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Abstract: The detection of Thermal Power Plants (TPPs) is a meaningful task for remote sensing
image interpretation. It is a challenging task, because as facility objects TPPs are composed of
various distinctive and irregular components. In this paper, we propose a novel end-to-end detection
framework for TPPs based on deep convolutional neural networks. Specifically, based on the
RetinaNet one-stage detector, a context attention multi-scale feature extraction network is proposed
to fuse global spatial attention to strengthen the ability in representing irregular objects. In addition,
we design a part-based attention module to adapt to TPPs containing distinctive components.
Experiments show that the proposed method outperforms the state-of-the-art methods and can
achieve 68.15% mean average precision.

Keywords: remote sensing; facility object detection; thermal power plants; convolution neural
network; spatial attention; part-based attention

1. Introduction

Fixed industrial facilities are buildings with pieces of equipment for a particular
purpose. Specifically, power plants supply electricity to the electrical grid, sewage treatment
plants remove contaminants from municipal wastewater and garbage dumps are piled
with domestic garbage. These facilities greatly influence regional economic situation and
ecological environment. Therefore, monitoring the location of fixed industrial facilities is
of great significance for regional economic and environmental situation.

Thermal power plants of optical remote sensing images are investigated in this paper.
Current research of spectral image object detection [1–4] mostly focuses on the land cover
type such as urban land, agriculture land, forest land and water. Such objects are different
from thermal power plants, because thermal power plants are functional fixed facilities,
which have diverse spatial patterns with blurred boundaries and contain several non-rigid
components with separate locations.

Compared with other facilities, it is more challenging to detect thermal power plants
in remote sensing images due to the following characteristics. Thermal power plants gener-
ally have typical components including sedimentation tanks, cooling towers, chimneys,
coal yards and pools. As shown in Figure 1, unlike sewage treatment plants, the compo-
nents of Thermal Power Plants (TPPs) are non-rigid irregular objects, such as coal yards
and pools, which are difficult to describe with a specific shape and scale. In addition,
different from garbage dumps, TPPs have diverse spatial patterns with blurred bound-
aries, containing several components with separate locations, as illustrated in Figure 2.
Consequently, it is more difficult but more valuable to study the detection of TPPs compared
with other facility objects.
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(a) (b) (c)

Figure 1. Facility objects which composed of several separate components. (a) sewage treatment plants including sed-
imentation tanks (red bounding boxes) and arcuation sedimentation tanks (blue bounding boxes); (b) thermal power
plants, including chimneys (green bounding boxes), coal yards (red bounding boxes) and pools (blue bounding boxes);
(c) garbage dumps.

(a) (b) (c)

Figure 2. Samples of thermal power plants with diverse separate irregular components including chimneys (green bounding
boxes), coal yards (red bounding boxes), pools (blue bounding boxes) and other processing buildings. (a) Bathinda thermal
power plant; (b) Ukai thermal power plant; (c) Korba power plant.

In view of above characteristics, many recent works have already focused on the
detection of irregular objects, as well as objects with diverse spatial patterns.

Detection of irregular objects: Zhou et al. [5] construct a fully-convolutional neural
network adapted for text detection to predict words of arbitrary orientations and quadrilat-
eral shapes in full images. Wang et al. [6] propose a Progressive Scale Expansion Network
(PSENet) to detect text instances with arbitrary shapes, which generates the different scale
of kernels for each text instance and gradually expands the minimal scale kernel to the
text instance with the complete shape. They propose another arbitrary-shaped text de-
tector, termed Pixel Aggregation Network (PAN) [7] by means of cascadable U-shaped
module and feature fusion. However, such arbitrary-shaped texts are irregular but orga-
nized objects with clear boundaries rather than TPPs. As a typical method for irregular
objects, Deformable Convolutional Networks (DCN) [8] introduce deformable convolution
and deformable RoI pooling to enhance the transformation modeling capacity of CNNs.
The deformable convolution adds 2D offsets to receptive fields in the standard convolution,
which can deform the receptive fields. In DCN, the shape and scale of anchor boxes is
predefined, so it is difficult for the generic detector to describe TPPs with a specific shape
and scale without adaption.

