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Abstract: Water clarity has been extensively assessed in Landsat-based remote sensing studies of
inland waters, regularly relying on locally calibrated empirical algorithms, and close temporal
matching between field data and satellite overpass. As more satellite data and faster data processing
systems become readily accessible, new opportunities are emerging to revisit traditional assumptions
concerning empirical calibration methodologies. Using Landsat 8 images with large water clarity
datasets from southern Canada, we assess: (1) whether clear regional differences in water clarity
algorithm coefficients exist and (2) whether model fit can be improved by expanding temporal
matching windows. We found that a single global algorithm effectively represents the empirical
relationship between in situ Secchi disk depth (SDD) and the Landsat 8 Blue/Red band ratio across
diverse lake types in Canada. We also found that the model fit improved significantly when applying
a median filter on data from ever-wider time windows between the date of in situ SDD sample and
the date of satellite overpass. The median filter effectively removed the outliers that were likely
caused by atmospheric artifacts in the available imagery. Our findings open new discussions on the
ability of large datasets and temporal averaging methods to better elucidate the true relationships
between in situ water clarity and satellite reflectance data.

Keywords: Landsat 8; OLI; Secchi disk depth; water clarity; Canadian lakes; empirical algorithm

1. Introduction

Obtaining a global perspective of changing freshwater quality is crucial in managing
the multiple essential water resource uses in the face of contemporary shifting climate and
land-use dynamics. The constraints of in situ lake monitoring, including access to remote
locations and effective funding for large and comprehensive sampling programs, have been
increasingly overcome through low-cost satellite remote sensing applications to map broad-
scale freshwater-quality trends in space and time. This is particularly true as more satellite
imagery becomes freely available and as tools, such as Google Earth Engine [1], provide
platforms for mass processing of image data to effectively assess large-scale patterns.

Nonetheless, the remote sensing of inland freshwater quality remains challenging
and incongruent due to the relatively small size of the majority of the world’s lakes
and reservoirs, and due to the optical complexity of Type II water bodies [2,3]. Spatial
constraints that are introduced by the large pixel sizes of the historic ocean color sensors
(such as MERIS, MODIS, and SEAWIFS) have been overcome by applications of higher
resolution sensors, such as those aboard the SPOT [4,5], Landsat [6–10], and, most recently,
Sentinel-2 [6,11,12] satellites, and CubeSat constellations, such as PlanetScope [13–15],
despite band designations for these sensors being optimized for extracting information from
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land surfaces, rather than water features [2,16]. Optical complexity constraints to traditional
bio-optical modeling, including more convoluted optical signals from the diverse water
column constituents of Type II waters, as well as a lack of sufficient data on inherent optical
properties in many locations, has resulted in the wide application of empirical modeling to
extract freshwater quality information from satellite imagery [7,8,10,16,17].

Empirical modeling most often proceeds through statistical regression, relating visible
or near-infrared (NIR) spectral bands or band ratios to optically active in situ water column
characteristics, such as water clarity [8,9,12,16,18,19]. These models have traditionally
been calibrated locally within a distinct geographical area [20–27] or in a specific water
body [6,7,28–31], with temporal matching between the in situ sampling date and satellite
overpass generally one day and up to a maximum of one week apart [8,12,20,22,32,33]. As
such, most freshwater quality remote sensing studies rely on carefully timed in situ sam-
pling programs to capture the lake conditions mirrored in a nearly simultaneous satellite
image in order to minimize the error incurred from expected natural variation in water qual-
ity and water optics. The applications of resultant algorithms have also been constrained
to the specific spatial and seasonal conditions of the calibration dataset [24,25,34,35].

As satellite imagery becomes increasingly accessible, and as computer infrastructure
and interactive data servers make mass processing of satellite data possible at new levels of
efficiency and speed [1,36], there is a new opportunity to re-evaluate traditional empirical
calibration methods with very large datasets. Data filters, for example, can be explored
as a way to limit the impacts of inevitable remote sensing data outliers that are caused by
haze. One such data filter simply involves taking the median image value [37,38] over a
set time period. Applying these filters using different time window sizes allows for us to
test the temporal assumptions in algorithm calibration by assessing temporal bounds for
adding more data to the algorithm development process. Understanding the impact of ever
broader temporal windows also provides the opportunity to use less conventional data
sources in the calibration process, including large-scale government and citizen-science
monitoring efforts, where finding a close temporal match between the dates of in situ
sampling and dates of cloud-free satellite imagery may be difficult [12,39].

In Canada, multiple provincial government and citizen science programs provide time-
series data for several thousand lakes across the country, reaching as far back as the 1950s.
Canada has more than 50% of the world’s natural lakes, with almost 900,000 lakes > 10 ha [40],
yet the water quality in the vast majority of these water bodies remains uncharacterized
due to the sheer number of lakes and access issues in remote locations. Canada also has
a wide variety of lake types, ranging from rocky, biologically unproductive lakes of the
Boreal Shield, to semi-arid and biologically productive lakes in the prairies, and, therefore,
it represents a unique opportunity to comprehensively assess how spatial variability in lake
optical properties impacts satellite reflectance signals. Particularly, this large data resource
allows for us to explore the stability of empirical algorithms across diverse lake regions.

