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Abstract: A greenhouse is an important land-use type, which can effectively improve agricultural
production conditions and increase crop yields. It is of great significance to obtain the spatial
distribution data of greenhouses quickly and accurately for regional agricultural production and
food security. Based on the Google Earth Engine cloud platform and Landsat 8 images, this study
selected a total of 18 indicators from three aspects of spectral features, texture features and terrain
features to construct greenhouse identification features. From a variety of classification algorithms for
remote-sensing recognition of greenhouses, this study selected three classifiers with higher accuracy
(classification and regression trees (CART), random forest model (randomForest) and maximum
entropy model (gmoMaxEnt)) to construct an integrated classification algorithm, and then extracted
the spatial distribution data of greenhouses in Jiangsu Province. The results show that: (1) Google
Earth Engine with its own massive data and cloud computing capabilities, combined with integrated
classification algorithms, can achieve rapid remote-sensing mapping of large-scale greenhouses
under complex terrain, and the classification accuracy is higher than that of a single classification
algorithm. (2) The combination of different spectral, texture and terrain features has a greater impact
on the extraction of regional greenhouses, the combination of all three aspects of features has the
highest accuracy. Spectral features are the key factors for greenhouse remote-sensing mapping, but
terrain and texture features can also enhance classification accuracy. (3) The greenhouse in Jiangsu
Province has significant spatial differentiation and spatial agglomeration characteristics. The most
widely distributed greenhouses are mainly concentrated in the agriculturally developed areas such
as Dongtai City, Hai’an County, Rudong County and Pizhou City.
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1. Introduction

In the past 20 years, with the continuous innovation of agricultural production tech-
nology, the yield of crops has been greatly improved, and the application of greenhouse
technology is one of the typical representatives [1,2]. As an extremely important land-use
type in current agricultural production, the large number of applications of greenhouses
enable regional agricultural production to overcome native natural conditions that are
not conducive to crop growth, providing good greenhouse conditions for the growth and
development of crops, greatly improving the yield of crops [3-5]. As of the end of 2016,
China’s greenhouse covers an area of 981,000 hectares [6], which is of great significance to
ensuring China’s food security. However, the large number of existing greenhouses not
only has a huge impact on the current agricultural production efficiency and structure,
but also poses a huge threat to the ecological environment, as the waste of greenhouses
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has caused a lot of “white pollution”. Greenhouses have become more widely used, and
have become an important land-use method, but the existing land-use classification sys-
tem rarely classifies greenhouse independently. Therefore, rapid and accurate large-scale
remote-sensing mapping of greenhouses has important practical significance for analyzing
the characteristics of land-use transition and guiding regional agricultural production [7,8].

Currently, relevant scholars have conducted research on greenhouses and have
achieved fruitful results. However, due to technical limitations, the early extraction
was mainly based on a combination of high-resolution images and object-oriented meth-
ods [9,10]. Many scholars in the world have carried out research on remote-sensing recog-
nition of greenhouses for different research areas. Among them, a large number of research
projects have been conducted on GeoEye-1, WorldView-2, GaoFen-2 and Sentinel-2 images,
and obtained fruitful results [11-14]. Although the extraction accuracy was relatively
high, due to the difficulty of obtaining high-resolution images, generally the extraction
was performed in a specific typical area. For applied research, most of the research scales
are small, and it is difficult to achieve large-scale rapid remote-sensing mapping of the
greenhouse [15]. Due to the long observation period and free download, Landsat images
can provide the possibility for large-scale remote sensing mapping, and its resolution is
relatively high, which can ensure the reliability of the extraction results of greenhouses [8].
At present, with the continuous progress of geographic information systems (GIS) and
remote-sensing technology, some scholars have used Landsat images to achieve large-scale
remote-sensing extraction of greenhouses [1,16]. Among them, the most representative is
the greenhouse recognition index based on Landsat images [9,17], which has good overall
accuracy, but the constructed greenhouse index generally has typical regional features
that are difficult to avoid. For example, a small area with a dense and large number of
greenhouses is generally selected as the case area, and the extraction effect of the algorithm
is only good in this area. However, under complex topographic features, the constructed
greenhouse extraction model is generally difficult to promote regionally, and the migration
accuracy of the greenhouse recognition algorithm constructed in different regions is gener-
ally poor. Therefore, how to build a general and efficient large-scale greenhouse recognition
algorithm under complex terrain conditions based on medium-high resolution images is a
difficult point in current research. It is necessary to ensure the accuracy and efficiency of the
research, and to achieve the regional portability of the greenhouse recognition algorithm.

