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Abstract: In this study, a machine learning algorithm was introduced to fuse gridded snow depth
datasets. The input variables of the machine learning method included geolocation (latitude and
longitude), topographic data (elevation), gridded snow depth datasets and in situ observations. A
total of 29,565 in situ observations were used to train and optimize the machine learning algorithm.
A total of five gridded snow depth datasets—Advanced Microwave Scanning Radiometer for the
Earth Observing System (AMSR-E) snow depth, Global Snow Monitoring for Climate Research
(GlobSnow) snow depth, Long time series of daily snow depth over the Northern Hemisphere
(NHSD) snow depth, ERA-Interim snow depth and Modern-Era Retrospective Analysis for Research
and Applications, version 2 (MERRA-2) snow depth—were used as input variables. The first three
snow depth datasets are retrieved from passive microwave brightness temperature or assimilation
with in situ observations, while the last two are snow depth datasets obtained from meteorological
reanalysis data with a land surface model and data assimilation system. Then, three machine learning
methods, i.e., Artificial Neural Networks (ANN), Support Vector Regression (SVR), and Random
Forest Regression (RFR), were used to produce a fused snow depth dataset from 2002 to 2004. The
RFR model performed best and was thus used to produce a new snow depth product from the fusion
of the five snow depth datasets and auxiliary data over the Northern Hemisphere from 2002 to 2011.
The fused snow-depth product was verified at five well-known snow observation sites. The R2 of
Sodankylä, Old Aspen, and Reynolds Mountains East were 0.88, 0.69, and 0.63, respectively. At the
Swamp Angel Study Plot and Weissfluhjoch observation sites, which have an average snow depth
exceeding 200 cm, the fused snow depth did not perform well. The spatial patterns of the average
snow depth were analyzed seasonally, and the average snow depths of autumn, winter, and spring
were 5.7, 25.8, and 21.5 cm, respectively. In the future, random forest regression will be used to
produce a long time series of a fused snow depth dataset over the Northern Hemisphere or other
specific regions.

Keywords: snow depth datasets; data fusion; machine learning algorithms; the Northern Hemisphere

1. Introduction

Snow cover is a fundamental component of the global energy and water cycles [1,2].
The extent and duration of the Northern Hemisphere snow cover have been substantially
reduced as a result of the warming of surface temperatures [3]. Snow depth is an even
more crucial parameter than snow cover area for climate studies, hydrological applica-
tions, weather forecasts, and disaster assessments [4–8]. However, reliable quantitative
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information on seasonal snow depth or snow water equivalent (SWE) and their trends
are lacking [9–12]. Currently available hemispheric snow depth gridded products include
datasets derived from microwave remote sensing brightness temperature, model simu-
lations or data assimilation, and reanalysis [10,11]. The ability of current methods and
products to give accurate snow depth estimates is limited by a number of topographic
and climatic factors [9,12,13]. Previous studies have assessed these snow depth datasets
over the Northern Hemisphere and regional scales [14–18]. These assessments indicated
that remotely-sensed snow depth agrees better with ground observations in shallow snow
conditions (0–10 cm) [9,12,13,19–21]. Likewise, reanalysis datasets are susceptible to biases
from various structural limitations (e.g., elevation biases tied to spatial resolution) and
uncertainties in the climate mean state [2,8]. The general spatial resolution of the reanalysis
snow depth datasets is about 1◦, which is too coarse to be used in hydrological and ecologi-
cal simulations [22–24]. Mudryk et al., [11] compared various gridded products across the
Northern Hemisphere and observed large spreads in SWE with magnitudes on the order
of the SWE interannual variability, with a relative uncertainty of approximately 50% in the
climatological hemispheric peak snow mass and even higher uncertainties in mountain
regions. The five gridded snow depth products over the Northern Hemisphere were
evaluated. Global Snow Monitoring for Climate Research (GlobSnow) and ERA-Interim
exhibited overall better agreements with ground observations than other datasets. Remark-
able difference was discovered during the assessment. Advanced Microwave Scanning
Radiometer for the Earth Observing System (AMSR-E) and AMSR2 agreed better with in
situ observations in shallow snow conditions (0–10 cm), while Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2) performed better when snow
depth exceeded 50 cm [9]. Mortimer et al. [10] used a seven-dataset ensemble algorithm.
Their results showed that the ensemble dataset reduced the root mean square error (RMSE)
by 10 mm (20%) and increased the correlation from 0.67 to 0.78 compared to any individual
product. Wang et al. [25] developed a multifactor power snow depth downscaling model
and significantly improved the accuracy compared with the AMSR-2 snow depth product
and others in the Tibetan Plateau. The RMSE and mean absolute error (MAE) of this
downscaled product were greatly reduced to 2.00 and 0.25 cm, respectively. Zhu et al. [26]
used a backpropagation neural network algorithm to downscale snow depth based on
microwave, optical remote sensing data, and ground observations in Northern Xinjiang
(NX), China. The downscaled snow depth dataset with a spatial resolution of 500 m had the
lowest RMSE and MAE (8.16 and 4.73 cm, respectively) among other datasets in the NX.

Machine learning methods have become an important tool in environmental remote
sensing since the 1990s and eventually spread to many application areas [27–29]. Machine
learning was first applied to snow depth retrieval by Tedesco [30], which used K– (~19 GHz)
and Ka–band (~37 GHz) vertical and horizontal brightness temperatures as input variables,
while the national operational snow observations were the target data. Tedesco et al. [30]
compared snow depth retrieved from an Artificial Neural Network (ANN) to values from
the spectral polarization difference (SPD) algorithm [31] and the Chang algorithm [32]. The
results indicated that ANN trained with observations outperformed other methods. Later,
Cao et al. [33] combined ANN with Advanced Microwave Scanning Radiometer for the
Earth Observing System (AMSR-E) brightness temperature to retrieve snow depth over the
Tibetan Plateau. The results indicated that ANN had the ability to derive a more precise
retrieval output in complex terrain areas. Snauffer et al. [8] employed ANN combined with
the six gridded SWE products in British Columbia, Canada, to derive a new SWE product.
This new product performed better than the individual products or the mean of these
products. More recently, new advanced machine learning methods have been developed
to retrieve snow depth at regional [34,35] or hemispherical scales [36,37]. Liang et al. [35]
employed the support vector machine (SVM) method to retrieve snow depth over northern
Xinjiang with visible and infrared surface reflectance, brightness temperature and auxiliary
data. The performance of SVM also outperformed the SPD method [31], the Che algorithm
in China [38] and ANN in Finland [30]. The results also revealed that more input variables
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could improve precision. Xiao et al. [37] found that the SVM method performed well
in snow depth retrieval from passive microwave brightness temperature, and auxiliary
data and thus used it to generate a long time series of snow depth for the Northern
Hemisphere [36]. Yang et al. [34] first used Random Forest (RF) to derive a long time series
of a snow depth product that was more precise than the Che algorithm output [38]. RF was
the most effective at reducing bias in SNOw Data Assimilation System (SNODAS) SWE
in Ontario, Canada, with an absolute mean bias of 0.2 mm and RMSE of 3.64 mm when
compared with in situ observations [39].