Detection of objects with diverse spatial patterns: Li et al. [9] divide a pedestrian image
into several horizontal stripes for patch matching. Zhao et al. [10] propose Spindle Net for
person re-identification, which separately captures semantic features from different body
regions for the alignment of macro- and micro-body features. However, such part-based
methods for person detection are based on the specific pattern of humans. Han et al. [11]
propose a Part-based Convolutional Neural Network (P-CNN) for fine-grained visual
categorization. P-CNN contains a part localization network, which learns a bank of
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convolutional filters as discriminative part detectors to locate distinctive object parts,
and a part classification network, which classify each individual object part as image-
level categories and then fuses part features and global feature for the final classification.
Although P-CNN has taken discriminative parts into consideration, it is not applicable for
TPPs because P-CNN is designed for rigid objects such as aircrafts and cars.

According to related research above, existing methods are mostly designed for rigid
objects and organized objects with a specific pattern. These methods have not considered
objects like TPPs, which are composed of non-rigid irregular components with separate
spatial locations. In order to tackle the above problems, this paper presents an end-to-end
detection framework called Part-based Context Attention Networks (PCAN). As illustrated
in Figure 3, PCAN is based on a one-stage detector RetinaNet [12] on ResNets [13], using a
context attention multi-scale feature extraction network (CMN) with deformable convolu-
tion [8] and a part-based attention module for both classification and regression. CMN not
only obtains geometric constraint information by deformable convolution, but also en-
hances the context attention multi-scale feature maps. Part-based attention module is
designed for the adaption of the thermal power plants with sparsely distinctive compo-
nents, which introduce a loss function to focus on certain discriminative regions with
high responses. Compared to other generic object detection methods such as RetinaNet,
Faster RCNN and Cascade RCNN, our framework is more suitable for the detection of
thermal power plants, and has achieved state-of-the-art performance.

(a) RetinaNet (previous)

(b) PCAN (ours)

Figure 3. The illustration of the detection pipeline. (a) RetinaNet [12], a one-stage detection network, extracts deep features
by ResNet [13] and Feature Pyramid Networks (FPN) [14] , and then obtains locations and class labels of the anchors by
box subnet and class subnet using focal loss. (b) part-based context attention networks (PCAN) uses a Context attention
Multi-scale feature extraction Network (CMN) to generate multi-scale feature maps containing contextual information for
irregular objects and a part-based attention module for the adaption of facility objects composed of distinctive components.

The main contributions of this paper are summarized as follows:

(1) We construct a one-stage end-to-end detection framework called Part-based Context
Attention Networks (PCAN). The model adaptively generates multi-scale feature
maps containing context and part-based attention, which is more accurate and effec-
tive for thermal power plants detection in high-resolution remote sensing imagery.

(2) We propose a Context attention Multi-scale feature extraction Network (CMN) with
deformable convolution, which strengthen the feature representations through the
combination of context attention and multi-scale feature extraction.
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(3) As facility objects generally consist of several components, a part-based attention
module is designed for the adaption of such facility objects, which effectively help
discover distinctive object components.

Experiments based on remote sensing images obtained from Google Earth show
that our PCAN has state-of-art performance for the detection of thermal power plants.
The datasets are publicly available in our github repository (https://github.com/wenxinYin/
AIR-TPPDD, accessed on 14 March 2021), which can reduce the workload of thermal power
plants investigation. The rest of this paper is organized as follows. Section 2 introduces the
details of the proposed method. Then Section 3 presents the experiments conducted on a
remote sensing dataset to validate the effectiveness of the proposed framework. Section 4
discusses the results of the proposed method. Finally, Section 5 concludes this paper.

2. Methods
2.1. Network Architecture

The proposed PCAN model is an end-to-end framework based on RetinaNet [12].
The overall architecture of PCAN in Figure 4 can be divided into three parts: a deep feature
extraction sub-network to extract context-based feature maps for irregular objects, a sub-
network for global prediction, and a module proposing a part-based loss function. The deep
feature extraction sub-network contains a ResNet [13] backbone and a Context attention
Multi-scale Network (CMN). The global prediction sub-network contains a classification
subnet and a regression subnet for the bounding box prediction of global object. The part-
based attention module sub-network is proposed to focus on discriminative regions with
high responses in feature maps. In this sub-network, feature channels are clustered by
K-means into certain groups, where a part-based loss function is introduced to highlight
the prominent components in the object.