Although recent sensors, such as Sentinel-2, are more fine-tuned for water applica-
tions, Landsat still remains an important option given its long historical run and, thus,
prospective for reconstructing historical data records. If the objective of remote sensing
algorithm development is to help fill spatial and temporal data gaps in lake quality datasets,
the Landsat program still remains an extremely valuable satellite resource for Type II water
bodies. To improve the ultimate applicability of these remote sensing empirical algo-
rithms for monitoring and management questions, we used a very large dataset across all
10 provinces of Canada (1) to assess the existence, extent, and geographical boundaries for
regional differences in water clarity remote sensing empirical algorithm coefficients across
diverse lake optical types and ecozones, and (2) to assess whether model fit information
can be gained using different temporal matching windows between the date of in situ
sampling and the date of satellite overpass, and from using data filtering regimes. For
this study, model calibration proceeds through the regression of Landsat 8 OLI visible
band ratios on in situ Secchi disk depth (SDD) data from provincial-level government and
citizen science monitoring efforts. The models are validated with SDD measurements that
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were taken by the NSERC Canadian Lake Pulse Network, a three-year highly controlled
sampling program designed to develop an in-depth characterization of lake health across
the country [41].

2. Materials and Methods
2.1. Study Area

It is estimated that there are around 900,000 lakes greater than 10 ha in Canada, which
collectively cover over 7% of the surface area of the country [40]. Most of these lakes,
particularly in the north of the country, remain completely inaccessible to all but air travel
and, therefore, have never been sampled. As such, datasets used and inferences made
in this study are limited to lakes in the ten provinces within the southern half of the
country. These lakes are spread over seven ecological zones (ecozones) (Figure 1), which
are broad geographical classifications of landscapes in Canada that account for biological,
climatological, and geological variability across the country. Table 1 summarizes lake
characteristics by ecozone. The Pacific Maritime is located in the far west of the country
and it is characterized by significant precipitation and mountainous topography. The
Montane Cordilleran, while also mountainous, is generally drier in climate than the Pacific
Maritime. To the east of the major mountain ranges lies the Prairies and Boreal Plain,
flatter regions that are characterized by herbaceous vegetation, sedimentary geological
foundations, and often mesic or even semi-arid climate conditions. The Boreal Shield,
the largest ecozone in Canada, occupies the center of the country, with temperate climate
conditions, characteristic thin soils and exposed ancient rock formations, characteristic
coniferous forests, and a high density of lakes. The Mixed Wood Plains lies in the southeast
of the country, and it is one of the most populated regions of Canada due to its relatively
milder climate and more productive soils for agriculture, but has a far lower density of
small and medium sized lakes than the Boreal region to the north. Finally, the Atlantic
Maritime lies on the eastern side of the country and it is characterized by an ancient
mountain range that extends down along the eastern edge of the United States. For the
purposes of this study, lakes in the Pacific Maritime and Montane Cordilleran are lumped
together for subsequent analysis due to smaller sample sizes and similar characteristics, as
were lakes in the Boreal Plain and Prairies.

Table 1. Characteristics of lakes in Canada within ecozones represented in this study.

Ecozone Lake Origin Lake Characteristics Lake Productivity

Pacific Maritime and
Montane Cordilleran

Mainly glacial scouring.
Some tectonic processes. Sparser density, but varied characteristics. Mostly unproductive

Boreal Plain
and Prairie Glacial deposition of till.

Softer sedimentary rock. Formed in a thick
overburden of clay, till and soil. Shallow with

rapid sedimentation rates. Sometimes ephemeral
Productive

Boreal Shield Glacial scouring. Thin soils and highly weather-resistant rock.
Low sedimentation rates. Large density of lakes. Unproductive

Mixed Wood Plain Glacial deposition.
Formed in sedimentary rock and thick

overburdens of glacial deposits. Heavily
influenced by human settlement.

Often productive

Atlantic Maritime Glacial scouring. Many lakes underlain by hard igneous and
metamorphosed rock. Mostly unproductive
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impacted by the presence of algae (chlorophyll-a), zooplankton, suspended solids, and 
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2.2. In Situ Data

Secchi disk depth (SDD), a half-white/half-black disk that is submerged into water
to test clarity, is one of the most consistently measured water quality parameters in broad
scale government and citizen science lake sampling programs, due to its low cost and
easy-to-replicate methodology. SDD acts as an effective proxy for water quality, as it is
impacted by the presence of algae (chlorophyll-a), zooplankton, suspended solids, and
color dissolved organic matter (CDOM) [42,43]. It is also often used as an indicator of lake
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trophic state or eutrophication status [44,45] and, therefore, can be linked to concepts of
lake health and ecosystem services [46].