These papers demonstrated the potential of machine learning methods to produce
more accurate snow depth estimates, but they did not incorporate existing snow depth
products directly over the Northern Hemisphere. The existing snow depth datasets, which
were produced via passive microwave brightness temperature and in situ observations or
reanalysis data, are based on complex physics theory and production processes. Although
these datasets have individual advantages, there is a strong need to fuse them into a
new product that will incorporate their original characteristics. Regional climate models
can provide higher-resolution snow depth information for specific regions. However the
computational cost related to complex atmospheric physics schemes limits the production
of a product with a long time series for the entire Northern Hemisphere [40]. The statistical
downscaling snow depth is also appropriate only for specific small areas [25]. Previous
studies have demonstrated the potential for using multiple snow depth products ensembles
to improve the accuracy of snow depth datasets [8,10] and constrain uncertainty [9,11]. At
present, machine learning provides a suitable approach to fuse snow depth datasets over
large scales.

The objectives of this study include two aspects: (1) to test the performances of
different machine learning methods on the snow depth data fusion, and (2) to produce
high-quality snow depth data by using a suitable machine learning method based on five
gridded snow depth datasets and in situ observations over the Northern Hemisphere.
Section 1 presents the research background and significance. Section 2 introduces the
datasets and methodologies. Section 3 compares the three machine learning methods and
the fused snow depth dataset validation by independent in situ observations. Section 4
presents a discussion of the effect of the different input elements and compares it with the
results of previous studies, and Section 5 summarizes this work.

2. Data and Methods
2.1. Data

The snow depth datasets used in this study include three types: remote sensing snow
depth datasets (i.e., AMSR-E, NHSD and GlobSnow), reanalysis snow depth datasets
(i.e., MERRA-2 and ERA-Interim) and ground-based observations. The three remote
sensing snow depth datasets and two reanalysis snow depth datasets were considered
as independent variables (Table 1). Auxiliary data mainly include land cover data and
topographical data.
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Table 1. Summary of the main snow depth datasets used in this study.

Dataset AMSR-E NHSD GlobSnow ERA-Interim MERRA-2

Organization NASA/JAXA TPDC ESA ECMWF NASA

Spatial coverage 0◦–90◦N 0◦–90◦N 35◦–85◦N 0◦–90◦N 0◦–90◦N

Spatial resolution 0.25◦ × 0.25◦ 0.25◦ × 0.25◦ 25 km × 25 km 0.25◦ × 0.25◦ 0.5◦ × 0.625◦

Projection/Datum WGS-84 WGS-84 EASE-GRID WGS-84 WGS-84

Time resolution Daily Daily Daily 6 h Daily

Parameter
transformation SD SD SWE/ρ SWE/ρ SD * × fsc

Algorithm/Model Improved Chang
algorithm

Improved Chang
algorithm

HUT, model
assimilation TESSEL NSIPP

ρ represents snow density, ‘SD’ denotes the average snow depth in a 0.25◦ × 0.25◦ pixel, ‘SWE’ stands for the average snow water equivalent
in one pixel, ‘SD *’ denotes the average snow depth in snow-covered area of a pixel and ‘fsc’ stands for fraction of snow cover in a pixel.

2.1.1. Remote Sensing Snow Depth Datasets

(1) AMSR-E Snow Depth Dataset

The Advanced Microwave Scanning Radiometer for the Earth Observing System
(AMSR-E) is a passive microwave sensor onboard the Aqua satellite. The AMSR-E daily
remote sensing snow depth dataset was acquired from the Japanese Aerospace Exploration
Agency (JAXA, https://suzaku.eorc.jaxa.jp/, accessed on 9 February 2021). This dataset
used an improved Chang algorithm that takes into account the forest fraction [41]. If the
snow was considered shallow based on the passive microwave brightness temperature
threshold detected, snow depth was set to 5 cm. When snow depth was deemed deep, the
improved Chang algorithm was applied to retrieve the snow depth. This study used the
AMSR-E daily snow depth dataset with a spatial resolution of 0.25◦. This dataset does
not fully cover the entire Northern Hemisphere; striped gaps southward of 55◦N can be
found in the daily images. We used the adjacent two days to complete the dataset before
the fusion process. AMSR-E was launched in 2002 and discontinued in 2011. For this study
we selected all the available data from 2002 to 2011.

(2) GlobSnow Snow Depth Dataset

Global Snow Monitoring for Climate Research (GlobSnow) is a Northern Hemispheric
SWE dataset from the European Space Agency (ESA, http://www.globsnow.info/swe/,
accessed on 9 February 2021) that was based on the assimilation of satellite microwave
radiometer data and weather station data [7]. This method assimilates the daily in situ
snow depth into the Helsinki University of Technology (HUT) snow microwave emission
model to improve the simulation accuracy, obtaining more accurate snow parameters. The
spatial coverage of GlobSnow SWE is 35◦N~85◦N, with an original spatial resolution of
25 km × 25 km. In this study, the GlobSnow SWE product was transformed into snow
depth by dividing it by a constant snow density of 0.24 g/cm3. The snow depth dataset was
resampled to a spatial resolution of 0.25◦ × 0.25◦ to match the other datasets. Some days
for the month of September were not calculated as the data were missing in the GlobSnow
SWE product. The spatial coverage of all snow depth datasets was limited to 35◦N~85◦N,
matching the spatial coverage of the GlobSnow dataset.

