.

In this paper, the ground truth X̃H ∈ RB×W×H and the reconstructed HR HSI
XH ∈ RB×W×H are converted into 8-bit images to calculate quantitative performance,
where B, W, and H are the numbers of the band, width, and height, respectively. The
formulations of the above quality metrics for the ground truth X̃H and the reconstructed
HR HSI XH are given below.

PSNR is formulated as

PSNR =
1
B

B

∑
i=1

10 log10

 max(X̃Hi )
2

1
W × H

W×H
∑

j=1

(
X̃Hij − XHij

)2

, (11)

where max(X̃Hi ) represents the maximum pixel value in the ith band of X̃H . X̃Hij and
XHij (1 6 i 6 B, 1 6 j 6 W × H) represent the jth pixel in the ith band of X̃H and
XH , respectively.

SAM is formulated as

SAM =
1

W × H

W×H

∑
j=1

arccos

( (
X̃H [j]

)TXH [j]
‖X̃H [j]‖2‖XH [j]‖2

)
, (12)

where X̃H [j] ∈ RB×1 and XH [j] ∈ RB×1 (1 6 j 6 W × H) denote the spectra of the jth
pixel of X̃H and XH , respectively. (·)T denotes the transpose, and ‖ · ‖2 denotes the `2
vector norm.

UIQI is formulated as

UIQI =
1
B

B

∑
i=1

 1
Z

Z

∑
q=1

4µz̃iq µziq σz̃iqziq(
µz̃iq

2 + µziq
2
)(

σz̃iq
2 + σziq

2
)
, (13)

where a sliding window moving pixel by pixel is used to divide the ith band of X̃H and XH
at the same position into Z image patch pairs z̃iq and ziq (1 6 i 6 B, 1 6 q 6 Z), respectively.
Z is the image patch pair number. µz̃iq and µziq are mean pixel values of image patches z̃iq
and ziq, respectively. σz̃iq and σziq are the corresponding variance. σz̃iqziq is the covariance.

ERGAS is formulated as

ERGAS = 100d

√√√√√√√ 1
B

B

∑
i=1

1
W × H

W×H
∑

j=1

(
X̃Hij − XHij

)2

(
µX̃Hi

)2 , (14)

where d is the ratio of ground sample distances between HR MSI and LR HSI. µX̃Hi
(1 6

i 6 B) denotes the mean pixel value in the ith band of the ground truth HSI X̃H .
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RMSE is formulated as

RMSE =

√√√√ 1
B

B

∑
i=1

(
1

W × H

W×H

∑
j=1

(
X̃Hij − XHij

)2
)

, (15)

where X̃Hij and XHij (1 6 i 6 B, 1 6 j 6 W × H) represent the jth pixel in the ith band of
X̃H and XH , respectively.

4. Results
4.1. Parameter Settings of SSRN

This subsection explores the parameter settings of SSRN. The WDCM database has
plenty of spectral bands and contains complicated land-cover distributions, making the
fusion task challenging [16]. Therefore, the WDCM database is utilized for parameter
setting experiments. For convenience, this subsection directly uses PSNR and SAM to
measure the quality of the reconstructed HR HSI. Moreover, the fine-tuning strategy is not
employed in the parameter setting experiments.

4.1.1. Number of Convolutional Kernels

In the experiments, the spatial size of input image patches is set as 4× 4. The number
of training epochs is set as 200. The learning rate is initially set as 0.01, which then drops
by a factor of 10 after 100 epochs. The balancing parameter λ in the loss function is initially
set as 0.1. The number of residual blocks is set as 3. For convenience, all convolution
layers of SSRN (except the last convolution layer) are configured with the same number
of convolutional kernels, which is set as 16, 32, 64, 128, 256m and 512 for the experiments.
The PSNR and SAM of SSRN with different numbers of convolutional kernels on the
WDCM database are shown in Table 1. As the kernel number increases from 16 to 256,
the performance of SSRN increases. As the kernel number increases from 256 to 512, the
performance of SSRN decreases due to too many weight parameters, making SSRN training
difficult. As shown in Table 1, the number of convolutional kernels in SSRN except the last
convolution layer is set as 256 in the following experiments.