As shown in Figure 3 , in the simple one-stage RetinaNet, only backbone networks
and global prediction networks are included. However, due to the non-rigid irregular com-
ponents of TPPs, context attention multi-scale network has been added into the architecture
of this paper to enhance the feature representation capability. In addition, part-based
attention module is proposed for detecting thermal power plants with several separate
components.

Deep Feature Extraction Sub-network: We use a ResNet-50 [13] architecture pre-
trained on ImageNet and our CMN in backbone sub-network. The outputs of the last
convolution layer in the last three residual blocks, defined as {C3, C4, C5} are activated
for feature extraction, whose sizes are {1/8, 1/16, 1/32} corresponding to input image.
In order to effectively detect multi-scale thermal power plants with irregular components,
we design CMN to deal with the set of feature maps and produce global spatial attention
features named {P3, P4, P5}. Deep feature extraction sub-network generates contextual
attentioned deep feature maps of input images, which are designed for multi-scale TPPs
with irregular components.

Global Prediction Sub-network: This sub-network includes a classification subnet and
a regression subnet. These two parallel subnets share a common structure with separate
parameters. Specifically, for A anchors and K object classes, the classification subnet
predicts the probability of objects in spatial locations, which is a small FCN including three
3 × 3 conv layers attached to each pyramid level of CMN. Each 3 × 3 conv layer shares the
same parameters, activated by ReLU. Then, the subnet is followed by a 3 × 3 conv layer
with KA filters attached by a sigmoid activations. The difference between two subnets is
that regression subnet finally obtains 4 linear outputs for each of the A anchors per spatial
location rather than K. Global Prediction Sub-network uses focal loss [12] for classification
subnet and smooth L1 loss [15] for bounding box regression.

Part-based Attention Module: For the adaption of the TPPs with sparsely distributed
components, part-based attention module sub-network is proposed to focus on discrimina-
tive regions with high responses in feature maps. In this sub-network, K-means method
is adopted to cluster feature channels into certain groups, where each group aggregate

https://github.com/wenxinYin/ AIR-TPPDD
https://github.com/wenxinYin/ AIR-TPPDD
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spatially-correlated patterns corresponding to each component of TPPs. Part-based loss
functions for both classification and regression are proposed to strengthen the influence of
prominent components in the object.

Figure 4. Overall framework of our PCAN, which consists of deep feature extraction sub-network, global prediction sub-
network and part-based attention module. In deep feature extraction sub-network, our CMN after the classic Convolutional
Neural Network (CNN) produces multi-scale feature maps, which can not only contain contextual information but also
model irregular components. Global prediction sub-network includes two subnets, one for predicting the labels for anchors
and one for regressing from anchors to ground-truth bounding boxes. Part-based attention module adopts K-means method
to cluster feature channels into certain groups, where each group aggregate spatially-correlated patterns , corresponding to
one component of Thermal Power Plants (TPPs).

2.2. Context Attention Multi-Scale Feature Extraction Network (CMN)

As previously described in Section 1, thermal power plants contains non-rigid irregular
components which are difficult to describe with a specific shape and scale. In order to
detect TPPs with irregular components, we design a Context attention Multi-scale feature
extraction Network (CMN) with deformable convolution based on FPN [14]. FPN can
merge low-level feature maps with higher resolution and high-level semantic information,
which is suitable for multi-scale feature representation. To match the component objects
in irregular shapes, we use deformable convolutions [8] to obtain geometric constraint
information. In addition, global context attention in GCNet [16] is introduced in CMN to
aggregate global contextual information for modelling capacity enhancement.

In Figure 4, we use outputs of the last convolution layer in residual blocks of ResNet [13]
as {C3, C4, C5}. Then CMN, which is elaborated in the following, produces unidimensional
feature maps with geometric constraint and contextual attention. The resultant set of
feature maps, called {M3, M4, M5} corresponding to {C3, C4, C5}, is then laterally con-
nected by up-samling and element-wise addition, generating feature maps for prediction
as {P3, P4, P5, P6, P7}. P6 and P7 are computed from C5 as RetinaNet [12].