Google Earth Engine is a geographic computing cloud platform launched by Google.
It comes with massive remote-sensing images (Landsat, Sentinel, MODIS, etc.) [18,19], and
has powerful cloud computing capabilities, which can provide a large amount of basic
data and programming platform for rapid and accurate remote-sensing monitoring, and
can provide possibility for efficient and accurate large-scale remote-sensing mapping. At
present, scholars have performed remote-sensing recognition of ground features based on
the Google Earth Engine platform [20-22], and have achieved good recognition results,
such as the remote-sensing extraction of summer crops in Jiangsu Province based on the
Google Earth Engine platform [23]. With the improvement of the recognition of the Google
Earth Engine cloud platform in the academic world, the current remote-sensing dynamic
monitoring research based on Google Earth Engine has achieved numerous results and
greatly improved the efficiency of related research.

However, the current remote-sensing recognition research based on the Google Earth
Engine cloud platform mainly uses the single classifier that comes with the platform
to classify and extract features, but the applicability of remote-sensing classification of
different algorithms is different, and there is no unified optimal classification algorithm
in different regions. Therefore, now that Google Earth Engine provides such application
conditions and a variety of commonly used classification algorithms, can we rely on the
efficient cloud computing capabilities and its massive remote-sensing data of the Google
Earth Engine cloud platform, and build a comprehensive classifier that integrates the
advantages of different algorithms, and then realize large-scale remote-sensing rapid
mapping under complex terrain?
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In view of this, with the Google Earth Engine cloud platform and the idea of ensemble
learning classification, this study constructs an integrated classification algorithm for
greenhouse recognition in Jiangsu Province based on regional terrain characteristics, and
replaces the classification results obtained by the original better classifier with the pixel-by-
pixel classification probability. Thus, this study realizes the rapid remote-sensing mapping
of the large-scale greenhouse, and provides scientific guidance for regional agricultural
production activities.

2. Research Data and Methods
2.1. Study Area

Jiangsu Province is located on the east coast of China, 116°18 E-121°57 E,
30°45 N-35°20 N, with a total area of 107,200 km?, bordering Shandong in the north,
Anhui in the west, Zhejiang in the south, and Shanghai in the east, which is an important
part of the Yangtze River Delta Economic Zone (Figure 1). In 2018, the regional GDP
was 9259.54 billion yuan, with a permanent population of 80.507 million at the end of the
year. This area belongs to the transition zone from subtropical to warm temperate zone,
with mild climate, moderate rainfall and four distinct seasons. As a major agricultural
province in China, Jiangsu Province has the Southern Jiangsu Plain, the Jianghuai Plain,
the Huanghuai Plain and the Eastern Coastal Plain. The cultivated land in the region is
vast and high in quality, and agricultural production activities are very developed. It is
an important crop and vegetable crop cultivation area in the country. Greenhouses have
the functions of increasing temperature and moisture, and can provide a good growth
environment for crops, thereby increasing crop yields. In recent years, greenhouses have
been widely used in this area.
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Figure 1. Geographical location of the study area.
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2.2. Data Source

To effectively identify the greenhouse in the research area based on the Google Earth
Engine cloud platform, it is necessary to obtain accurate and reliable land sample point
data [23]. The classification system of this study is divided into five categories: construction
land, water, forest land, farmland and greenhouse. Based on the principle of random and
uniform selection, the Google Earth Engine online selection method is used to determine
the sample points of each category. The points were selected uniformly within the area,
and a total of 12,836 sample points were selected (Table 1). Using the random number
algorithm that comes with Google Earth Engine, according to the ratio of 7:3, the various
sample points were divided into two categories: training samples and validation samples,
which were used in classification algorithm training and accuracy verification later.

Table 1. Sample types, data and meaning.