Table 1. Peak signal-to-noise ratio (PSNR) and spectral angle mapper (SAM) of SSRN with different
numbers of convolutional kernels on the Washington DC Mall (WDCM) database.

Number 16 32 64 128 256 512

PSNR 31.772 32.477 32.926 33.044 33.123 33.048
SAM 1.485 1.385 1.287 1.245 1.228 1.245

4.1.2. Number of Residual Blocks

SSRN utilizes several residual blocks to extract spectral features from the MSI. To
explore the effects of different numbers of residual blocks on the performance of SSRN, the
number of residual blocks is set as 1, 2, 3, 4, 5, and 6 for the experiments. The PSNR and
SAM of SSRN on the WDCM database are shown in Table 2. SSRN with 4 residual blocks
achieves the best performance, where the PSNR and SAM are 33.167 and 1.213, respectively.
In following experiments, the residual block number of SSRN is set as 4.

Table 2. PSNR and SAM of SSRN with different numbers of residual blocks on the WDCM database.

Number 1 2 3 4 5 6

PSNR 32.850 33.149 33.123 33.167 32.978 32.941
SAM 1.232 1.215 1.228 1.213 1.219 1.240
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4.1.3. Balancing Parameter λ

The balancing parameter λ is a key parameter that controls the tradeoff between the
reconstruction loss and the cosine similarity loss in SSRN. If the value of the balancing
parameter λ is too small, the cosine similarity loss in SSRN will be invalidated, resulting in
a large SAM value of the reconstructed HR HSI. If the value of the balancing parameter
λ is too large, the reconstruction loss will be invalidated, resulting in a decrease in the
quality of the reconstructed HR HSI. To explore the impacts of the balancing parameter λ
on the performance of SSRN, λ is set as 0.001, 0.01, 0.1, 1, 5, and 10 for the experiments. The
PSNR and SAM of SSRN with different balancing parameter λ are shown in Table 3. As λ
increases from 0.001 to 0.1, the performance of SSRN increases. However, as λ increases
from 0.1 to 10, the performance of SSRN decreases. The balancing parameter λ of SSRN is
set as 0.1 in the following experiments.

Table 3. PSNR and SAM of SSRN with different λ on the WDCM database.

λ 0.001 0.01 0.1 1 5 10

PSNR 31.959 32.473 33.167 33.060 31.884 29.940
SAM 1.436 1.411 1.213 1.244 1.254 1.267

4.2. Ablation Study

The proposed SSRN can be specifically decomposed into five components, including
the basic network, the MLFA component, the spatial module, the cosine similarity loss,
and the fine-tuning. The basic network refers to the proposed spectral module without
the MLFA, which can be utilized to coarsely learn the pixel-wise spectral mapping. The
loss function of the basic network is a reconstruction loss. The other four components
are utilized to improve the performance of this basic network. In this subsection, the
ablation experiments for these four components are conducted on the WDCM database.
The experimental results are shown in Table 4. The basic network achieves the worst
performance. It is indicated that spatial features are not adequately exploited by the
basic network. The MLFA component is added to the basic network to demonstrate that
aggregating features of different convolution layers can improve the performance of the
basic network. After further introducing the spatial module in the basic network and MLFA,
the PSNR of the estimated HSI improved. Although the spatial module can improve the
spatial quality of the estimated HSI, it cannot significantly reduce the spectral distortion.
Then, the cosine similarity loss is further added into the basic network combined with the
MLFA and the spatial module. As shown in Table 4, the cosine similarity loss can effectively
alleviate the problem of spectral distortion in the estimated HSI. Finally, the fine-tuning
strategy is added into the basic network combined with other three components. The
proposed SSRN shows superior performance, which demonstrates the effectiveness of the
fine-tuning strategy. Therefore, the MLFA, the spatial module, the cosine similarity loss,
and the fine-tuning are all crucial components for the proposed SSRN.

Table 4. Ablation experiments of SSRN on the WDCM databases.