As shown in Figure 5, CMN is constructed by two modules including deformable
convolution and context module (context attention and a transformer). For the input
feature map Ci=5,4,3 in the shape of {batch, Ci, Hi, Wi}, the 1× 1 convolutional layer is
firstly used to reduce the dimension as C

′
i of {batch, C2, Hi, Wi}. In DCN part, in order to

transform the receptive field of convolutional kernels, offsets for each point on feature map
C
′
i are learned by a 3× 3 conv, denoted as a tensor of {batch, 18, Hi, Wi}. As the obtained

offsets are usually fractional, offsets are then aggregated to original locations by bilinear
interpolation, so as to generate the updated locations. Additionally, a 3× 3 deformable
conv with stride = 3 is applied to the updated locations, followed by ReLU activation and
batch normalization, of which result is denoted as Di.
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In order to acquire global spatial contextual attention efficiently as GCNet [16], the fol-
lowing context part and transform part construct a non-local block to enhance Di. In context
part, the 1× 1 conv with a softmax generates a global spatial attention mask which indicates
the importance of each pixel in the image. The obtained attention mask is then multiplied
to Di, producing contextual features. In transform part, lightweight bottleneck layers inte-
grate channel-wise dependencies and bottleneck ratio r is set to reduce the computational
cost. Batch normalization (BN) can not only reduce the difficulty of optimization and also
improve the generalization. The final step is to fuse the transformed contextual features,
followed by sigmoid activation, with deformable feature maps Di.

Figure 5. Architecture of our CMN. Based on FPN [14], CMN is constructed by two modules including deformable
convolution and context module (context attention and a transformer).

2.3. Part-Based Attention Module

Thermal power plants contain distinctive components with separate locations as
illustrated in Figure 2. This paper proposes a part-based loss function during training to
strengthen the influence of distinctive components in TPPs. We introduce part-based loss
function starting from the loss function in RetinaNet [12].

For an anchor box i, loss function is defined as the sum of classification loss Lcls and
regression loss Lreg.

L({pi}, {ti}) =
1

Ncls
∑

i
Lcls(pi, p∗i ) + λ

1
Nreg

∑
i

p∗i Lreg(ti, t∗i ), (1)

pi ∈ [0, 1] is the estimated probability for the object class. p∗i ∈ {0, 1} is the ground-truth
label, that is, p∗i = 1 for objects and p∗i = 0 otherwise. ti is a vector representing four
parameterized coordinates of predicted anchor box and t∗i is for the ground-truth box.
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Ncls and Nreg are the numbers of anchor and anchor locations respectively in one batch.
λ is used to balance Lcls and Lreg, which is set to 1 here.

The classification loss Lcls is the softmax loss of two classes, that is, object and back-
ground. Lcls in RetinaNet is the focal loss [12] for binary classification which is designed
for class imbalance based on cross entropy (CE) loss [17] during training.

Lcls = FL(pt) = −αt(1− pt)
γlog(pt), (2)

where αt ∈ [0, 1] is a weighting factor factor and γ ∈ [0, 5] is a tunable focusing parameter
for smoothly adjustments of influence of easy examples. pt is defined as:

pt =

{
p i f y = 1
1− p otherwise,

(3)

where p ∈ [0, 1] is the predicted probability for the class with label y = 1 and y ∈ {±1}
indicates the ground-truth class, object or background.

The regression loss Lreg in RetinaNet is the standard smooth L1 [15] loss used for box
regression. For an anchor box i,

Lreg = SmoothL1(t) =
{

0.5t2 i f |t| < 1
|t| − 0.5 otherwise

(4)

where t = t∗i − ti.
Loss function in Equation (1) calculates the addition of mean values of both classi-

fication loss and regression loss for anchors at all scales of feature maps. However, the
influence of distinctive components inside the objects is not taken into consideration. Dif-
ferent from other objects like garbage dumps, TPPs have diverse spatial patterns containing
several components with separate locations. As a result of that, we design a part-based
loss to strengthen the influence of prominent components in the object in the training stage,
where the combined loss function is defined as the sum of Lglobal (Equation (1)) and Lpart
(Equation (6)), balanced by an adjustable parameter α.