Type

Land Class

Number of

Code Name Samples Features Index Connotation
Construction It is the main carrier of human urban construction, and is
1 2307 generally divided into urban construction land, rural residential
land .
areas and other construction land.
Refers to land used for natural terrestrial waters and water
2 Water 2277 conservancy facilities, mainly including oceans, rivers, lakes,
tidal flats, reservoirs and pits.
Forestry land with a canopy density of more than 0.4, which
3 Forest land 2554 mainly includes arbor forest land, sparse forest land, shrub
forest land, etc.
Land used for agricultural production, including paddy fields,
4 Farmland 2408 dry lands, irrigated lands, garden lands, etc.
5 Greenhotse 3290 Agricultural facilities that provide a good growth environment
for crop growth.
Total 12836

2.3. Feature Construction

The selection of feature variables is one of the important prerequisites for remote-
sensing land classification recognition and extraction. There are many kinds of feature
variables, using multiple feature variables and their combinations can effectively improve
the classification accuracy of remote-sensing interpretation [20,24]. This research starts
from the current characteristics of the distribution of greenhouses, and fully considers the
significant differences between greenhouses and other land types, such as the spectral
characteristics and texture characteristics of greenhouses that are clearly different from
other ground objects, and the topographical characteristics of greenhouses in spatial dis-
tribution. Based on this, the feature bands of spectrum, texture, and terrain that help
improve the accuracy of regional greenhouse extraction are selected, and a large-scale
greenhouse recognition algorithm based on the integrated algorithm and Google Earth
Engine is constructed.

Previous studies have shown that the spectral characteristics of images are the key
feature variables for remote-sensing interpretation of ground features [9,25]. This is due
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to remote-sensing images generally having the phenomenon that the same spectrum on
remote-sensing images may actually be different ground features, and the same ground
features may also have different spectral features on remote-sensing images [23]. Therefore,
selecting a single spectral feature for remote-sensing extraction of land-use types maybe
cause partial errors and omissions in the classification results of remote sensing interpreta-
tion [24]. Texture features represent the spatial change and repetition of the image gray
level, or the repeated local patterns and arrangement rules in the image [26], which can
improve the classification accuracy of remote-sensing to a certain extent [27]. In addition,
the spatial distribution of greenhouses is closely related to the planting environment of
regional agricultural production. Different topographic features determine whether the
area is suitable for greenhouses. Therefore, topographic features should be incorporated
into the construction of feature variables. In view of this, this study selects 10 spectral
features, 6 texture features, and 2 topographic features to construct feature parameters of
greenhouse identification, and then realizes the effective identification of greenhouses in
the study area (Table 2).

Table 2. Feature selection of greenhouse identification and its connotation.

Feature Selection Index Selection Index Connotation Resolution
Band 1 Coastal 30 m
Band 2 Blue 30m
Band 3 Green 30 m
Band 4 Red 30 m
Spectral feature Band 5 Near Infrared (NIR) 30 m
Band 6 Short Wave Infrared 1 (SWIR 1) 30 m
Band 7 Short Wave Infrared 2 (SWIR 2) 30 m
NDVI Normalized Difference Vegetation Index 30 m
NDBI Normalized Difference Build-up Index 30 m
NDWI Normalized Difference Water Index 30m
B2_asm Angular Second Moment 30 m
B2_contrast Contrast 30 m
B2_corr Correlation 30m
Texture feature B2_var Variance 30 m
B2_idm Inverse Difference Moment 30 m
B2_ent Entropy 30 m
. Slope Degree of steepness and slowness of surface unit 30 m
Terrain feature Elevation Altitude, distance from sea level 30 m

2.3.1. Spectral Features

Current research has found that the remote sensing index can enrich the spectral
characteristics of remote-sensing images to a certain extent, and has a certain enhancement
effect on the effective identification of ground objects [23]. Therefore, this study selects
Band1, Band2, Band3, Band4, Band5, Band6 and Band7 of Landsat 8 images, and calculates
the normalized difference vegetation index (NDVI), normalized difference building index
(NDBI) and normalized difference water index (NDWI) based on the Google Earth Engine
cloud platform, and add these three remote-sensing indexes as additional spectral bands.