(3) NHSD Snow Depth Dataset

Long time series of daily snow depth over the Northern Hemisphere (NHSD) [38,42]
are available from the national Tibetan plateau data center (TPDC, https://poles.tpdc.ac.
cn/, accessed on 9 February 2021). The dataset was produced based on multiple-sensor
passive microwave brightness temperature data using a modified Chang algorithm [32].
This is a dynamic algorithm that was developed at a pixel scale based on in situ snow
depth observations. For every available pixel, a linear equation between in situ snow depth
and the brightness temperature gradient in each month was built. The coefficients of these

https://suzaku.eorc.jaxa.jp/
http://www.globsnow.info/swe/
https://poles.tpdc.ac.cn/
https://poles.tpdc.ac.cn/
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equations were interpolated to all pixels in the Northern Hemisphere. In forested areas,
the forest cover fraction was used to decrease the influence of forests. Besides, to improve
the temporal consistency of the long time series of brightness temperatures, an inter-sensor
calibration was performed between neighboring sensors.

2.1.2. Reanalysis Snow Depth Datasets

(1) ERA-Interim Snow Depth Dataset

ERA-Interim [22] is the fourth generation of reanalysis data from the European Center
for Medium-Range Weather Forecasts (ECMWF, https://apps.ecmwf.int/datasets/data/
interim-full-daily/, accessed on 9 February 2021). The snow-related parameters of ERA-
Interim are derived from the hydrology tiled ECMWF schemes (TESSEL) for surface
exchange over land. In this study, snow depth was calculated from snow density and SWE.
The SWE and snow density datasets were downloaded with a resampled spatial resolution
of 0.25◦ × 0.25◦ and temporal resolution of 6 h. First, the average 6-hourly snow depths
were calculated from the SWE and snow density; then, these snow depths were averaged
to daily data.

(2) MERRA-2 Snow Depth Dataset

The Modern Era Retrospective Analysis for Research and Applications [43], Version
2 (MERRA-2) is produced by the Global Modeling and Assimilation Office of NASA
(GMAO, https://disc.gsfc.nasa.gov/datasets/, accessed on 9 February 2021). MERRA-2
offers several atmospheric and surface key variables on a global scale. The land surface
model of Catchment [43] was applied in MERRA-2. Based on the average snow depth
of the snow-covered area in a pixel and snow cover fraction, we derived the mean snow
depth of the pixel. The original spatial resolution of this product was 0.5◦ × 0.625◦. We
resampled its spatial resolution to 0.25◦ × 0.25◦ by nearest interpolation in order to match
the other datasets.

2.1.3. Ground-Based Measurement

Ground-based observations were used to construct and validate the machine learning
snow depth fusion models. There are four sources of ground observations, including the
meteorological station data from China and Russia, snow survey data from Russia, and the
Global Historical Climatology Network (GHCN) daily dataset. In this study, we selected
the observations available for the period from 2002 to 2011.

Daily snow depth of China was collected from the national meteorological information
center of the Chinese Meteorological Administration (http://data.cma.cn/, accessed on
9 February 2021), with 923 stations used in this study. This dataset offers daily snow depth,
location, and elevation of the station. Daily snow depth is manually observed at 8:00 a.m.
with a ruler. These data were calibrated and quality checked before they were released on
the national meteorological data platform.

Daily snow depth from Russia from 2002 to 2011 was derived from the Russian
meteorological center (http://aisori.meteo.ru/ClimateR, accessed on 9 February 2021).
Snow depth, location and elevation of the station, and the quality control field were
obtained from the dataset. Anomalous records were marked out in this dataset during the
quality check. After screening, there 576 stations remained in this dataset.

The snow survey data of Russia were also obtained through the Russian meteorological
center (http://aisori.meteo.ru/, accessed on 9 February 2021). This field survey dataset
contains the snow depth (i.e., deepest snow depth, shallowest snow depth, and average
snow depth), snow density every 5 to 10 days from September to May. Snow depth
larger than the deepest snow depth or less than the lowest snow depth was regarded
as anomalous and eliminated in this study. Finally, 514 efficient stations remained for
this study.

The Global Historical Climatology Network (GHCN) daily dataset (https://data.nodc.
noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00861, accessed on 9 February 2021) provides

https://apps.ecmwf.int/datasets/data/interim-full-daily/
https://apps.ecmwf.int/datasets/data/interim-full-daily/
https://disc.gsfc.nasa.gov/datasets/
http://data.cma.cn/
http://aisori.meteo.ru/ClimateR
http://aisori.meteo.ru/
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00861
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00861
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snow depth data and elevation. Data in this dataset were filtered according to the quality
control field. Data that failed in internal consistency check, climatological outlier check,
spatial or temporal check, etc., were marked out in the quality control field and removed.
Finally, 27,552 stations remained for this study.

2.1.4. Auxiliary Data

(1) Reclassification of Land Cover Data

The land cover data used in this study were from GlobCover 2009 (https://due.esrin.
esa.int/page_globcover.php, accessed on 9 February 2021), which was produced by ESA
and the Université Catholique de Louvain (UCL). GlobCover2009 includes 23 class types
according to the United Nations Land Cover Classification System (LCCS) (Table A1,
Appendix A). The land cover types of GlobCover 2009 were reclassified into five classes,
forest, shrub, prairie, bare land, and unclassified. When executing the machine learning
snow depth fusion algorithm, the type unclassified was excluded from the calculation. The
original spatial resolution of GlobCover is 300 m × 300 m. In order to match the spatial
resolution of the snow-depth datasets, the data were resampled into a grid of 0.25◦ × 0.25◦

and the land type covering the largest proportion in a grid was assumed as the true land
cover. We reclassified the original GlobCover2009 into five classes (Figure 1; Table A1,
Appendix A), consistently with previous studies [37]. Snow depth fusion models were
established in the area of forest, grassland, shrub, and bare-land, respectively.
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(2) Topographic Data

Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) archieved in,
https://topotools.cr.usgs.gov/gmted_viewer/ (accessed on 9 February 2021), is an update
of GTOPO30, and is produced by the United States Geological Survey (USGS). GMTED
offers three spatial resolutions: 30 arc-seconds, 15 arc-seconds, and 7.5 arc-seconds [44]. In
this study, the data with a spatial resolution of 30 arc-seconds were resampled into the grid
of 0.25◦ × 0.25◦ used for snow depth fusion.