L = Lglobal({pi}, {ti}) + αLpart({pi_k}, {ti_k}). (5)

In the part-based attention module, a set of multi-scale feature maps are clustered into
certain groups by K-means clustering [18], where each group aggregate spatially-correlated
patterns corresponding to each component of TPPs. For feature maps {P3, P4, P5}, K (9, 6, 3)
points are respectively extracted by K-means for each channel. Figure 6 visualizes the
feature maps effected by part-based attention module, which reflects that the network can
pay more attention to these distinctive components by adding part-based loss.

Similar to the loss function in RetinaNet in Equation (1), the part-based loss function
is defined as follows.

Lpart({pi_k}, {ti_k}) =
1

Ncls_k
∑
k

Lpart_cls(pi, p∗i ) + λpart
1

Nreg_k
∑
k

p∗i Lreg(ti, t∗i ), (6)

where λpart is used to balance Lpart_cls and Lpart_reg which is set to 1 here.
In Equation (1), {pi} indicates the probability of object presence at each spatial position

for each of the A anchors and N object classes, which can be seen as a set of vectors in
the shape of {batch, NA, WH}. {ti} is a set of four relative offsets between the anchor
and the ground-truth box for each of the A anchors per spatial location in the shape of
{batch, 4A, WH}. Thus, part-based loss function in Equation (6) counts {pi} and {ti}
at the clustering centers, as {pi_k} and {ti_k} in the shape of {batch, NA, K}. {ti} and
{batch, 4A, K} respectively.

For clustering, centers should be mostly positive samples as distinctive components
of an object, α-balanced CE loss is used as Lpart_cls, which can also be seen as γ = 0 in
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focal loss (Equation (2)). Regression loss Lreg in part-based loss function (Equation (6)) is
identical to smooth L1 loss (Equation (4)).

Lpart_cls = CE(pt) = −αtlog(pt). (7)

Input

RetinaNet

+ loss

Figure 6. Several input images and corresponding heat map visualization of feature representation in ablation experiments,
which proves that part-based attention module can help pay more attention to the distinctive components in the training
process. First line: input image examples. Second line: heat map visualization results of RetinaNet for corresponding
images. Third line: heat map visualization results of RetinaNet + the loss function defined in part-based attention module.

3. Experiments
3.1. Dataset and Settings
3.1.1. Dataset

Large-scale datasets in remote sensing images such as UCMD [19], EuroSAT [20] and
DOTA [21], have contributed to the development of the general object detection of remote
sensing images. However, existing publicly available datasets in remote sensing only cover
limited categories of objects [22–25]. There is no annotated dataset of fixed industrial
facilities including thermal power plants, garbage dumps and sewage treatment plants to
the best of our knowledge.

In order to push forward the deep learning based development of the detection
of TPPs, we construct a thermal power plant dataset of visible spectrum Google Earth
images for object detection, which will be publicly available. We collect 257 potential
locations of worldwide power plants from public websites, and then download images
of all these locations, examine and check them earnestly. Sites with low credibility are
omitted and 230 thermal power plants remain. To increase the diversity of data, we collect
historical images of the 230 valid sites from Google Earth, and obtain 487 images ultimately.
Each image is 3584 × 3584 pixels, covering the land of 2 km × 2 km with a resolution of



Remote Sens. 2021, 13, 1243 9 of 15

0.60m. All the objects are annotated with horizontal bounding boxes and finally obtain a
COCO-style dataset.

In addition, to facilitate the representation of TPPs, we provide annotations including
the whole PLANT and four components, that is Coal Yard, Chimney, Pool and other process-
ing buildings (Processing). Coal Yard, Chimney and Pool are typical components in a thermal
power PLANT. The study in this paper uses the PLANT annotations on a sub-dataset of
300 coal-fired TPP images. The 300 coal-fired TPP images are split into training and testing
data with a ratio of 7 to 3. The data in Aerospace Information Research Institute-Thermal
Power Plants Dataset for Detection (AIR-TPPDD) are respectively augmented by random
cropping and flipping to obtain a dataset of 2000 samples of 900× 900 pixels to adapt to
deep learning based methods.

3.1.2. Evaluation Metrics

To evaluate the practical application of our proposed detection methods for TPPs,
we adopt the standard mean average precision (mAP), frame per second (FPS), floating-
point operations per second (FLOPs) and the number of trainable parameters (Params) in
our experiments.