NDVI = Pnir — Pred 1)
Pnir T Pred

NDBI = Omir — Pnir (2)
Pmir + Pnir

NDWI — Pgreen — Pnir

3
Pgreen 1 Pnir ©)
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where NDVI, NDBI, and NDWI are the normalized difference vegetation index, normalized
difference building index, and normalized difference water index, respectively; p,ir, Ored
Pmir and pereen Tepresent the values of reflectance for near-infrared, infrared, mid-infrared,
and green bands, respectively.

2.3.2. Texture Features

The gray-level co-occurrence matrix (GLCM) is a widely used texture statistical analy-
sis method [28]. The Google Earth Engine cloud platform provides a function glemTexture
(size, kernel, average) to calculate GLCM. Because the texture features of different bands of
Landsat8 image are basically similar, and previous studies have shown that the blue band
(Band2) is the most sensitive to the identification of greenhouses [10], therefore, the blue
band was selected for texture feature calculation, and a total of 18 texture feature parame-
ters were obtained. Referring to the results of previous studies, starting from the texture
characteristics of the greenhouse in the region, considering the correlation, difference and
redundancy between texture parameters, the six most common texture parameters were
selected from the aspects of contrast, correlation, and entropy etc. Based on the Google
Earth Engine cloud platform, the angular second moment (B2_asm), contrast (B2_contrast),
correlation (B2_corr), variance (B2_var), inverse difference moment (B2_idm), and en-
tropy (B2_ent), were selected to construct the characteristic parameters of greenhouse and
train the classifier, and to reduce data overlap and redundancy between too many texture
features [23].

2.3.3. Topographic Features

The topographic features can be characterized by the two indicators of elevation and
slope that can be extracted from the elevation data. This study used the topographic data
SRTMGL1_003 with a resolution of 30 m that comes with the Google Earth Engine, and
calculated the two parameters of elevation and slope with the ee.Terrain.products (input)
function. Then they were added to the synthesized multi-band image as two independent
feature bands for remote-sensing recognition of greenhouses.

2.4. Integrated Learning Algorithm

Previous studies have shown that due to the special geographical environment of the
region, the classification accuracy of different classification algorithms for different types of
land are obviously different [29], and even if the overall classification accuracy of a certain
algorithm is the highest, the classification accuracy of a particular type of land may not be
the highest [30,31]. In addition, the classification accuracy of different local algorithms in
the region also have certain differences [32,33]. The ensemble learning algorithm converts
the traditional classification results based on a single superior classifier into an integrated
classification result that comprehensively considers multiple classifiers, uses the pixel-by-
pixel classification probability under the multi-classification algorithm to determine the
final land-use type [34], which can reduce accidental errors caused by a single classification
algorithm. The classification results of a single better classification algorithm is replaced by
the classification probability of each pixel, which can integrate the advantages of different
algorithms to obtain more accurate greenhouse classification results.

At present, scholars have conducted research on land extraction based on integrated
learning algorithms and have achieved fruitful results. According to the natural environ-
ment of the region, this research constructed the feature bands based on spectral features,
texture features, and topographic features, and selected five classifiers including classifica-
tion and regression trees model (CART), support vector machines model (SVM), random
forest model (randomForest), maximum entropy model (gmoMaxEnt) and naive Bayesian
model (naiveBayes), to interpret the spatial distribution of greenhouses in the study area,
based on the Google Earth Engine cloud platform and its own Landsat 8 images. On this
basis, the recognition accuracy of greenhouses with different classifiers was compared, and
the classifier with higher accuracy was selected. In order to better distinguish the accuracy
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of the different classifiers, and to ensure that the probability of the classification result of a
single classifier cannot be higher than the cumulative probability of multiple classifiers,
the classification results of different classifiers can be considered comprehensively, and
the absolute influence of a single classifier can be avoided, so that the classification results
of the integrated learning classification algorithm can obtain the advantages of different
classifiers as much as possible. Therefore, this research assigned different weights accord-
ing to the accuracy from large to small, and built an integrated learning algorithm for
greenhouse remote-sensing mapping under complex terrain based on Google Earth Engine.
By calculating the probability of land-use type on the pixel-by-pixel classification results,
this research replaced the classification result of the original single classification algorithm
with the classification probability of land-use type to obtain the spatial distribution of
greenhouses in Jiangsu Province. The specific technical process is shown in Figure 2.