2.2. Methodology and Experimental Design

In this paper, three widely used machine-learning methods (i.e., Random Forest
Regression (RFR), Support Vector Regression (SVR), and ANN) were adopted. This section
provides a general description of the three machine learning methods, experimental design
and assessment index of model performance.

2.2.1. Machine Learning Methods

ANN is typically composed of interconnected neuronal units organized in layers
and can be used in problems of classification and regression [45]. In this study, we ap-
plied the backpropagation artificial neural network (BP-ANN). Generally, the BP-ANN
model has three layers, namely the input layer, hidden layer and output layer. The input

https://due.esrin.esa.int/page_globcover.php
https://due.esrin.esa.int/page_globcover.php
https://topotools.cr.usgs.gov/gmted_viewer/
https://topotools.cr.usgs.gov/gmted_viewer/
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variables were propagated from the input layer to the output layer through the hidden
layer, while the error was transmitted in the opposite direction, thereby correcting the
connection weight of the network [46]. A neural network structure consists of a transfer
function, a learning algorithm, many hidden layers, training and predicting datasets [47].
In this work, the transfer functions tan-sigmoid and purelin were applied from the input
layer to the hidden layer and from the hidden layer to the output layer, respectively. A
combination of a gradient descent method and the Gauss-Newton method was adopted as
the learning algorithm.

Support Vector Regression (SVR) is a supervised learning algorithm for regression [48,49].
SVR relies on establishing a regression function, and SVR is a statistical learning theory-
based machine learning formalism. In the SVR model, the input variables will be first
mapped into a high-dimensional feature space using a kernel function, either linear or non-
linear depending on the relationship between the dependent and independent variables.
Then, a linear model is constructed in the feature space to balance between minimizing
errors and overfitting [50]. SVR is gaining popularity because of its many attractive features
and promising generalization performance. SVR considers an input vector and the number
of geophysical variables at a given location in space and time. Selecting a suitable kernel
function is very important in this method. In this study, the radial kernel function was
chosen for model training and prediction.

Random Forest Regression (RFR) is an ensemble learning technique that combines a
large set of decision trees for regression, and each regression tree is independent of oth-
ers [51]. Several randomized decision trees aggregate their predictions via regression [52].
The RFR generally only requires two user-defined parameters, the number of trees in the
ensemble, and the number of random variables at each tree. The RFR model has been
widely used in remote sensing information extraction because of its high flexibility and
precision. As RFR compensates the bias brought by a single decision tree through the
randomness, RFR does not easily over-fit and has extremely high accuracy and fast training
speed; thus, it is suitable for dealing with big data. In this paper, we used the randomForest R
package on the cloud platform supported by the Big Earth Data Science Engineering Project
of Chinese Academy of Science (CASEarth) (http://workbench.casearth.cn/, accessed on
9 February 2021).

2.2.2. Experimental Design

Based on previous assessments, the performance of different snow depth products
shows inconsistencies in different seasons and landcover types [11,15,17]. A complete snow
cover year was defined as the period between September of the previous year (t-1) and
May of the current year (t). Additionally, a complete snow year was divided into three
snow-seasons [16,53]: autumn (September to November), winter (December to February)
and spring (March to May). In this study, seasonal information and land cover types were
used as a priori conditions to form 12 models. In total, three machine learning algorithms
were applied in this study, thus extending these 12 models to 36 models (Figure 2).

In these models, the input variables included AMSR-E, NHSD, GlobSnow, MERRA-2,
ERA-Interim, latitude, longitude, and elevation. In the phase of model training, the inde-
pendent input variables were Latitude, Longitude, Elevation, AMSR-E, NHSD, GlobSnow,
ERA-Interim, and MERRA-2 snow depth datasets, and the dependent variable was the
set of in situ observations. In the phase of the model prediction, the input variables were
Latitude, Longitude, Elevation, AMSR-E, NHSD, GlobSnow, ERA-Interim, and MERRA-2
snow depth datasets; the dependent variable was the predicted snow depth. Because of the
large numbers of samples in an entire hydrological year (Table 2), the comparison of the
three different machine learning methods was based only on the snow hydrological years
from 2002 to 2004, in consideration of the computing cost. Training samples were extracted
from 1 September 2002 to 31 May 2003, and the predicted samples were received from
1 September 2003 to 31 May 2004. In different land cover types and seasons, the model
parameter was confirmed according to the number of training samples.

http://workbench.casearth.cn/
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The selected datasets were used for model training and prediction. All the input
variables and in situ observations were normalized to have a mean of 0 and a standard de-
viation of 1 [54]. The selected samples were divided into two parts, 80% of the samples were
used for training the model, and the rest 20% were used for the model prediction (20%).

These 36 fused snow-depth models were evaluated by the coefficient of determination
(R2), root mean square error (RMSE) and mean absolute error (MAE). We also calculated the
bias of in situ observations and fused values (BIAS) to evaluate the spatial error between
the fusion dataset and observations:

R2 = 1 − ∑n
i=1 (Si − Ŝi)2

∑n
i=1 (Si − S)2 , (1)

RMSE =

√
∑n

i=1 (Si − Ŝi)2

n
, (2)

MAE =
1
n

n

∑
i=1

∣∣Si − Ŝi
∣∣, (3)
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BIAS = Ŝi − Si, (4)

where n is the number of sample pixels, Si and Ŝi denote the in situ observation and fused
snow depth values of the i-th pixel, respectively. S represents the mean value of in situ
observations of n pixels.

The optimal machine learning method was selected to fuse the snow depth dataset. A
“leave-one-year-out” cross-validation for each divided dataset was conducted to determine
the performance of the optimal method in continuous time series estimation of snow
depth. Finally, a time series comprehensive snow depth dataset covering the Northern
Hemisphere was derived from 2002 to 2011.

Table 2. The uncertainties of the three models in different land cover types and different seasons. (The coefficient of
determination (R2), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) of three fused snow depth data
against in situ observations in different snow stages and different land cover areas.). Note that the two numbers within
brackets represent the samples used in training and prediction, respectively.