To explore empirical SDD algorithms for lakes across Canada, an extensive data-
compilation effort was undertaken, which resulted in the amalgamation of data from the
British Columbia Lake Monitoring Program, Alberta Environment and Parks, Ontario
Broad Scale Monitoring Program, Ontario Lake Partners Program, Quebec Volunteer Lake-
Monitoring Program, New Brunswick Department of the Environment, and data obtained
from the University of Saskatchewan and the online water quality data suppository water-
rangers.ca. Most of the provincial sampling programs extend back in time to well before
the launch of Landsat 8 in 2013, yet, for this study, the data were constrained to the Landsat
8 operational period (2013–2019). The data were further constrained to a summer seasonal
window (15 June to 15 September) to restrict the analysis to summer/peak temperature
and growing season/summer stratified conditions in the sample lakes. The repeat samples
from the same lake were accepted as separate data points for initial algorithm development,
as we are primarily interested in the optical relationship between the in situ point and the
Landsat 8 band pixel reflectance values, and, therefore, data points can be viewed as being
statistically independent from each other. This is particularly true, as lakes are non-static
systems where water clarity conditions at a sampling station can vary over short time
intervals in response to wind, water currents, nutrients, and sediment load patterns and
processes [47–49]. A total of 8655 unique sample points were available for screening against
geographically matched cloud-free Landsat 8 images in the image processing steps shown
below. Upon initial processing, 2548 unique sampling points were matched within seven
days of an available cloud-free image. Exploratory data analysis identified 10 potential
outliers from this dataset, mostly consisting of very high in situ SDD or Landsat 8 Blue/Red
values. Once these large outliers were removed, the in situ SDD values in this study fell
between 0.1 m to 15 m, with a median SDD for the entire dataset of 3.48 m, representing
mesotrophic conditions [44].

Figure 1 shows the distributions of SDD values per unique sampling point within the
different ecozones represented in this study. SDD tended to be highest in the Pacific Mar-
itime and Montane Cordilleran (clearest water conditions) (median SDD = 6.4 m) and low-
est in the Boreal Plains and Prairies (most turbid water conditions) (median SDD = 1.3 m).
The Pacific Maritime and Montane Cordilleran also had the largest range of SDD values,
while the Boreal Plains and Prairies had the smallest range. The three ecozones to the east
all had similar distributions and similar median SDD values to each other (Boreal Shield
median SDD = 3.7 m, Mixedwood Plain median SDD = 3.6 m, Atlantic Maritime median
SDD = 3.5 m), with most of the sample points in this study occurring in the Boreal Shield.
In total, 22.5% of the sample stations assessed across all ecozones had more than four
repeat samples over the study period (2013–2019), and Figure 2 graphs intra-sample station
SDD variability for these lake stations. The variability per sample station was generally
consistently high in the Pacific Maritime and Montane Cordilleran, and consistently low in
the Boreal Plain and Prairies. The three ecozones to the east (Boreal Shield, Mixedwood
Plains, and Atlantic Maritime) all had some stations with relatively high variability and
some stations with relatively low variability, indicating that other factors than ecozone
characteristics play strong roles in per lake SDD fluctuations in these regions.

Provincial data sources were supplemented with SDD measurements from the NSERC
Canadian Lake Pulse Network. The Lake Pulse Network is an academic-government
research partnership that is designed to provide Canada’s first national-level assessment
of lake health [41]. Three summer (1 July 10 September) field seasons (2017–2019) of
comprehensive limnological studies resulted in the measurement of multiple water quality
parameters in approximately 680 lakes across the country. Each lake was only sampled
once during the campaign. Water clarity, as SDD, was measured in both the morning and
afternoon, with the mean values for lakes used in this study. Lake Pulse data is known to
be of high quality due to extensive training of field personnel, and therefore is used in this
study as a validation dataset against the potentially less precise citizen science efforts. It is
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important to note that the validation dataset remains independent of the model calibration
dataset, as different lakes were sampled in the different campaigns (no repeat samples).
Although Lake Pulse field crews sampled lakes in the 10 Canadian provinces and two
territories (Yukon and Northwest Territories), only provincial data (sample size = 592),
representing the southern portion of Canada, was used for validation in this study due to
limited sample stations and the lack of provincial data for the northern locations. Therefore,
the algorithm results are only applicable to lakes in the southern half of the country (colored
area in Figure 1A).
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Figure 3 shows the data available for calibration (provincial government and citizen
science sources) and validation (Lake Pulse). Sample stations in the calibration dataset
(green points) were the densest in the southeast of the country in the Mixedwood Plain
ecozone and in the southeastern portion of the Boreal Shield ecozone. Good distribution
of data was also apparent in the western half of the country. Data gaps in the middle of
the country are due to limited government lake monitoring programs in the provinces of
Saskatchewan and Manitoba. Limited calibration data in the northern portions of Ontario
and Quebec (provinces in the center-east of the country) are due to a lack of roads and
access points to most lakes in these areas. The Lake Pulse dataset (validation dataset shown
as orange points in Figure 3) was more evenly distributed across the study area due to
careful sample design to more effectively characterize lake health status across the southern
part of the country. Nonetheless, parts of Ontario and Quebec still remain unsampled due
to difficulty of access issues. The higher proportion of Lake Pulse sampling stations in the
Prairie and Boreal Plain ecozones likely explains the higher proportion of low SDD values
in this dataset relative to that of the citizen science (Figure 3 histogram). Nonetheless,
both of the datasets contain a similar range of available SDD values for both calibration
and validation.
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2.3. Image Processing