Google Earth Engine platform

Y

I

Y
| Landsat 8 OLI x Classified |
| (SR, Tier 1) i samples |
| —¥ : ; * : el
|
|
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Figure 2. Technical flow chart.
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2.5. Accuracy Accessment

Due to the differences in the classification principles of different classifiers, there
are also certain differences in the classification accuracy of different algorithms. This
study evaluated the classification accuracy of different classifiers to select a better classifier.
The data were mainly based on the randomly selected verification sample points that
account for 30% of the total sample size. The confusion matrix of land recognition under
different classification algorithms was calculated, and the overall accuracy (OA), producer’s
accuracy (PA), user’s accuracy (UA) and Kappa coefficient (KC) were selected [35] to
compare the extraction accuracy of greenhouses under different classification algorithms in
Jiangsu Province in 2018, and to construct an integrated learning algorithm for greenhouse
recognition. Among them, the PA was the probability that the classifier can classify the
pixels of an image as A, assuming that the ground surface was truly class A; the UA was
the probability that the ground truth class is A, when the classifier classifies the pixel into
the A class; the KC and OA represented the overall classification effect of all land types.

3. Results
3.1. Recognition Accuracy of Each Classifier

Based on the Google Earth Engine, this research used CART, randomForest, gmoMax-
Ent, SVM, and naiveBayes to extract the spatial distribution of greenhouses. The user’s
accuracy and producer’s accuracy of each classifier were: CART (0.90, 0.87) > randomForest
(0.86, 0.83) > gmoMaxEnt (0.85, 0.81) > SVM (0.57, 0.47) > naive Bayes (0.51, 0.39) (Table 3).
It can be seen that the greenhouse classification accuracies of CART, randomForest and
gmoMaxEnt were high and can be used to construct the greenhouse extraction and clas-
sification algorithm in Jiangsu Province, while the greenhouse classification accuracies
of SVM and naiveBayes were low, so these two algorithms were not considered for the
construction of the greenhouse integration algorithm.

Table 3. Producer’s accuracy (PA) and user’s accuracy (UA) of different classification algorithms.

Land Use Type

CART randomForest gmoMaxEnt SVM naiveBayes

UA PA UA PA UA PA UA PA UA PA

Construction land
Water
Forest land
Farmland
Greenhouse

0.88 0.80 0.80 0.80 0.77 0.83 0.56 0.34 0.46 0.61
0.96 0.97 0.96 0.95 0.97 0.96 0.43 0.97 0.89 0.99
0.94 0.95 091 0.93 0.91 0.92 0.95 0.98 0.19 0.50
0.79 0.89 0.78 0.81 0.70 0.88 0.94 0.48 0.84 0.36
0.92 0.88 0.86 0.83 0.89 0.73 0.08 0.41 0.31 0.43

3.2. Greenhouse Extraction of Integrated Learning Algorithm

Based on the classification accuracy of each classifier, from the perspective of pro-
ducer’s accuracy, the accuracy of the three classifiers of CART, randomForest and gmo-
MaxEnt is high (UA > 0.8), and the accuracy of the SVM and naiveBayes is low (UA < 0.6).
Therefore, three classifiers of the CART, randomForest and gmoMaxEnt were selected to
construct integrated learning classifier for greenhouse extraction in Jiangsu Province. Due
to the high accuracy of the three classifiers, in order to better distinguish the accuracy of
the different classifiers, and to ensure the probability of the classification result of a single
classifier could not be higher than the cumulative probability of multiple classifiers. In
view of this, in the form of hierarchical weighting, weights were assigned according to
the producer’s accuracy of the classifiers, according to the classification accuracy from
large to small, the classification results under the three algorithms of CART, randomForest
and gmoMaxEnt were respectively weighted as 0.4, 0.35 and 0.25, and the classification
result under the final integrated learning algorithm was the land-use type with the largest
classification probability on the pixel-by-pixel, the land use The classification probability
replaced the classification result under the traditional single classifier, then the spatial
distribution of greenhouse in Jiangsu was obtained (Figure 3).
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Figure 3. Spatial distribution of greenhouses in Jiangsu Province.