(a) Bare-Land

September to November December to February March to May

(99,706, 99,060) (106,723, 105,087) (97,442, 95,219)

R2 MAE/cm RMSE/cm R2 MAE/cm RMSE/cm R2 MAE/cm RMSE/cm

ANN
train 0.61 1.4 4.1 0.73 2.4 12.5 0.72 5.3 18.7

predict 0.45 1.7 4.2 0.50 5.5 13.6 0.62 8.3 22.7

SVR
train 0.73 1.0 4.2 0.56 4.0 19.3 0.53 9.2 21.7

predict 0.43 1.0 4.5 0.34 6.8 25.0 0.42 10.8 23.5

RFR
train 0.93 0.7 2.8 0.95 1.9 10.0 0.95 1.1 2.7

predict 0.78 0.6 3.8 0.81 2.3 10.5 0.82 1.8 4.4

(b) Shrub

September to November December to February March to May

(88,818, 81,100) (98,666, 94,869) (109,027, 106,029)

R2 MAE/cm RMSE/cm R2 MAE/cm RMSE/cm R2 MAE/cm RMSE/cm

ANN
train 0.66 0.3 1.3 0.64 4.1 9.9 0.66 5.0 13.2

predict 0.32 0.5 1.7 0.55 7.4 17.0 0.55 6.4 17.8

SVR
train 0.77 0.5 1.8 0.65 2.8 6.2 0.65 4.5 16.1

predict 0.42 0.6 2.6 0.32 7.5 8.5 0.45 6.1 20.9

RFR
train 0.91 0.2 0.5 0.90 2.3 4.8 0.95 2.5 1.4

predict 0.71 0.2 1.2 0.71 4.7 6.1 0.78 4.3 3.3

(c) Grassland

September to November December to February March to May

(61,511, 60,531) (51,390, 50,487) (59,627, 59,285)

R2 MAE/cm RMSE/cm R2 MAE/cm RMSE/cm R2 MAE/cm RMSE/cm

ANN
train 0.81 1.5 2.0 0.78 5.1 9.9 0.78 6.2 12.7

predict 0.56 1.8 2.7 0.52 6.5 13.1 0.59 8.5 20.1

SVR
train 0.77 0.5 1.8 0.64 5.0 13.4 0.70 7.1 18.9

predict 0.42 0.8 2.6 0.48 10.1 21.3 0.56 9.6 23.7

RFR
train 0.88 0.2 1.5 0.92 2.5 1.2 0.96 1.5 3.7

predict 0.71 0.2 3.2 0.81 5.1 2.6 0.85 2.8 5.1

(d) Forest

September to November December to February March to May

(159,146, 157,121) (195,542, 197,884) (196,501, 193,886)

R2 MAE/cm RMSE/cm R2 MAE/cm RMSE/cm R2 MAE/cm RMSE/cm

ANN
train 0.73 0.9 2.5 0.73 16.3 22.1 0.67 18.4 31.4

predict 0.43 1.0 3.3 0.67 17.5 25.6 0.57 21.7 36.4

SVR
train 0.75 0.7 3.0 0.64 14.7 26.3 0.60 20.6 40.1

predict 0.33 0.9 3.4 0.42 18.7 33.1 0.47 22.8 42.6

RFR
train 0.85 0.1 0.5 0.95 1.0 2.0 0.96 1.6 3.3

predict 0.66 0.5 2.1 0.80 2.0 2.8 0.80 2.4 4.7
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3. Results
3.1. Comparison among the Fused Snow Depth from Three Machine Learning Methods

In this study, we applied three machine learning models and four land cover classes
to design the 12 models. We also divided the whole hydrological year into three seasons
(autumn (September to November), winter (December to February), and spring (March to
May)) to derive 36 pairs of accuracy assessment indices. The results of these 36 snow-depth
fusion models are presented in Table 2. In the model comparison phase, the input variables
for RFR, SVR, and ANN were the same. In the same season and same land cover type, the
RFR model had a higher R2, and lower RMSE and MAE, indicating that the RFR model
was preferable over ANN and SVR. Especially in March to May, RMSE and MAE’s values
decreased substantially compared to those of ANN and SVR. The calculation of RFR was
also more efficient than that of ANN and SVR. Therefore, the RFR model was used to
produce the fused snow depth data over the Northern Hemisphere from 2002 to 2011.

3.2. Comparison between the Fused Dataset and Five Other Snow Depth Datasets Based
on Observations

The fused snow depth dataset shows better R2, RMSE, and MAE than the five original
snow-depth datasets. The fused results indicate that the original five snow-depth datasets
have weak correlations with the observed snow-depths. The RFR fusion, therefore, signif-
icantly improves the accuracy of the snow-depth datasets. The R2 increases to 0.91, the
RMSE and MAE decrease to 5.5 and 2.2 cm, respectively (Figure 3). Based on the accuracy
assessment, we found that the snow depth dataset fused with the RFR algorithm is very
consistent with the station observations.
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with in situ observations from September to May from 2002 to 2011. Each sub-figure shows a different assessment index:
(a) Coefficient of determination (R2); (b) Root Mean Squared Error (RMSE) and (c) Mean Absolute Error (MAE).

The fused snow depth values are distributed near the 1:1 line (Figure 4).
This result indicates that most pixels have snow-depths of less than 50.0 cm, and many

pixels have a very high fusion accuracy. The spatial distribution of the BIAS shows that
89.85% of the pixels (9293 pixels out of a total of 10,343) have a BIAS between −5.0 and
5.0 cm (Figure 5).

The fused results also show that only very few pixels have a BIAS value greater
than 5.0 cm, or less than −5.0 cm. The spatial pattern of the BIAS (Figure 6) exhibits a
good consistency with station observations over the Northern Hemisphere, especially at
low latitudes.
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3.3. Accuracy Assessment of the Fused Snow Depth Dataset at Five Independent In Situ Snow
Observation Sites

To further verify the accuracy of the fused snow depth dataset, five independent
snow sites recommended by the Earth System Model-Snow Model Intercomparison Project
(ESM-SMIP) were selected for validation. The detailed information of these five sites is
in Table A2, Appendix A. These sites have in situ snow depth and SWE data. The series
of snow depth data were extracted from the fused snow dataset and observations using
overlapping time series (Figure 7).