For the remote sensing algorithm development, we used Landsat 8 images from
the U.S. Geological Survey (USGS) Surface Reflectance Product, with band reflectance
values being extracted using Google Earth Engine (GEE) [1]. The atmospheric correction of
these images is based on the Landsat 8 Surface Reflectance Code (LaSRC), which uses an
internal radiative transfer model with input from a MODIS climate modeling grid, and
digital elevation that is derived from GTOPO5 [50]. Further atmospheric correction can
often be helpful due to the difficulty of extracting correct surface reflectance from darker
objects, such as water bodies, yet most of the correction methods require information on
inherent optical properties that are difficult to obtain for remote lakes. The LaSRC has been
compared to other atmospheric correction regimes, including MAIN [51], ATCOR, and
FORCE [52], and it has been found to perform favorably. The Landsat 8 surface reflectance
images also include standard geometric and terrain correction.

To assess regional/spatial boundaries for calibrating regression coefficients between
the in situ SDD measures and Landsat 8 surface reflectance, a temporal window of seven
days between field measure and satellite overpass was applied given its acceptance in
the literature [8,20,22,32]. A one-day window between the date of in situ sample and the
date of satellite overpass was also used to test regional/spatial coefficient boundaries, as
eutrophic and mesotrophic lakes may be susceptible to more rapid changes due to short-
term weather events and associated nutrient enrichments. Only images with less than 50%
cloud cover were processed in an initial screening of data in GEE. Next, a 60 m buffer was
applied around the in situ sampling point coordinates, with pixel values within the buffer
being averaged to represent point reflectance values. Note that, although buffering it is
a common practice in remote sensing studies, the assumption that the buffer represents
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the point measurement can introduce errors of scale mismatch [53]. Pixel-values that were
extracted from the buffer zone were then closely examined for data quality and further
evidence of cloud cover by assessing band reflectance values as well as the quality band
(‘pixel_qa’) values from the Landsat 8 surface reflectance product. All of the images with
negative reflectance values in the visible and NIR region were removed from the analysis,
as were all ‘pixel_qa’ values that indicated cloud probabilities (only pixel-qa = 324 was
accepted) [54]. For in situ data that matched to two or more images within the seven-day
temporal window (as a result of scene overlap), the median value of their reflectance was
used. In total, 1513 unique sampling points were available for algorithm calibration using
the seven-day time window approach, and 403 unique sampling points were available for
algorithm calibration using the one-day time window approach.

Once regional patterns were examined and effective spatial boundaries defined for
algorithm calibration, temporal bounds for effectively capturing the relationship between
in situ measurements and cloud-free images were assessed by applying a median filter on
ever-wider time windows (and, thus, incorporating ever increasing satellite reflectance
information into the analysis). Median filtering can potentially improve algorithm fit
through removing image outliers that are caused by atmospheric effects. The temporal
windows used for this analysis are defined, as follows:

• Same Day: image reflectance within a one-day time window of the in situ sample date
for each sample station regressed against the in situ sample.

• Same Week: median (from scene overlap if applicable) image reflectance within a
seven-day time window of the in situ sample date for each sample station. This was
regressed against the in situ sample per sample date.

• Same Month: median image reflectance within a 30-day time window of the in situ
sample date for each sample station. This was regressed against the median of the in
situ samples within the same 30-day time window for a given sample station.

• Same Year: the median image reflectance within the same summer the in situ sample
was taken for each sample station. This was regressed against the median of the in
situ samples within the same summer window for a given sample station.

• All Years: median satellite band ratio of all available images through the Landsat
record (2013–2019) regressed against the median of all repeat in situ samples of a
single sample station over that same time period (2013–2019).

Note that repeat lake measurements only occurred for a portion of the lakes, the me-
dian values of in situ samples for the Same Month, Same Year, and All Years time windows
described above often only represent a single measurement (39.5% of sample stations only
have 1 in situ measurement, 24.0% of sample stations have two repeat measurements, 14%
have three repeat measurements, and 22.5% have four or more repeat measurements).

All of the images for the temporal window analysis were screened identically to
the procedure that is described above for the spatial analysis of coefficient fit. A total
of 2755 images were processed representing 59,774 unique sample points for 978 lake
sample stations across the Landsat 8 image record (2013–2019) for the provincial calibration
dataset, and a total of 3938 images were processed representing 14,475 unique sample
points for 592 lake sample stations across the Landsat 8 image record for the Lake Pulse
validation dataset.