On the basis of the identification of the greenhouse, the confusion matrix of the land
use types under the algorithm was further calculated based on the verification sample
points. As shown in Table 4, from the perspective of producer’s accuracy, the classification
accuracy of greenhouses is 0.94, and there are 985 real samples, of which 927 are correctly
classified, and 58 are incorrectly classified into other land use types. In addition, from the
perspective of user’s accuracy, the classification accuracy of greenhouses is 0.88, which
is also high. Overall, the classification accuracy of greenhouses is relatively high. This
method can effectively identify the spatial distribution of greenhouse in the region.

Table 4. Confusion matrix of integrated learning algorithm.

Confusion Matrix

Actual Value

Construction Land Water  Forest Land Farmland Greenhouse User’s Accuracy

Predictive
Value

Construction land 593 4 16 64 33 0.84
Water 3 659 5 11 3 0.97
Forest land 8 5 758 12 2 0.97
Farmland 17 3 9 624 18 0.93
Greenhouse 71 5 13 38 927 0.88
Producer’s 0.86 0.97 0.95 0.83 0.94
accuracy

3.3. Spatial Distribution Characteristics of Greenhouses

Based on the Google Earth Engine cloud platform, an integrated algorithm was used
to extract the spatial distribution of greenhouses in Jiangsu Province in 2018, then the
greenhouse area was calculated at the county scale, and the cold spots and hot spots of
the greenhouse area distribution in different counties is analyzed (Figure 4). There is
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obvious spatial differentiation of greenhouses in Jiangsu Province, and the distribution
area of greenhouses in different counties is quite different. The most widely distributed
greenhouses in the county are mainly concentrated in the agriculturally developed areas
such as Dongtai City, Haian County, Rudong County and Pizhou, where the county-level
greenhouses are more than 500 km?, and the county-level greenhouses are the most sparsely
distributed in the economically developed areas of southern Jiangsu, such as Changshu
City, Binhu District, and Wujiang District. From the distribution pattern of cold spots and
hot spots of greenhouses at the county level, it can be seen that the spatial distribution of
greenhouses in Jiangsu Province has obvious spatial agglomeration characteristics. The hot
spots are mainly concentrated in several core distribution areas in the east and north of the
study area, where are important food and vegetable production bases in Jiangsu Province,
and the wide application of greenhouses has improved the growth conditions of crops.
The cold spots are mainly distributed in the urban areas of southern Jiangsu. These areas
have high land development intensity and are the most economically developed core of the
study area. Therefore, the proportion of agricultural land used for agricultural production
is relatively small.

Legend

Area/km?
B 4.49-61.76
[ 61.76-153.48

[ 279.07-508.48

I 508.48-832.07
0 180 km
(I

[ 1153.48-279.07 °

Legend

HostSpot Analysis
B Coldspot
[71Second coldspot
[__Not significant
["1Second hotspots
I Hotspots

Figure 4. Distribution of greenhouses and hot spots in the county.

The spatial distribution pattern of greenhouses in different cities of Jiangsu Province is
shown in Figure 5. From the perspective of the total area of greenhouses in different cities,
there is a large spatial heterogeneity in the spatial distribution of greenhouses in Jiangsu
Province. The areas of greenhouses are the largest in Yancheng, Nantong and Xuzhou,
while the greenhouse area is the smallest in Wuxi, Changzhou and Zhenjiang. According
to the percentage of greenhouses in different cities in the total area of the region, there are
also large spatial differences in the proportion of greenhouses in different cities. Taizhou,
Zhenjiang, and Nantong have the highest percentages of greenhouses, which are all over
20%, while the proportion of greenhouse area in Suqgian, Suzhou and Lianyungang is the
smallest. In addition, it is not difficult to find that the proportion of greenhouse area in
different regions is not consistent with the overall distribution trend of total greenhouse
area. This is mainly related to the proportion of agricultural land in the region. In some
regions (such as Yancheng), the total area of greenhouses is the largest, but due to the large
total area, the proportion of greenhouses is not the highest.
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Figure 5. The area of greenhouses by city and its proportion in the area of the city.