Figure 7. Cont.
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Figure 7. Time series of fused snow depth (black lines) and in situ observations (red lines) at five sites.

From the accuracy assessment of these five sites, Sodankylä(SOD) [55] performed
best with R2, RMSE and BIAS of 0.88, 8.6 and 4.0 cm, respectively (Figure 7a). Although
the accuracies of the Old Aspen(OAS) [56] and Reynolds Mountain East(RME) [57] are
not as good as those of Sodankylä, they are still within the accepted scope. Swamp
Angel Study Plot (SASP) [58] and Weissfluhjoch(WFJ) [59] sites, which have deeper snow
depth values, do not have a good performance; the fused snow depth shows a prominent
underestimation. The five original gridded snow depth products (Figure A1, Appendix A)
all have a distinct underestimation, indicating that the input variables of the RFR model are
very important to the fused results. The geographical location and topographic conditions
are complex in SASP. SASP is in a sheltered area and is surrounded by a sub-alpine forest.
Therefore, it experiences lower winds and is better suited for measuring precipitation.
Under these conditions, while deeper snow develops in SASP, this also leads to a distinct
underestimation of snow depth based on the remote sensor. The WFJ site is located in an
almost flat part of a southeasterly oriented slope and at an altitude of about 2540 m [59].
During the winter months, deeper snow builds up at this altitude. In future work, the RFR
modeled dataset should be improved based on this validation.

3.4. The Spatial Distribution of the Fused Snow Depth Dataset Based on Random
Forest Regression

Based on the daily fused snow depth dataset, we derived the monthly average,
seasonal average, and yearly average snow depth. The multi-year average snow depth and
different seasonal average snow depth were also calculated.

The spatial distribution of the fused daily snow depth product over the Northern
Hemisphere from 2002 to 2011 is shown in Figure 8a. The spatial pattern of the multi-year
average snow depth over the Northern Hemisphere indicates that the regions with deep
snow are distributed in the Northern American and Siberian plain. This spatial pattern
also reveals that most parts of the mid and low latitude regions (<50◦N) have a shallower
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snow depth of less than 5.0 cm. The snow depth in China is relatively shallow (<5.0 cm).
The fused snow-depth in autumn (Figure 8b) is smaller than in winter (Figure 8c) and
spring (Figure 8d). The average snow depths of autumn, winter and spring are 5.7, 25.8 and
21.5 cm, respectively. In autumn, snow depth varies from 0 to 66.4 cm, and snow depths of
most regions are less than 20.3 cm. In winter, most of the regions have deeper snow, which
varies from 0 to 258.0 cm. In spring, the spatial pattern of snow depth is similar to that
in winter. Because the new algorithm incorporates the advantage of remote sensing and
reanalysis products, the range of the fused snow depth varies from 0 to more than 200 cm.
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Figure 8. The spatial patterns of the fused snow depth based on the Random Forest Regression
(RFR) algorithm across the Northern Hemisphere between 2002 to 2011. (a) Average snow depth in
all seasons, (b) Autumn (September to November) average snow depth, (c) Winter (December to
February), and (d) Spring (March to May) average snow depth.

4. Discussion
4.1. The Effect of Seasons on the Fused Snow Depth Dataset

In the current study, the snow year was divided into three seasons for the machine
learning training and predicting phases, which was consistent with previous studies [16,37,53].
To compare the performance of different machine learning methods in the fusion of the
snow depth datasets in different seasons and land cover types, the three seasons were
assessed independently. In autumn, the snow depth is shallow (<5.0 cm), so the fused
results perform much worse than in winter and spring (Table 2). In autumn, while the
absolute values of RMSE and MAE were smaller given the shallower snow depth, the R2

had the worst performance. Overall, the machine learning fusion algorithms performed
better in deeper snow (>10.0 cm). Currently, the fused snow depth dataset based on the
machine learning algorithm has higher accuracy in winter (December to February) and
spring (March to May) than in autumn (September to November). The average snow depth
over the Northern Hemisphere from 2002 to 2011 varies from 0.7 to 34.6 cm (Figure 9).

In winter and spring, the average snow depth is deeper and stable, which may reduce
some uncertainties, so the fused snow depth performs well in these two seasons. In autumn,
the snow depth is shallow and increases slowly. The snow depth retrieval scheme based on
remote sensing microwave brightness temperature is based on a set threshold (e.g., 5.0 cm
in GlobSnow). This threshold also leads to some uncertainties. The accuracy assessment
indicates that when the snow depth exceeds about 10.0 cm, the fused snow depth performs
better (Figure 7).

Figure 8. The spatial patterns of the fused snow depth based on the Random Forest Regression
(RFR) algorithm across the Northern Hemisphere between 2002 to 2011. (a) Average snow depth in
all seasons, (b) Autumn (September to November) average snow depth, (c) Winter (December to
February), and (d) Spring (March to May) average snow depth.
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4. Discussion
4.1. The Effect of Seasons on the Fused Snow Depth Dataset

In the current study, the snow year was divided into three seasons for the machine
learning training and predicting phases, which was consistent with previous studies [16,37,53].
To compare the performance of different machine learning methods in the fusion of the
snow depth datasets in different seasons and land cover types, the three seasons were
assessed independently. In autumn, the snow depth is shallow (<5.0 cm), so the fused
results perform much worse than in winter and spring (Table 2). In autumn, while the
absolute values of RMSE and MAE were smaller given the shallower snow depth, the R2

had the worst performance. Overall, the machine learning fusion algorithms performed
better in deeper snow (>10.0 cm). Currently, the fused snow depth dataset based on the
machine learning algorithm has higher accuracy in winter (December to February) and
spring (March to May) than in autumn (September to November). The average snow depth
over the Northern Hemisphere from 2002 to 2011 varies from 0.7 to 34.6 cm (Figure 9).

In winter and spring, the average snow depth is deeper and stable, which may reduce
some uncertainties, so the fused snow depth performs well in these two seasons. In autumn,
the snow depth is shallow and increases slowly. The snow depth retrieval scheme based on
remote sensing microwave brightness temperature is based on a set threshold (e.g., 5.0 cm
in GlobSnow). This threshold also leads to some uncertainties. The accuracy assessment
indicates that when the snow depth exceeds about 10.0 cm, the fused snow depth performs
better (Figure 7).