Ablation Study

MLFA ×
√ √ √ √

Spatial module × ×
√ √ √

Cosine similarity
loss × × ×

√ √

Fine-tuning × × × ×
√

PSNR 31.902 32.061 32.150 33.167 33.232
SAM 1.514 1.482 1.494 1.213 1.211

1. × represents that the basic network is configured with the component. 2.
√

represents that the basic network is
not configured with the component.
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4.3. Comparisons with Other Methods on Simulated Databases

In this subsection, the PU and WDCM databases are employed to simulate HR MSIs
to evaluate the proposed SSRN. The proposed SSRN is compared with several state-
of-the-art HSI super-resolution methods, including coupled nonnegative matrix factor-
ization (CNMF) (http://naotoyokoya.com/assets/zip/CNMF_MATLAB.zip, accessed
on 12 October 2020) [36], generalization of simultaneous orthogonal matching pursuit
(GSOMP) (http://www.csse.uwa.edu.au/~ajmal/code/HSISuperRes.zip, accessed on
12 October 2020) [30], hyperspectral image super-resolution via subspace-based regulariza-
tion (HySure) (https://github.com/alfaiate/HySure, accessed on 12 October 2020) [12],
transfer learning-based super-resolution (TLSR) [26], unsupervised sparse Dirichlet-net
(USDN) (https://github.com/aicip/uSDN, accessed on 20 October 2020) [28], and deep
hyperspectral prior (DHSP) (https://github.com/acecreamu/deep-hs-prior, accessed on
20 October 2020) [27]. CNMF, GSOMP, and HySure are traditional methods. TLSR, USDN,
and DHSP are recent unsupervised DL-based methods. On the PU and WDCM databases,
the number of training epochs is set as 200 for SSRN. The learning rate of SSRN is initially
set as 0.01, which then drops by a factor of 10 after every 100 epochs. Compared methods
use the parameter settings from the original literature. All experiments are implemented
5 times, and then, the average results are reported.

4.3.1. PU Database

The quantitative results of SSRN and the compared methods on the PU database
are reported in Table 5. TLSR and DHSP perform worse than traditional methods, since
TLSR and DHSP only employ a single hyperspectral image to reconstruct HR HSIs. TLSR
and DHSP cannot utilize the spatial information of the MSI to estimate the HR HSI.
USDN utilizes two autoencoder networks to extract spatial information from HR MSIs and
spectral information from LR HSIs, respectively. USDN shows superior performance to the
traditional methods. Different from CNMF, GSOMP, HySure, and USDN, the proposed
SSRN learns a pixel-wise spectral mapping between MSIs and HSIs. In SSRN, the desired
HSI is directly estimated from MSIs with the desired high spatial resolution, which can
preserve the spatial structures. In addition, the proposed SSRN employs cosine similarity
loss for training, which can reduce the distortion of spectral signatures. As shown in Table 5,
the proposed SSRN outperforms other methods on the PU database.

Table 5. Quantitative experimental results on the Pavia University (PU) database.

Methods PSNR UIQI RMSE ERGAS SAM

CNMF [36] 33.072 0.963 5.828 3.654 3.710
GSOMP [30] 35.117 0.971 4.819 3.230 4.050
HySure [12] 38.710 0.983 3.226 2.037 3.453
TLSR [26] 25.349 0.783 14.093 8.625 6.815
USDN [28] 36.944 0.977 3.835 2.620 3.340
DHSP [27] 25.702 0.799 13.504 8.282 6.606

SSRN 39.741 0.985 2.886 1.980 2.781

To visualize the experimental results, the visual images and error maps of SSRN and
the compared methods are displayed in Figure 4. The HSIs estimated by TLSR and DHSP
are blurry, since TLSR and DHSP cannot utilize the spatial information of the MSI. In the
estimated HSIs of TLSR and DHSP, the small targets that only cover one or two pixels are
missing. As shown in the error maps, the proposed SSRN effectively preserves the spatial
structures of the estimated HSI.

http://naotoyokoya.com/assets/zip/CNMF_MATLAB.zip
http://www.csse.uwa.edu.au/~ajmal/code/HSISuperRes.zip
https://github.com/alfaiate/HySure
https://github.com/aicip/uSDN
https://github.com/acecreamu/deep-hs-prior
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Figure 4. Visual images (R: 60, G: 30, and B: 10) and error maps of SSRN and the compared methods
on the PU database. The error maps are the sum of absolute differences in all spectral bands between
the estimated HSI and the ground truth.