4. Discussion
4.1. Classification Accuracy under Different Feature Combinations

The construction of feature bands has a great influence on the extraction of regional
greenhouses. This study took the CART algorithm with the highest classification accuracy
as an example, and combined spectral features, texture features and terrain features to
obtain seven different feature combinations of spectral features, texture features, terrain
features, spectral + texture features, spectral + terrain features, texture + terrain features,
and spectral + texture + terrain features, to explore the accuracy of greenhouse classification
under different feature combinations, and to reveal the impact of different features on
greenhouse classification. The overall accuracy and kappa coefficients under different
feature combinations are shown in Table 5. The extraction accuracy of the greenhouse
under the feature combination of spectral + texture + terrain features is the highest, and
its overall accuracy and kappa coefficient are 0.90 and 0.87, respectively, which has high
credibility. The comprehensive consideration of the visible spectrum, texture and terrain
has the best effect on greenhouse extraction. In addition, spectral features are the key factor
in the interpretation of greenhouse. The overall classification accuracy of pure spectral
features and combinations with spectral features is higher, while the extraction accuracy of
the greenhouse with pure topographic features or pure texture features is lower, but they
also have a certain enhancement effect on the accuracy of the greenhouse extraction.

Table 5. Classification accuracy under different feature combinations.

Feature Combinations

Evaluation of Accuracy . Spectral + Spectral + Texture + Spectral + Texture
Spectral Texture Terrain . . .
Texture Terrain Terrain + Terrain
Overall accuracy 0.87 0.42 0.60 0.88 0.89 0.69 0.90
Kappa coefficient 0.84 0.27 0.49 0.85 0.86 0.61 0.87
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4.2. Comparison with Other Greenhouse Extraction Algorithms

With the rapid development of remote-sensing technology, scholars have performed
remote-sensing interpretation of greenhouses and achieved fruitful results [36]. However,
the current common greenhouse remote sensing interpretation methods are mainly divided
into two categories. One is supervised classification based on high-resolution remote-
sensing images. For example, based on GaoFen-2 satellite image data, Zhao et al. used
the object-oriented nearest neighbor method to extract the information of agricultural
greenhouses in Guantao County, Handan City [37]; Aguilar et al. proposed an object-
oriented greenhouse identification method for GeoEye-1 and WorldView-2 images [38].
The second is to construct a greenhouse identification index, and determine the division
threshold based on the actual sample data, and then extract the spatial distribution data
of the greenhouse. For example, Yang et al. used Landsat 7 images as the data basis
to construct the plastic greenhouse index from the aspects of spectrum, sensitivity and
resolution in Weifang City, Shandong Province, China, and determine the identification
thresholds. They applied the rich spectral characteristics of Landsat images to seek large-
scale greenhouse extraction methods [9].

Currently, remote-sensing mapping of greenhouses based on high-resolution images
can effectively identify the spatial distribution characteristics of greenhouses in specific ar-
eas. However, in practical applications, on the one hand, the difficulties in data acquisition,
poor data fusion effect and low calculation efficiency will further aggravate the problem of
“same object with different spectrum and different object with same spectrum” [23]. The
existing methods are only suitable for analysis of small areas, and cannot realize large-scale
and long-term remote-sensing monitoring research. Although scholars have conducted
research on greenhouse extraction models for specific areas, most of these studies take
specific typical areas as cases [9]. The developed extraction algorithms are generally only
suitable for small-scale specific areas, and their generalization ability is generally poor. It
is difficult to achieve the effective transplantation of these algorithms, and the promotion
of the greenhouse recognition algorithm is greatly challenged [3]. In addition, common
greenhouse extraction algorithms mainly use better classifiers for greenhouse extraction,
ignoring the regional differences under different classifiers [36].

The Google Earth Engine platform is different from the traditional local remote-sensing
interpretation process. It can call on hundreds or even thousands of images available in the
research area during a specific period of time for stitching. It also comes with cloud removal
and classification algorithms, which can be used in a few seconds. It can quickly obtain
cloud-free and color-free synthetic images in the research area, and can program algorithms
according to our own research needs, which has great operability [20-22]. Based on the
advantages of Google Earth Engine, this research constructs an integrated classification
algorithm of greenhouse extraction based on a classifier with better classification accuracy,
and then realizes a long-time sequence and large-scale remote-sensing mapping of the
greenhouse, which can quickly and accurately obtain the characteristics of the long-term
evolution of the greenhouse in the study area, and provide a reference for guiding regional
agricultural production. The results show that the classification accuracy of greenhouse
recognition ensemble classifier based on Google Earth Engine is higher. Compared with
the traditional greenhouse recognition methods, the research can achieve efficient and
large-scale greenhouse remote-sensing rapid mapping, and the algorithm can realize the
effective migration of different regions.