Figure 9. The average and maximum snow depth during the snow hydrology year from 2002 to 2011.
Red line: monthly average snow depth; blue line: monthly maximum snow depth.

4.2. Improvement between the Current Study and Previous Work

Previous studies retrieved snow depth employed machine learning algorithms com-
bining brightness temperature with other auxiliary data. The applications of machine
learning models have improved the estimation accuracy of snow depth [37] and SWE [60]
over the Northern Hemisphere. Tedesco and Jeyaratnam [60] derived a densification for-
mula using Bayesian statistics for SWE estimations from passive microwave brightness
temperature observations based on in situ snow depth, density, and SWE for each snow
climate class. NASA’s current V2.0 AMSR-E SWE algorithm utilizes an artificial neural
network, snow emission modeling, and climatological snow depth data for the estimation
of snow depth and the detection of dry versus wet snow conditions [60].

Our study differed mainly with regards to the selected input variables. Xiao et al. [37]
employed SVM using passive microwave brightness temperatures and auxiliary data to
derive long time series of daily snow depth over the Northern Hemisphere. The evaluation
of this snow depth product with the other two snow cover products (GlobSnow and ERA-
Interim/Land) showed that it performs comparably well with relatively high accuracy [36].
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Snauffer et al. [8] used ANN combined with some gridded snow datasets to derive a
comprehensive SWE product. In this study, five snow depth datasets were introduced to
integrate a new snow depth product based on machine learning methods.

As described in the aforementioned studies, using machine learning methods and
brightness temperature can improve the accuracy of the snow depth inversion. Brightness
temperature data of some sensors have striped gaps resulting in missing data in some
areas [41]. However, the snow depth product provides continuous coverage and avoids
missing data. In the current study, the fused accuracy improved because the input variables
were already snow depth products.

4.3. Determining the Input Parameters of the RFR Model

In the experimental design, all gridded snow depth products and auxiliary data were
considered as the input parameters for machine learning methods (Section 2.2.2). To test
the importance of these input variables for the model, a scheme (Table 3) was designed to
verify the result.

Table 3. Different schemes of input variables for Random Forest Regression.

Scheme Input Variables Variable Excluded

1 Longitude, Elevation, AMSR-E, NHSD,
GlobSnow, ERA-Interim, MERRA-2 Latitude

2 Latitude, Elevation, AMSR-E, NHSD,
GlobSnow, ERA-Interim, MERRA-2 Longitude

3 Latitude, Longitude, AMSR-E, NHSD,
GlobSnow, ERA-Interim, MERRA-2 Elevation

4 Latitude, Longitude, Elevation, NHSD,
GlobSnow, ERA-Interim, MERRA-2 AMSR-E

5 Latitude, Longitude, Elevation, AMSR-E,
GlobSnow, ERA-Interim, MERRA-2 NHSD

6 Latitude, Longitude, Elevation, AMSR-E,
NHSD, ERA-Interim, MERRA-2 GlobSnow

7 Latitude, Longitude, Elevation, AMSR-E,
NHSD, GlobSnow, MERRA-2 ERA-Interim

8 Latitude, Longitude, Elevation, AMSR-E,
NHSD, GlobSnow, ERA-Interim MERRA-2

As described in Table 3, one input variable was deleted in every scheme, and then the
importance of that variable was evaluated. In the designed schemes, when deleting some
variables, the accuracy of the fused snow depth makes a difference, but these changes are
not significant based on the RMSE and MAE (Table 4).

Table 4. Accuracy comparison of different input variables.

Priori
Conditions Input Variables R2 RMSE/cm MAE/cm

Land cover type
All variables 0.81 10.5 2.3

Elevation excluded 0.75 12.8 3.4
Latitude excluded 0.78 11.2 3.0

Bare-land
Longitude excluded 0.78 11.1 2.9
AMSR-E excluded 0.79 11.0 2.7

Seasons
NHSD excluded 0.79 10.9 2.8

GlobSnow excluded 0.76 12.6 3.3

December to
February

ERA-Interim excluded 0.80 10.7 2.6
MERRA-2 excluded 0.77 12.4 3.1
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Although the ERA-Interim model occupied the second rank in terms of accuracy
performance, it was excluded. We can’t conclude that the ERA-Interim was not important
for the model. Accuracy assessments of gridded snow depth datasets indicated that ERA-
Interim exhibits overall better agreements with in situ observations than other datasets [9].
The rank of our input snow depth datasets did not indicate that this variable was important
or nonsignificant for the model. The model was best when all variables were inputted into
the fused model. Therefore, we selected as many gridded snow depth products as possible
to pursue the most accurate results.

The result of Table 4 used the training samples of 2002–2003, and the model prediction
phase applied the samples of 2003–2004. The land cover type was Bare-land, and the time
period was December to February. “All variables” indicates that all variables were used
as input elements, “Elevation excluded” means that the input variables did not contain
Elevation, etc. By deleting the input variables in the RFR model one by one, the results
showed that the RFR model is a more stable machine learning model and that it could be
used to produce a long time series of snow depth product.

4.4. Limitations of the Current Study

As described in previous relevant papers, machine learning methods could overcome
various complex problems existing in large-scale retrievals [27–29]. Machine-learning meth-
ods can learn and summarize a large number of data and not rely on the understanding of
physical processes when modeling [26]. Although the fused snow depth dataset performs
well in accuracy assessment via five independent in situ observations, there are still some
limitations that warrant further improvements. First and foremost, these snow depth
datasets were not comprehensively evaluated before data fusion. According to the accu-
racy assessment in the previous study [9], the NHSD, AMSR-E, GlobSnow, ERA-Interim,
and MERRA-2 gridded snow depth datasets were selected for direct fusion. Secondly, the
input variables in this paper include three geolocation and topographic factors and five
gridded snow depth datasets. Machine learning was applied in the Northern Hemisphere
to fuse the snow depth datasets. Although many in situ observations were used to train
and validate models, the location of these stations was still sparse. This algorithm can
be applied to obtain a high precision snow depth dataset in regions with more dense
observation sites. The model should be modified before applying it to specific regions and
the appropriate input variables should be selected according to the regional conditions.
Additionally, the input variables should be consistent between model training and predic-
tion phase. Thirdly, the fused snow depth was only validated by five independent in situ
observations; more in situ stations should be introduced to more thoroughly assess this
snow depth dataset. Lastly, we only compared the machine learning models based on the
same input samples. The RFR model had a high R2, and lower RMSE and MAE, indicating
that the RFR model was more advanced than ANN and SVR. The different land cover type
and seasons were not considered. In future work, samples of the different land cover types
and seasons should be statistically analyzed before being input into the machine learning
model (Table 2).