4.3.2. WDCM Database

The quantitative results of SSRN and the compared methods on the WDCM database
are reported in Table 6. CNMF, GSOMP, and HySure show better performance than TLSR
and DHSP, since the spatial information of the MSI is utilized. The performance of USDN
can compete with CNMF, GSOMP, and HySure. As shown in Table 6, the performance of
the proposed SSRN is better than the compared methods in terms of PSNR, RMSE, and
SAM. In terms of UIQI and ERGAS, the proposed SSRN shows favorable performance,
which is close to the results of GSOMP.

Visual images and error maps of SSRN and the compared methods on the WDCM
database are shown in Figure 5. The visual images of CNMF, GSOMP, HySure, USDN,
and the proposed SSRN have good visualization results, owing to the reliable spatial
information provided by the HR MSI. As shown in the error maps, the errors of TLSR and
DHSP are mainly concentrated on the edges of complicated land-covers. The proposed
SSRN shows superior performance in complicated land-covers.
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Table 6. Quantitative experimental results on the WDCM database.

Methods PSNR UIQI RMSE ERGAS SAM

CNMF [36] 32.217 0.948 1.520 74.197 1.944
GSOMP [30] 31.979 0.956 1.729 57.587 1.877
HySure [12] 30.484 0.940 2.316 59.799 2.518
TLSR [26] 21.663 0.712 8.595 61.663 6.095
USDN [28] 31.355 0.935 1.805 122.336 2.264
DHSP [27] 21.917 0.749 8.566 122.069 5.967

SSRN 33.232 0.954 1.448 61.216 1.211
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Figure 5. Visual images (R: 50, G: 30, and B: 20) and error maps of SSRN and the compared methods
on the WDCM database.

4.4. Comparisons with Other Methods on Real Databases

In this subsection, SSRN and the compared methods are evaluated on two real
databases. On the Paris and Ivanpah Playa databases, the number of training epochs
is set as 400 for SSRN. The learning rate of SSRN is initially set as 0.01, which then drops
by a factor of 10 after 200 epochs.

4.4.1. Paris Database

On the Paris database, HR MSIs and LR HSIs are captured at the same time instant.
On this database, the LR HSI is generated from the original HSI for training. After spatially
downsampling with the scaling factor of 4, the LR HSI contains only 18× 18 pixels, which
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is far less than the number of pixels on simulated databases. Insufficient pixels in the LR
HSI can make the proposed SSRN difficult to train. To alleviate the problem of insufficient
pixels, the training samples are flipped left and right. Furthermore, the training samples
are rotated 90, 180, and 270 degrees. On the Paris database, the spectral response function
is estimated with the method proposed in the literature [12]. The performance of SSRN and
the compared methods on the Paris database is shown in Table 7. In comparison with the
PU and WDCM databases, the performance of SSRN and the compared methods decreased
due to the too complicated land-cover distributions on the Paris database. As shown in
Table 7, the proposed SSRN still shows better performance than the compared methods.

Table 7. Quantitative experimental results on the Paris database.

Methods PSNR UIQI RMSE ERGAS SAM

CNMF [36] 27.879 0.819 7.564 3.601 3.534
GSOMP [30] 28.235 0.817 7.299 3.517 3.381
HySure [12] 27.621 0.824 7.886 3.763 3.759
TLSR [26] 24.671 0.520 10.985 5.130 4.806
USDN [28] 27.975 0.803 7.509 3.622 3.435
DHSP [27] 24.569 0.516 11.106 5.185 4.935

SSRN 28.350 0.829 7.185 3.434 3.334

Visual images and error maps of SSRN and the compared methods are shown in
Figure 6. Since the proposed SSRN estimates the HSI directly from the MSI, the spatial
information of the MSI can be fully utilized. As shown in Figure 6, compared to the error
maps of other methods, the proposed SSRN effectively mitigates the spatial distortion.