2.4. SDD Algorithm Calibration

The band ratios are often used for remote sensing empirical algorithm development
with Landsat images as band ratios tend to eliminate noise in the reflectance signal origi-
nating from underlying water body optical characteristics [55,56]. There have been many
studies assessing optically active water quality constituents using Landsat images, so much
is already known regarding how bands respond to the optical signals of water clarity. In
the Landsat literature, certain band ratios have shown to be quite effective across diverse
lake clarity systems. This is the case for the Landsat Blue/Red ratio, which has repeatedly
proved effective in estimating water clarity/ SDD readings in diverse water body types
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across North American and the world [8,12,16,28,32,35,57], with clarity levels ranging
from 0.1–15 m. Generally, reflectance in the blue band decreases in turbid waters, while
reflectance correspondingly increases in the red band [12,20,57,58]. Given the consistent
success of this particular algorithm in the literature, we can now start to build upon this
previous work and begin asking questions about spatial patterns at large geographical
scales. As such, we proceed with testing regional/ spatial variation in algorithm coefficients
while using this simple, parsimonious Blue/Red model. This allows for us to clearly assess
patterns and understand the results within the context of a large existing literature.

Initial data exploration identified a number of potential outliers. These outliers were
removed from subsequent analysis, as we are primarily interested in assessing the average
conditions and general patterns in lake water clarity optics in this study. There is a
strong likelihood that outliers represent atypical conditions, either in the lake itself or in
atmospheric conditions. Log transformation of SDD and the predictor (Landsat 8 Blue/Red)
was necessary to meet the assumptions of parametric regression. The final form of the
tested algorithm for the first step of analysis was ln(SDD) = β0 + β1(ln(Blue/Red)) + ε,
where β0 is the regression intercept, β1 is the coefficient for the independent variable, and
ε is the error term.

Spatial patterns in regression coefficients were assessed using two methods. First, the
model fit and model coefficients for in situ SDD by the Landsat 8 Blue/Red band ratio
were compared for the different ecozones of Canada. Second, a global regression for all
sample points across Canada was developed and residuals were mapped and graphed to
assess the geographic clustering of extreme residual values.

The best regression models incorporating geographical boundaries/spatial differences
were then re-assessed to see whether model fit could be improved by the addition of
an extra single band term (Blue, Green, Red and NIR) or by the use of more complex
polynomial models (second, third, and fourth degree polynomials). The addition of an
extra single band is common in the SDD empirical remote sensing literature [8,12,22,28,35].
Except for the polynomial models, we restricted the test models to the addition of only
a single extra term in order to avoid overfitting the models. We looked for significant
improvement in model fit (R2, RMSE and bias) to adopt the more complex algorithm forms,
as we are primarily interested in comparable and general patterns of model structure in
this study.

Finally, algorithm improvement through median filtering on ever-broader temporal
windows (as described above) was also tested to see whether this could increase the model
fit above and beyond the addition of extra model terms or more complex model forms.
Differences in model fit for these different temporal-window regressions were compared
using model R2, root mean square error (RMSE), and statistical bias using the metrics
package [59] in the software R [60].

2.5. SDD Algorithm Validation

The final models were fully validated with the separate dataset from the NSERC
Canadian Lake Pulse Network. A four-fold (k-fold) cross-validation was also performed
on the citizen science data using the DAAG package [61] in the software R [60]. The data
were partitioned into k equal subsamples per model, with one subsample being used
for validation and three used as training data. This process was repeated four times, so
that each subsample was used once for validation. R2 shrinkage was assessed for the
cross-validation models using the bootstrap package [62].

3. Results

Regressions that were run between in situ SDD and Landsat Blue/Red band ratios
for the different ecozones generally showed better R2 values for the one-day temporal
window between the date of in situ sample and the date of satellite overpass as compared
to results for the seven-day temporal window, although the RSME values were lower for
the seven-day window (Table 2). The model coefficients varied for the one-day window,
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where less data were available, but were generally more consistent using the seven-day
window (except for the boreal shield), where significantly more data points were available
to test patterns. Except for the Atlantic Maritime, the model coefficients were slightly
higher (steeper slopes) for the one-day window than for the seven-day window. All of the
data for the one-day window and the seven-day window were plotted on a single graph
as well as individual ecozone graphs in Figures 4 and 5. Although different ecozone data
clustered in different parts of the main distribution, both the results depicted in the one-day
window and seven-day window Figures suggest that all points, regardless of ecozone,
effectively fit within a single data distribution. These results indicate that the relationship
between in situ SDD and Landsat 8 Blue/Red was consistent across wide ranging lake
optical types throughout the entire southern portion of Canada.

Table 2. Regression models estimating in situ SDD from Landsat 8 Blue/Red surface reflectance for
different ecozones or ecozone groupings in the southern half of Canada. (df = degree of freedom;
RMSE = root mean square error).