4.3. Limitations and Outlook

This research is based on the Google Earth Engine cloud platform and integrated
learning algorithm, taking Jiangsu Province as a case area where greenhouses are widely
used, constructs an integrated classifier for large-scale remote-sensing recognition of green-
houses under complex terrain, and then realizes rapidly large-scale greenhouse remote
sensing mapping. This method is popular in complex terrain with high recognition ac-
curacy, and can achieve efficient and accurate greenhouse remote-sensing monitoring.
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However, due to the limitation of cloud cover, data accuracy and related auxiliary variables
of remote sensing images, the greenhouse identification algorithm adopted in this research
still needs to be further improved. For example, although this algorithm comprehensively
considers the spectral features, terrain features and texture features, but the accuracy of
remote-sensing images is limited to a certain extent, and the extraction of multiple types
of greenhouses has not been realized. In addition, this research really lacks consideration
of geophysical mechanisms that allow the detection of greenhouses. For example, the
spectral characteristics of greenhouses are affected by the comprehensive influence of the
atmosphere and the surrounding environment. In the construction of the greenhouse
identification algorithm, the parameters of geophysical mechanisms that are closely related
to greenhouse identification should be selected, which may further improve the accuracy
and reliability of greenhouse identification.

Future studies will classify greenhouses as either small arches, plastic greenhouse,
glass greenhouse, and agricultural mulches. The weather in the study area is cloudy
and rainy all year round. As the use of greenhouses is closely related to temperature,
there is obvious seasonality in the use of greenhouses in the area, and the extraction of
seasonal greenhouses has yet to be achieved. These challenges will affect the recognition
results of the greenhouse to a certain extent, especially in large-scale complex terrain.
In future research on greenhouse identification, further consideration can be given to
combining current remote-sensing images with higher temporal and spatial resolution,
applying cutting-edge technologies such as machine learning, deep learning and big data,
and selecting auxiliary variables closely related to the greenhouse. In addition, deeper
consideration of the geophysical parameters that affect the greenhouse and adding it to
the identification parameters of the greenhouse will also be an effective way to further
improve the accuracy of the identification of the greenhouse in the future. With these
considerations, more scientific and effective greenhouse identification parameters and
algorithms can be constructed, and greenhouse information with higher temporal and
spatial resolution (such as greenhouse sub-categories, seasonal greenhouses, etc.) can be
obtained. Rapid remote-sensing mapping of greenhouses with high temporal and spatial
resolution under complex terrain provides scientific decision-making basis for regional
agricultural production, agricultural structure adjustment, plastic pollution control, and
formulation of relevant guiding policies for greenhouse use by local governments.

5. Conclusions

This research selects feature parameters from three aspects of spectral features, tex-
ture features, and terrain features based on the Google Earth Engine cloud platform. By
comparing with the five classification results, the classification algorithm with higher accu-
racy is selected to construct an integrated learning classification algorithm for greenhouse
identification, and then rapid remote-sensing mapping of greenhouses is achieved. The
main conclusions are as follows:

(1) The CART, SVM, and randomForest with higher accuracy are selected to build an
integrated classification algorithm of greenhouse identification. The accuracy of the
integrated classification algorithm is higher than any single classification algorithm.

(2) The greenhouses have significant spatial differentiation characteristics. The most
widely distributed greenhouses are mainly concentrated in developed agricultural
areas, and greenhouses have obvious spatial agglomeration characteristics. The hot
spots are mainly concentrated in the east and north of the study area.

(3) Different combinations of spectral, texture and terrain features have a greater impact
on the extraction of regional greenhouses. Among them, the extraction accuracy of
greenhouses under the combination of spectral, texture and terrain features is the
highest. Spectral features are the key factors of greenhouse interpretation.

(4) The Google Earth Engine cloud platform provides a large amount of various open
source remote-sensing data, and comes with various classification algorithms. An in-
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tegrated classifier for regional greenhouse recognition was constructed, which can re-
alize efficient remote-sensing mapping of large-scale greenhouses in complex terrain.
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