4.4.2. Ivanpah Playa Database

The Ivanpah Playa database is a real database that consists of a LR HSI collected on
26 October 2015 and a HR MSI captured on 17 December 2017. On the Ivanpah Playa
database, the HR MSI and LR HSI are collected during different seasons. In practice,
seasonal changes may result in that the same land-cover material having different intrinsic
spectral signatures [1]. Therefore, the intrinsic spectral signatures of the same land-cover
may be different in LR MSIs and HR HSIs on the Ivanpah Playa database. It is chal-
lenging to perform HR MSI and LR HSI fusion on the Ivanpah Playa database. On this
database, similar to the literature [1], the spectral response function from calibration mea-
surements (https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-
library/-/asset_publisher/Wk0TKajiISaR/content/sentinel-2aspectral-responses, accessed
on 17 December 2020) is employed for the compared methods.

Experimental results of SSRN and the compared methods on the Ivanpah Playa
database are reported in Table 8. Different from that on the PU, WDCM, and Paris databases,
TLSR and DHSP perform better than traditional methods and USDN on the Ivanpah Playa
database. CNMF, GSOMP, HySure, and USDN usually rely on the assumption that the
intrinsic spectral signatures of the same land-cover in HR MSIs and LR HSIs are the
same [28,36]. In these methods, the spectral response function is usually directly used
to obtain the spectral ingredients of HR MSIs from the spectral ingredients of LR HSIs.
However, this assumption is not satisfied on the Ivanpah Playa database, which results in
the performance degradations of CNMF, GSOMP, HySure, and USDN.

https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library/-/asset_publisher/Wk0TKajiISaR/content/sentinel-2aspectral-responses
https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library/-/asset_publisher/Wk0TKajiISaR/content/sentinel-2aspectral-responses
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Figure 6. Visual images (R: 24, G: 14, and B: 3) and error maps of the proposed SSRN and the
compared methods on the Paris database.

Different from CNMF, GSOMP, HySure, and USDN, the proposed SSRN does not
rely on the assumption that the intrinsic spectral signatures of the same land-cover in HR
MSIs and LR HSIs are the same. In the proposed SSRN, the fusion problem of the HR
MSI and the LR HSI is considered a problem of spectral mapping learning. The proposed
SSRN is utilized to directly learn spectral mapping from the multispectral pixels to the
hyperspectral pixels. Owing to the powerful nonlinear representation ability of deep
convolutional networks, SSRN can model the spectral variability increased by the seasonal
changes between multispectral and hyperspectral pixels. In addition, due to HR MSI and
LR HSI on the Ivanpah Playa database being collected at different time instants, the imaging
environments (e.g., illumination, atmospheric, and weather) of HR MSIs and LR HSIs are
different. Different imaging environments may result in it being difficult to accurately
obtain real spectral response function [12]. In the proposed SSRN, only the loss function
requires a spectral response function. To reduce the errors caused by the estimated spectral
response function, the second term in the loss function Equation (9) and the fine-tuning
strategy of SSRN are removed in the experiments on the Ivanpah Playa database. Data
augmentation that is same as that on the Paris database is also employed on the Ivanpah
Playa database to increase the number of training samples. As shown in Table 8, in terms
of PSNR, UIQI, RMSE, and ERGAS, the proposed SSRN shows superior performance.
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Table 8. Quantitative experimental results on the Ivanpah Playa database.

Methods PSNR UIQI RMSE ERGAS SAM

CNMF [36] 23.399 0.721 15.600 2.395 1.456
GSOMP [30] 20.855 0.481 21.703 3.295 3.575
HySure [12] 21.658 0.531 19.126 2.939 2.221
TLSR [26] 23.702 0.786 15.149 2.330 1.440
USDN [28] 22.143 0.487 18.048 2.769 2.169
DHSP [27] 23.963 0.792 14.672 2.257 1.418

SSRN 27.770 0.807 9.447 1.451 1.451

Visual images and error maps are shown in Figure 7. The spatial structures on the
Ivanpah Playa database are relatively smooth. Although TLSR and DHSP cause the high-
frequency information of the reconstructed image to be blurred, the experimental results of
TLSR and DHSP in the smooth land-cover regions are favorable. According to the visual
image and the error map of SSRN, the proposed SSRN effectively preserves the spatial
structures of the HR MSI in the estimated HSI.
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Figure 7. Visual images (R: 32, G: 20, and B: 8) and error maps of the proposed SSRN and the
compared methods on the Ivanpah Playa database.
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4.5. Time Cost