5. Conclusions

This study examined three machine learning algorithms (ANN, SVR, and RFR) to fuse
the snow depth datasets over the Northern Hemisphere. By comparing the performance of
three machine learning methods in 36 models, the models with higher R2, smaller RMSE
and MAE were selected to fuse the snow depth dataset. The fused snow depth dataset has
a high accuracy compared with other snow depth datasets. The main conclusions are:

(1) Comparing the performance of the SVR, ANN, and RFR algorithms in 36 models, the
RFR algorithm has a higher R2, smaller RMSE and MAE.

(2) The fused dataset based on the RFR model performed better in winter and spring
than autumn because there were more training samples in winter and spring; the
average snow depth values in winter and spring were deeper than in autumn.
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(3) Comparing AMSR-E, NHSD, GlobSnow, MERRA-2, ERA-Interim, and the new fused
snow depth datasets with in situ observation snow depths, the result shows that
the original five snow-depth datasets have weak correlations with the observed
snow depth. The best coefficient of determination between the five original snow
depth products and the observations was 0.15 (i.e., the coefficient of determination
between GlobSnow and in situ observations), while the value of the fused snow depth
increased to 0.91. The spatial pattern of BIAS between fused dataset and observations
indicates that the fused dataset performs very well. The comparison of the fused snow
depth product with five independent in situ snow observation sites shows that it is
the most accurate. However, in some complex situations with deeper snow depths
(>200 cm), like in alpine regions and mixed pixel areas, the fused snow depth also
does not perform well.

This paper proposed a new data fusion method that was applied to derive a fused
snow depth product across the Northern Hemisphere from 2002 to 2011. There is a slight
drawback to the fused snow depth dataset, mainly regarding its spatial coverage. The
spatial coverage of the GlobSnow is from 35b◦N to 85◦N from 2002 to 2011 so that the spatial
coverage of the fused dataset does not cover all the North Hemisphere. In future work,
other snow depth datasets (i.e., AMSR-E, NHSD, MERRA2, and ERA-Interim) should be
used to fill the missing regions and to produce a fused snow depth product of the Northern
Hemisphere by using the random forest method.
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Appendix A

Table A1. Land cover type reclassification of the GlobCover2009 classification system.

Value Original Class Reclassification Type

11 Post-flooding or irrigated croplands (or aquatic) Bare-Land
14 Rainfed croplands Bare-Land
20 Mosaic cropland (50–70%)/vegetation (grassland/shrubland/forest) (20–50%) Bare-Land
30 Mosaic vegetation (grassland/shrubland/forest) (50–70%)/cropland (20–50%) Shrub
40 Closed to open (>15%) broadleaf evergreen or semi-deciduous forest (>5 nm) Forest
50 Closed (>40%) broadleaf deciduous forest (>5 m) Forest
60 Open (15–40%) broadleaf deciduous forest/woodland (> 5 m) Forest
70 Closed (>40%) needleleaf evergreen forest (>5 m) Forest
90 Open (15–40%) needleleaf deciduous or evergreen forest (>5 m) Forest
100 Closed to open (>15%) mixed broadleaf and needleleaf forest (>5 m) Forest
110 Mosaic forest or shrubland (50–70%)/grassland (20–50%) Shrub
120 Mosaic grassland (50–70%)/forest or shrubland (20–50%) Grassland (Prairie)
130 Closed to open (>15%) (broadleaf or needleleaf, evergreen or deciduous) shrubland (<5 m) Shrub
140 Closed to open (>15%) herbaceous vegetation (grassland, savannas or lichens/mosses) Grassland (Prairie)
150 Sparse (<15%) vegetation Bare-Land

160 Closed to open (>15%) broadleaf forest regularly flooded (semi-permanently or
temporarily)—Fresh or brackish water Forest

170 Closed (>40%) broadleaf forest or shrubland permanently flooded—Saline or brackish water Forest

180 Closed to open (>15%) grassland or woody vegetation on regularly flooded or waterlogged
soil—Fresh, brackish or saline water Grassland (Prairie)

190 Artificial surfaces and associated areas (Urban areas > 50%) Bare-Land
200 Bare areas Bare-Land
210 Water bodies Water
220 Permanent snow and ice Bare-Land
230 No data (burnt areas, clouds . . . ) Unclassified

Table A2. Data ownership and reference papers for five independent snow observations sites (Modified by Ménard et al. [61]).

Site Short
Name

Latitude
(◦)

Longitude
(◦)

Elevation
(m) Data Provider Vegetation Type Reference

Paper

Sodankylä SOD 67.416 26.59 179
Finnish

Meteorological
Institute, Finland

Clearing (short
heather and lichen) in

coniferous forest
[55]

Old Aspen OAS 54.05 −106.333 600
Environment and
Climate Change
Canada, Canada

21 m high aspen forest.
Thick understory of
2 m high hazelnut.

Winter stem area ∼ 1,
summer 3.7–5.2

[56]

Reynolds
Mountain

East
RME 43.186 −116.783 2060

USDA Agricultural
Research Service,

USA

Clearing (short grass)
in an alpine/fir grove [57]

Swamp
Angel Study
Plot(SASP)

SWA 37.907 −107.711 3371
Center for Snow and
Avalanche Studies,

USA

Clearing (short grass)
in subalpine forest [58]

Weissfluhjoch WFJ 46.827 9.807 2536

WSL Institute for
Snow and Avalanche

Research,
Switzerland

Barren [59]
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Figure A1. Original gridded snow depth datasets of five independent snow observation sites.
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