In a detection task, the predicted bounding boxes can be divided into true positive
(TP), true negative (TN), false positive (FP) and false negative (FN). Precision and recall of
detection results are calculated as:

p =
TP

TP + FN
(8)

r =
TP

TP + FP
. (9)

The F1 score is the harmonic mean of the precision and recall, which can evaluate the
performance comprehensively. Given two bounding boxes B1 and B2, intersection over
union (IoU) is defined as

IoU =
|B1 ∩ B2|
|B1 ∪ B2|

=
|B1 ∩ B2|

|B1|+ |B2| − |B1 ∩ B2|
. (10)

When IoU varies, precision and recall will change dynamically, constructing the
precision-recall (PR) curve. The average precision is viewed as the area under PR curves
obtained by setting different IoUs. More specifically, AP@0.5 and AP@0.75 are the areas
under the PR curve setting IoU = 0.50 and 0.75 respectively. mAP@[0.5:0.95] is the average
AP when IoU ranges from 0.5 to 0.95 in steps of 0.05, which is used as the main evaluation
criterion for our task.

F1 =
2pr

p + r
(11)

AP =
∫ 1

0
p(r) dr. (12)

In addition, average frame per second (FPS) is the number of processing images per
second during test stage, which represents the time cost for application. Floating-point
operations per second (FLOPs) and the number of trainable parameters (Params) are com-
monly used to indicate the complexity of deep models. Experiments are all implemented
under the same hardware conditions.

3.1.3. Parameter Settings

All experiments are implemented with the PyTorch framework on a NVIDIA TITAN
RTX with CUDA11.1. The pre-trained model ResNet-50, which was trained on the Ima-
geNet dataset [26], is used to initialize the network. For the balance between the large-size
scene requirements for objects and training efficiency for deep network, all images are
processed to 900× 900 pixels by random cropping and flipping in experiments.
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We then utilize stochastic gradient descent [27] to train the network with a momentum
of 0.9 and weight decay of 5 × 10−4. The learning rate is initialized as 0.001 and then
dropped by a factor of 0.1 every 10000 steps. In classification loss (Equations (2) and (7)),
we set αt = 0.25 and γ = 2 according to RetinaNet [12]. The ratio of negative and positive
samples in training stage is set to 3 in order to suppress negative samples. The balancing
factor α in loss function (Equation (5)) is set to 0.25 without specific notice.

3.2. Ablation Study
3.2.1. Effect of CMN

In this section, the proposed CMN is trained for exploring the influence to the gen-
erated feature maps. Experiments use the same detection framework and unchanged
parameters based on RetinaNet [12]. As shown in Figure 5, MFN is designed for ir-
regular multi-scale feature representation by introducing global spatial attention and
deformable convolution.

To prove the effectiveness of CMN we proposed, ablation experiments are designed
as Table 1. As Figure 5, CMN can be viewed as the sum of deform module (DCN part)
and context module (context attention and a transformer). CMN can be added to feature
maps {C3, C4, C5} of backbone ResNet50. In Table 1, adding deform module or context
module brings a certain improvement to the predicted detection results. It can also be
seen that detection results of CMN are mostly obviously improved with the increase in
network complexity except RetinaNet+CMN(C35). It could be because that C5 and C3 are
processed by CMN, so M5 and M3 can adapt to non-rigid irregular objects rather than M4
in Figure 5. As a result of that, M4 in RetinaNet+CMN(C35) is not consistent with M5 and
M3, which does not benefit the optimization of networks. In general, the most obvious
improvement can reach 4.25% and the mAPs of seven listed ways of CMN addition are
enlarged, which can prove the reliability of our proposed CMN.

Table 1. Adding CMN for feature extraction.