The total time cost of SSRN and the compared methods on the PU, WDCM, Paris,
and Playa databases is shown in Table 9. In this paper, all experiments are conducted on
the Ubuntu 14.04 system, 64G RAM, Intel Core i7-5930K, and NVIDIA TITAN X. CNMF,
GSOMP, HySure, and TLSR are implemented with MATLAB. DHSP is implemented with
PyTorch. USDN and the proposed SSRN are implemented with TensorFlow. The codes
ofthe traditional methods (CNMF, GSOMP, and HySure) are implemented with the CPU. In
the compared methods, the DL-based methods include TLSR, USDN, and DHSP. However,
the code of TLSR provided by the original literature [26] is implemented with the CPU
rather than the GPU. The codes of other deep learning-based methods (USDN, DHSP, and
the proposed SSRN) are implemented with the GPU. As shown in Table 9, CNMF has
superior computational efficiency. In general, DL-based methods usually take more time
than traditional methods due to plenty of weight parameters. In the training process, the
inputs of the proposed SSRN are image patches and the inputs of TLSR, USDN, and DHSP
are entire images. Therefore, the proposed SSRN has less time cost than TLSR, USDN,
and DHSP.

Table 9. Time cost of different methods on different databases (seconds).

Methods CPU/GPU PU WDCM Paris Playa

CNMF [36] CPU 12.37 14.26 1.56 3.64
GSOMP [30] CPU 77.60 160.70 10.59 20.52
HySure [12] CPU 40.96 58.73 6.85 26.21
TLSR [26] CPU 1130.83 541.05 251.68 492.56
USDN [28] GPU 782.65 198.68 151.53 134.43
DHSP [27] GPU 796.92 1885.74 259.89 470.56

SSRN GPU 74.09 117.21 82.88 181.46

5. Discussion

The performance of the proposed SSRN heavily depends on the learning of the spectral
mapping. When the spectral information contained in MSI is too little, it becomea difficult
to learn effective spectral mapping, which may weaken the performance of the proposed
SSRN. For instance, RGB images (special MSIs), containing only three spectral bands,
have little spectral information. Similar colors in RGB images may represent different
objects. In other words, similar RGB image pixels may correspond to different HSI pixels,
which makes it challenging to learn the spectral mapping between MSIs and HSIs. In
this subsection, to explore the performance of SSRN when the MSI contains little spectral
information, the CAVE database [55] is employed to conducted experiments. The average
quantitative results are reported in Table 10. On the CAVE database, the MSI only contains
three spectral bands, making it challenging to learn the spectral mapping between MSIs
and HSIs. In terms of PSNR, UIQI, RMSE, and ERGAS, the performance of SSRN is weaker
than that of CNMF and HySure. In terms of SAM, the proposed SSRN outperforms the
compared methods.

Table 10. Quantitative experimental results on the CAVE database.

Methods PSNR UIQI RMSE ERGAS SAM

CNMF [36] 42.403 0.845 2.273 2.337 6.629
GSOMP [30] 37.204 0.824 5.122 5.439 12.556
HySure [12] 41.331 0.814 2.130 2.530 6.645
TLSR [26] 34.148 0.744 5.206 5.879 6.221
USDN [28] 37.711 0.825 3.769 3.847 11.493
DHSP [27] 34.205 0.703 5.190 5.840 7.096

SSRN 40.558 0.816 2.520 3.031 5.523
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6. Conclusions

In this paper, a spectral-spatial residual network is proposed to estimate HR HSI
based on the observed HR MSI and LR HSI. Different from previous methods that focus on
extracting spectral ingredients from LR HSI and extracting spatial ingredients from HR
MSI, the proposed SSRN directly learns pixel-wise spectral mapping between MSIs and
HSIs. In SSRN, a spectral module is proposed to extract spectral features from MSIs and
a spatial module is proposed to explore the complementarity of homogeneous adjacent
pixels to facilitate learning of spectral mapping. Finally, a self-supervised fine-tuning
strategy is proposed to estimate the spectral mapping between HR MSIs and HR HSIs
on the basis of the learned pixel-wise spectral mapping between LR MSIs and LR HSIs.
Experiments on simulated and real databases show that SSRN can effectively reduce spatial
and spectral distortions and can achieve superior performance. In the future, we will study
more efficient deep networks for learning spectral mapping between MSIs and HSIs.
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