Ecozone Intercept Coefficient df RMSE R2

Using 1-Day Window

Pacific Maritime and
Montane Cordilleran 0.670 1.709 35 3.23 0.477

Boreal Plain and Prairies 0.302 1.634 43 1.12 0.523

Boreal Shield 0.8169 1.092 203 1.70 0.263

Mixed Wood Plains 0.673 1.479 54 1.44 0.549

Atlantic Maritime 1.007 0.879 27 2.21 0.116

Using 7-Day Window

Pacific Maritime and
Montane Cordilleran 0.9033 1.3489 144 3.07 0.402

Boreal Plain and Prairies 0.2501 1.5999 243 0.93 0.420

Boreal Shield 0.8734 0.9436 761 1.71 0.200

Mixed Wood Plains 0.7612 1.3258 248 1.37 0.444

Atlantic Maritime 0.6722 1.5796 109 1.72 0.384

Proceeding with a global regression model using the seven-day temporal window
(ln(SDD) = 0.59 + 1.56*ln(Blue/Red), p-value < 0.0001, R2 = 0.467), the regression residuals
were mapped to assess the existence of any spatial patterns in extreme residual values
that fall outside of ecozone boundaries. Figure 6 shows both unstandardized residuals
(in the histogram) and standardized residuals (plotted on the map) for this global model.
Unstandardized residuals follow a normal distribution, with most of the unstandardized
residuals falling within −1 m and 1 m, and the median being centered slightly above 0 m.
Most of the standardized residuals fall within 1.96 standard deviations of the mean in
this study, with little apparent spatial pattern in how extreme positive (blue points) and
negative (red points) standardized residuals are distributed across the country. High and
low residuals both occur in all tested ecozone groupings.

Because our initial spatial assessment indicated that no clear geographical boundaries
exist in the application of algorithm coefficients for the Blue/Red band ratio model, a single
global model, incorporating data from all ecozones, was used as a base to test the model
improvement through the addition of extra terms or the use of more complex polynomial
model forms. Table 3 shows the results from these tests, using the seven-day temporal
window. Single band models all showed a slight improvement in model fit (particularly in
bias and adjusted R2 values), with the best model incorporating the addition of the green
single band (bias = 0.349, adjusted R2 = 0.504). Polynomial models showed a progressive
improvement in adjusted R2 with model complexity, but they also showed an increase in



Remote Sens. 2021, 13, 1257 11 of 21

model bias with model complexity. Improvements in RMSE were minimal for all tested
models, falling from 1.87 to a minimum of 1.85. Given the limited model improvements
with the more complex model forms, we decided to proceed with the assessment of median
filtering on ever increasing temporal windows using the original single band ratio model
(Blue/Red) in order to simplify the results and improve comparability with other studies.
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groupings plotted in color over a grey cloud representing the complete dataset. Points are color-coded by ecozone,
consistent with previous plots. Green represents the Pacific Maritime and Montane Cordilleran, maroon represents the
Boreal Plain and Prairies, purple represents the Boreal Shield, orange represents the Mixed Wood Plains, and blue represents
the Atlantic Maritime.

Table 4 shows the regression models for the five different median filter temporal
window sizes with the global regression of natural logarithm transformed SDD on natural
logarithm transformed Landsat 8 Blue/Red. Model fit significantly improved when in-
creasing imagery data input from the median of ratios for one day (R2 = 0.421) or one week
(R2 = 0.47) to the median for one month (R2 = 0.51) and median for one year (R2 = 0.51),
and then again to the median for summer observations from all years (R2 = 0.65). Bias also
decreased significantly with increasing temporal window sizes, as did the RMSE, except
for a slight increase in RMSE between the median of the same year and median of all
years models. Figure 7 plots data for the different temporal windows. With progressively
increasing temporal windows, the data distribution clearly tightens around the line of best
fit, indicating the removal of problematic sample points through median filtering. The
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model coefficients (slope) also increased with median filters on larger temporal window
sizes, with low SDD values tending to be overestimated and larger SDD values underesti-
mated in models using smaller time windows as compared to models using larger time
windows (Figure 7). Increasing the slope with median filtering over larger time windows
improved model estimation of low SDD values, but very low values (SDD < 1 m) remained
overestimated by all the models.
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Figure 6. Standardized (on map) and unstandardized residuals (on histogram) for global regression model between in situ
SDD and Landsat 8 Blue/Red for data taken within a one-week temporal window of each other.

Table 3. Expanded regression models estimating in situ SDD from Landsat 8 Blue/Red surface reflectance using additional
terms or different order polynomial models. Models use data for the seven-day temporal window between date of in situ
sample and date of satellite overpass. (df = degree of freedom; RMSE = root mean square error).

Equation Form df BIAS RMSE R2 Adjusted R2

Ln(SDD) = Ln(Blue/Red) 1511 0.361 1.87 0.467 0.467
Ln(SDD) = Ln(Blue/Red) + Blue 1510 0.354 1.87 0.477 0.477

Ln(SDD) = Ln(Blue/Red) + Green 1510 0.349 1.85 0.505 0.504
Ln(SDD) = Ln(Blue/Red) + Red 1510 0.357 1.86 0.487 0.486
Ln(SDD) = Ln(Blue/Red) + NIR 1510 0.362 1.86 0.468 0.468

Ln(SDD) = Ln(Blue/Red) + (Ln(Blue/Red))2 1510 0.387 1.85 0.478 0.470
Ln(SDD) = Ln(Blue/Red) + (Ln(Blue/Red))2 + (Ln(Blue/Red))3 1509 0.386 1.85 0.478 0.477

Ln(SDD) = Ln(Blue/Red) + (Ln(Blue/Red))2 + (Ln(Blue/Red))3 + (Ln(Blue/Red))4 1508 0.387 1.85 0.479 0.478
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Table 4. Regression models estimating in situ SDD from Landsat 8 Blue/Red surface reflectance for different temporal
windows. (RMSE = root mean square error).