Method C3 C4 C5 mAP ∆mAP maxF1 FLOPs

RetinaNet - - - 0.6309 - 0.665 192.31G

+Deform(C345) X X X 0.6486 +1.77% 0.686 202.23G
+Context(C345) X X X 0.6564 +2.55% 0.678 192.32G

+CMN(C3) X - - 0.6530 +2.21% 0.680 199.84G
+CMN(C4) - X - 0.6618 +3.09% 0.697 194.23G
+CMN(C5) - - X 0.6494 +1.85% 0.672 192.81G
+CMN(C34) X X - 0.6729 +4.20% 0.713 201.75G
+CMN(C35) X - X 0.6449 +1.40% 0.679 200.33G
+CMN(C45) - X X 0.6632 +3.23% 0.702 194.72G
+CMN(C345) X X X 0.6734 +4.25% 0.719 202.25G

3.2.2. Effect of Part-Based Attention Module

As discussed in Section 2.3, part-based attention module is beneficial to the detection
of thermal power plants. An adjustable parameter α is used to balance Lpart (Equation (6))
with Lglobal (Equation (1)) in loss function (5). Same as CMN, we evaluate the effects of
part-based loss function based on RetinaNet in ablation experiments. Table 2 shows that
by replacing the loss function, the detection result is improved to 65.58% with respect
to RetinaNet, delivering a gain of 2.49%. Figure 6 illustrates several input images and
corresponding heat maps of feature representation which proves that part-based attention
module can help pay more attention to the distinctive components in the training process.
Furthermore, part-based attention module with balancing factor α=0.25 is demonstrated in
Table 2 to bring an extra improvement of 0.81% to the networks with CMN. Results on our
best method RetinaNet+CMN+Part-based-loss (PCAN) are visualized in Figures 7 and 8.
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Table 2. Varying α in loss function.

α mAP maxF1

0 0.6309 0.665

0.10 0.6502 0.677
0.25 0.6558 0.681
0.50 0.6550 0.679
0.75 0.6487 0.674
0.99 0.6213 0.622

0.25+CMN 0.6815 0.731

To balance Lpart with Lglobal , we part-based multiply a modulation factor α to Lpart in
Equation (5). In this section we change α from 0 to 1 to investigate its influence. All mod-
els share the same experiment settings based on RetinaNet. When α = 0, Equation (5)
degenerated into Equation (1) as RetinaNet. If we set α to 1, part-based loss Lpart weighs
the same as Lglobal in overall loss function. Table 2 shows the performance of models
with different α, from which we can find that the performance of models with different α
approximately obeys normal distribution, achieving best α in [0.25, 0.5]. When α is close
to 1, mAP obviously decreases. This result may be because Lpart roughly focus on the
distinctive components which is not reasonable if it has a huge impact on the total loss.
For simplicity, modulation factor α is set to 0.25 without specific notice in the part-based
attention module to benefit the localisation of TPP targets.

Figure 7. TPP test results on a remote sensing image which covers 2 km× 2 km. The detected category name and confidence
are marked in the lower left corner in predicted bounding boxes.
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RetinaNet

PCAN

Figure 8. Detection results on Aerospace Information Research Institute-Thermal Power Plants Dataset for Detection
(AIR-TPPDD) dataset. The blue box is the ground-truth, and the red box is the test result. Images at the top and the
bottom are respectively the results of RetinaNet and our PCAN. The suppression of false alarms indicates that the proposed
framework can generate effective deep features for thermal power plants.

3.3. Comparison with State-of-the-Arts

In this paper, classic one-stage RetinaNet detector [12] is used as the baseline method
due to its simple structure and wide application in object detection. Two-stage detector
Faster-RCNN detector [28] and multi-stage detector CascadeRCNN [29] are also included
in contrast experiments.

RetinaNet [12] extracts deep features by ResNet [13] and FPN [14], and then uses a
box subnet and a class subnet to obtains locations and class labels of anchors. Focal loss is
designed to deal with class imbalance in one-stage detectors, which enlarges the weight of
hard examples in cross-entropy loss.

Faster-RCNN [28] is a two-stage framework by integrating the Fast-RCNN [19] with
RPN, which also extracts deep feature maps by a CNN backbone. FPN is added in our
experiments to the backbone for multi-scale feature extraction. RPN is then trained to
generate region proposals and ROI pooling computes proposal feature maps. Lastly,
a classifier is used to predict the labels for each proposal and refine proposals.

For better match between the intersection over union (IoU) thresholds for which
the detector is optimal and those of the input hypotheses, Cascade-RCNN [29] includes
a sequence of detectors trained with increasing IoU thresholds. Compared with Faster-
RCNN, Cascade-RCNN consists of at least two more ROI poolings and classifiers which
are trained stage by stage.