Temporal Window Sample Size Intercept Coefficient RMSE Bias R2 Cross-Validated R2

Same Day 403 0.6834 1.4320 2.65 0.413 0.421 0.420
Median of Same Week 1513 0.5877 1.5620 1.87 0.361 0.467 0.465

Median of Same Month 2139 0.5237 1.7205 1.80 0.319 0.509 0.508
Median of Same Year 1879 0.5500 1.7040 1.65 0.287 0.512 0.511
Median of All Years 977 0.3729 2.1452 1.75 0.261 0.645 0.643
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within a 1-day window, (C) median SDD versus median Blue/Red within a 7-day window, (D) median SDD versus median
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versus median Blue/Red over the entire Landsat 8 record (2013–2019) per sample station. Note, in graph A, lines for ‘Same
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Figure 8 shows the validation of median filtering results using the separate dataset
generated by the LakePulse program. The LakePulse dataset has a larger proportion
of low SDD values (see Figure 3) than the calibration dataset, which clearly highlights
the poor performance of all median filter models at effectively predicting values of
SDD < ln(0) (SDD < 1 m). These low values of SDD are consistently overestimated, al-
though the degree of overestimation decreases with increasing temporal window size.
Nonetheless, the models, particularly using median filtering on the one-month, single
season, and all years time windows, were able to effectively estimate the observed SDD for
values greater than 1 m. The tightest estimate of SDD around the 1:1 line was found in the
model using median data from all years. The poorest performance was found in the model
using data from the same day of satellite overpass.
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median Blue/Red over the entire Landsat 8 record (2013–2019). Points represent the mean predicted value to the observed
value for the validation dataset (Lake Pulse data). Diagonal lines represent the 1:1 line.

4. Discussion

The results of this study demonstrate that using very large imagery datasets can
give new insight into the calibration of Landsat 8 water quality remote sensing empirical
algorithms. The predictive power of the best model in this study can be considered to be
good (R2 = 0.645 for the All Years model), despite calibration with optically variable lake
types from multiple data sources. It is possible that a more water-specific atmospheric
correction regime may have improved model fit by the better removal of atmospheric
artifacts in the images used, but this type of assessment was outside the scope of this study.
This study also confirms the effectiveness of the Landsat Blue/Red band ratio for use in
estimating SDD from satellite imagery, as has been demonstrated in a number of other
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studies in a large variety of lake systems [8,12,16,22,28,35,57,58,63], with a combined range
of SDD values that are similar to that seen in our dataset for Canadian lakes (0.1–15 m).
Some of these studies found improved algorithm fit with the addition of a second single
band regression term, most commonly the Blue, Green or Red band. Although expanding
models with the addition of a second band term, especially the addition of the Green
band, resulted in small improvements in model fit in this study, these improvements were
only minor when compared to the improvement that is seen with using more imagery in
our tests of median filtering techniques. Given the minor improvements from expanded
models, they would have also provided comparable consistency in the median filtering
tests as to what we found using the most parsimonious Blue/Red model form. Recent
published studies are now using machine learning [51,64] and novel spectra processing
techniques [65] to improve algorithm fit for the extraction of other optically active water
column constituents (chlorophyll-a, total suspended solids, and color dissolved organic
matter), and it would be interesting in future work to see how such modeling techniques
that are applied to the extraction of Secchi disk depth compare to the more parsimonious
model form that we used, and how these newer techniques would also respond to the
median filtering methods applied here.

In this study, data from a wide variety of lake types across Canada, including deep
oligotrophic lakes on the west coast, eutrophic prairie pothole lakes in the central plains,
and glacial scour lakes of the boreal region, all appear to cluster in a single distribution when
in situ SDD is graphed against the Landsat 8 Blue/Red bands. This result was unexpected,
particularly as previous studies have most often been calibrated locally for individual
lakes or regions of similar lakes [6,19–21,23,25,26,30] and, thus, algorithm calibration has
generally only been tested across a more limited range of lake optical types and SDD
values than attempted in this study. When tested individually, different Canadian ecozone
groupings showed some differences in the model coefficients and model fit, likely due to
more limited spread in in situ SDD values that ultimately obscured the main trend apparent
once individual regions were visualized within the entire dataset. This was particularly
true for lakes of the Boreal Shield ecozone, which had a more moderate range of Secchi
depths and a less obvious distribution trend when assessed alone. These results may have
important implications for exploring more universal patterns in water clarity optics, and
exploring the usefulness of large sample sizes over larger regions for discerning true trends
in the spectral relationships.