All experiments are implemented under the same hardware conditions. As shown
in Table 3, our PCAN increases mAP by 5.06% compared to RetinaNet. Furthermore,
according to hypothetical test principle, statistical tests of the detection results of baseline
RetinaNet show that P(mAP = 0.6309± 0.19%) = 0.95 and final results of PCAN show
P(mAP = 0.6815± 0.63%) = 0.95, which indicates the enhancement of representation
ability of deep feature maps for TPPs. FPS, FLOPs and the number of trainable param-
eters (Params) are listed in Table 3. It is thus convincing that our method gained better
performance than RetinaNet without too much time and memory cost.
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Experiments show that mAPs obtained by Faster-RCNN and Cascade-RCNN are close
to mAP obtained by RetinaNet, with minor improvements in accuracy between multi-
stage and one-stage methods. However, RetinaNet runs much faster than Faster-RCNN
and Cascade-RCNN with less number of trainable parameters. This could be because
that complicated models are not easy to optimize, especially for the non-rigid irregular
TPP object.

Furthermore, experiments of remote sensing ship detection are performed on the
AIR-SARShip dataset [30], as shown in Table 4. Results demonstrate a minor improvement
of our PCAN for ship detection, which indicates that our proposed method is more suitable
for the detection of thermal power plants rather than other objects.

Table 3. Performance of different methods for TPP detection.

Method mAP maxF1 FPS(/s) FLOPs Paras(MB)

RetinaNet [12] 0.6309 0.665 19.61 192.31G 34.67
Faster-RCNN [28] 0.6443 0.672 10.3 250.13G 26.97

Cascade-RCNN [29] 0.6518 0.680 5.33 294.06G 93.75
Our PCAN 0.6815 0.731 16.24 246.37G 35.28

Table 4. Experiments on ship dataset [30].

Method mAP FPS(/s)

RetinaNet [12] 0.811 58.0
Faster-RCNN [28] 0.793 32.6

Our PCAN 0.824 50.4

4. Discussion

By comparing and analyzing the above experiments, the effectiveness of the proposed
method is verified. The proposed PCAN offers superior performance in the TPPs detection
task by CMN and part-based attention module based on RetinaNet.

However, through observation of the test results in Figure 9, we can see that not
all the detection results are ideal. Figure 9 shows some examples of false alarms and
missing alarms, which are mainly caused by hard examples. Hard examples found in our
experiments include the following two situations: (1) Disturbances due to similar surfaces.
Some background scenes, such as buildings, parking lots and pools, locate near a TPP
in Figure 9a–c. In Figure 9a, some residential buildings appear similar to the processing
buildings in TPP. In Figure 9b, a parking lot with regularly arranged cars is mistakenly
detected. In Figure 9c, it is sometimes difficult to distinguish whether a nearby pool is a
part of the TPP object. (2) Missed alarms caused by occlusion and edge location. Objects
blocked by clouds and located near the edge make it difficult to recognize in Figure 9d.

In the future, we will explore how to enhance the recognize ability of detectors in order
to effectively reduce false alarms and missed alarms. We are particularly planning to split
the AIR-TPPDD dataset into easy and hard examples, and then focus on the hard examples
during training with strict limitation of ratio of hard and easy samples. In addition,
detection and classification of power plants including coal-fired power plants, oil-fired
power plants, gas-fired power plants, waste heat power plants may be implemented by
constructing more detailed power plants images, which will be carried out in the future.
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(a) (b) (c) (d)

Figure 9. False alarms and missed alarms on hard examples. (a) Disturbances: buildings; (b) Disturbances: parking
lots; (c) Disturbances: pools that locate near a TPP but do not belong to it; (d) Missed alarms caused by occlusion and
edge location.

5. Conclusions

The detection of thermal power plants is a meaningful but challenging task. The diffi-
culty results from the lack of annotated dataset and highly complex appearances of TPPs.
In this paper, an effective TPP detection method, which includes context attention multi-
scale feature extraction network (CMN) and part-based attention module, is proposed to
solve the problem. CMN enhances the local convolutional features and part-based attention
module strengthen the influence of components in TPPs. Experiments demonstrate the
effectiveness of our proposed part-based context attention networks (PCAN).
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