Nonetheless, the global model only performed well for SDD > 1 m, as seen in the
validation procedures, or lakes that exhibit oligotrophic to mesotrophic conditions accord-
ing to Carlson’s trophic index [44]. The global model tended to over-predict SDD in the
higher eutrophic to hypereutrophic range and, thus, was unable to predict the extent of
eutrophication, although the model was able to distinguish whether a lake had reached a
threshold of high trophic status/low clarity (i.e., SDD < 1 m). The trend of model overesti-
mation of SDD > 1 m is clearly apparent in Figure 8, as the validation dataset for this study
had a larger proportion of low value or eutrophic SDD data points than the calibration
dataset. Low water clarity in lakes can be influenced by several optically active water body
constituents, including chlorophyll-a, suspended sediment, and color dissolved organic
matter (CDOM), which may uniquely influence spectral signals [3]. Highly eutrophic lakes
in Canada are often clustered in the Prairie and Boreal Plain ecozones, where clarity is influ-
enced by a complex mix of inorganic sediments, macrophyte biomass, and phytoplankton
blooms [66,67]. More research in regions with a larger variety of types of optically active
water column constituents in these low clarity systems is necessary to better assess whether
a more universal calibration with Landsat band ratios is possible when SDD < 1 m.

Remote sensing studies generally calibrate empirical algorithms using a short time
window between in situ sampling and satellite overpass in order to optimize the similarity
of conditions between the lake point measurement and image pixel [8,12,20,22,32,33].
The emphasis on short time windows assumes that water optics at the sampling point
or pixel level can change significantly over the course of days or weeks, limiting the
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capacity of larger temporal gaps in satellite overpasses to adequately represent in-lake
sampling conditions [8,32]. Nonetheless, in this study, we found that applying a median
filter with ever broader time windows consistently resulted in improved algorithm fit. As
time windows increased, median filtering preferentially removed data points from the
upper left part of the distribution of in situ SDD against Landsat 8 Blue/Red (as seen
in Figure 7), where lakes with high clarity were matched to Blue/Red ratio values more
reliably associated with lower clarity lakes. This preferential point removal resulted in a
steeper regression slope, thereby also improving the algorithm fit for very low clarity lakes
(Figure 7). One likely reason for the model fit improvements from median filtering on large
time windows is that repeat satellite data over a given location is inherently variable due to
atmospheric influences such as haze [68]. Adding more data to the analysis and assessing
median band ratio data may remove atmospheric artifacts that were not already filtered
out through atmospheric correction and data cleaning steps. As such, it is possible that
applying the median filter over wider time windows helps us to better discern the real
Landsat 8 Blue/Red surface reflectance over a water area pixel. A similar improvement
was also seen when applying temporal averaging for estimating color dissolved organic
matter (CDOM) in a much smaller subset of lakes in eastern Canada [69].

Applying the median filter should only be effective if the following assumption is met:
variability in SDD in the modeled area of the lake is less over a week, a month, a summer,
or summers from 2013–2019 than is the variability in image conditions over that same
time period. Restricting analysis to the summer season may have helped to reduce large
fluctuations in clarity at a sampling station between years. The log transformation of data
for algorithm calibration also relativizes clarity differences, such that larger differences in
clear lakes have less impact on model fit than large differences in turbid lakes. Further,
although lake clarity does vary over short time periods in response to nutrient and sediment
release and wind and water currents, this variability is often much less than the noise
inherent in satellite data. Noise in dark objects, such as water bodies, is persistent and
challenging [70,71], and passing a filter over the results is therefore helpful in reducing this
noise. A median filter is a simple filter that is insensitive to outliers, which is important
for remote sensing imagery [37,38]. Prior to recent years, it would have been impractical
to consider filtering multiple images for empirical algorithm calibration, because imagery
was scarce and data acquisition and processing was expensive and time-consuming. Now
that we have extensive imagery reserves and effective mass-processing servers, such as
Google Earth Engine, we have the ability to consider more sophisticated treatment, such
as techniques similar to what is seen in the emerging body of signal processing literature,
where there are multiple observations for a given signal (e.g., [72–74]).

5. Conclusions

Integrating various Canadian provincial government and citizen science monitoring
efforts into a large dataset allowed us to effectively demonstrate a lack of geographic
variability in algorithm coefficients across diverse lake types in Canada. In general, a
single global algorithm was able to effectively define SDD for lakes within boreal, prairie,
mountainous, and agricultural-productive regions. The single Landsat 8 Blue/Red band
ratio proved to be almost as effective as more complex models in estimating SDD across
southern Canada, which raises strong possibilities for further study and comparison in
other national and international contexts. Furthermore, using this large dataset along
with the massive imagery data processing and server resources from Google Earth Engine
allowed us to test how applying a median filter on increasing the temporal window sizes
between the date of in situ data sampling and the date of satellite overpass impacted
model fit. Ultimately, we demonstrated that applying the median filter to large time
windows reduced some of the noise inherent in satellite reflectance signals. Models using
summer season data from all years of Landsat 8 operation (2013–2019) had significantly
better fit than models using other temporal windows, particularly those using one-day
and seven-day temporal differences between the date of in situ sample and the date of
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satellite overpass. Overall, the results of this study provide readily computationally and
comprehensively applicable tools and methods that water managers can use to better
calibrate remote sensing empirical algorithms and ultimately better track changes in water
quality over wide geographical scales.
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