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Abstract: In this study, a comprehensive assessment on precipitation estimation from the latest
Version 06 release of the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement
(IMERG) algorithm is conducted by using 24 rain gauge observations at daily scale from 2001 to
2016. The IMERG V06 dataset fuses Tropical Rainfall Measuring Mission (TRMM) satellite data
(2000–2015) and Global Precipitation Measurement (GPM) satellite data (2014–present), enabling
the use of IMERG data for long-term study. Correlation coefficient (CC), root mean square error
(RMSE), relative bias (RB), probability of detection (POD), false alarm ratio (FAR), and critical
success index (CSI) were used to assess the accuracy of satellite-derived precipitation estimation
and measure the correspondence between satellite-derived and observed occurrence of precipitation
events. The probability density distributions of precipitation intensity and influence of elevation on
precipitation estimation were also examined. Results showed that, with high CC and low RMSE and
RB, the IMERG Final Run product (IMERG-F) performs better than two other IMERG products at
daily, monthly, and yearly scales. At daily scale, the ability of satellite products to detect general
precipitation is clearly superior to the ability to detect heavy and extreme precipitation. In addition,
CC and RMSE of IMERG products are high in Southeastern Jinan City, while RMSE is relatively low
in Southwestern Jinan City. Considering the fact that the IMERG estimation of extreme precipitation
indices showed an acceptable level of accuracy, IMERG products can be used to derive extreme
precipitation indices in areas without gauged data. At all elevations, IMERG-F exhibits a better
performance than the other two IMERG products. However, POD and FAR decrease and CSI increase
with the increase of elevation, indicating the need for improvement. This study will provide valuable
information for the application of IMERG products at the scale of a large city.

Keywords: global precipitation measurement; IMERG; assessment; extreme precipitation

1. Introduction

In recent years, the hydrological cycle has been under the influences of global climate
change and intensified human activity [1]. Spatial and temporal distribution of the compo-
nents of the cycle have changed, directly affecting regional water balance and inducing
natural disasters, such as high intensity rain events, flood, a heat wave, and drought [2–4].

Variability in precipitation can lead to regional droughts and floods, which is crucial to
water resources management and to meeting the needs of human societies [5]. To forecast
floods, monitor droughts, and manage emergencies associated with natural disasters, it
is critical to have high-resolution precipitation data [6,7]. Precipitation data are also used
as basic drivers in various hydrological models. Accuracy of these input data is particularly
important. Precipitation data are usually collected using ground-level rainfall gauges, radar [8],
or satellite sensors.
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Traditionally, precipitation data have been collected using ground-level rainfall gauges.
The data are relatively accurate and are collected at relatively high frequencies [9]. However,
it is more difficult to obtain representative and long-term precipitation data over complex
terrain because of the inhomogeneous and sparse distribution of land gauges and the
high costs to build new gauges [10–12]. By contrast, passive microwave observations
from satellites take into account the interactions between the microwave radiation and
the hydrometeors inside clouds and rain, allowing precipitation to be measured globally,
extending the dataset collected by land stations. Satellite precipitation products have
been increasingly used in research. These include products from the Tropical Rainfall
Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) [13,14] and the
Precipitation Estimation from Remotely Sensed Imagery Using Artificial Neural Networks
(PERSIANN) [15–17]. Furthermore, these also include products from a Climate Prediction
Center Morphing Technique (CMORPH) [18–20], the Global Satellite Mapping of the
Precipitation (GSMaP) project [21–23], the convective rainfall rate from cloud physical
properties (CRPh) algorithm [24], and the Integrated Multi-satellitE Retrievals for the
Global Precipitation Measurement (IMERG) algorithm [25–27].

The TRMM satellite was in operation from 1997 to 2015, and was replaced by the Global
Precipitation Measurement (GPM) mission, which was launched on 28 February 2014. The
IMERG algorithm combines information about the GPM satellite constellation to estimate
precipitation over the majority of the Earth’s surface. In the latest Version 06 release of
IMERG, the algorithm fuses the early precipitation estimates collected during the operation
of the TRMM satellite (2000–2015) with more recent precipitation estimates collected during
operation of the GPM satellite (2014–present). Before satellite precipitation products are
used in hydro-meteorological research, their errors need to be quantified and corrected.

Recently, many preliminary evaluations of satellite precipitation products at different
spatial and temporal scales have been conducted. Tian et al. [21] found that the perfor-
mance of GSMaP is comparable to that of other satellite-based products with GSMaP having
a slightly higher detection probability during the summer over the contiguous United
States. Alijanian et al. [28] conducted a spatio-temporal drought assessment using precipi-
tation products of Artificial Neural Networks Climate Data Record (PERSIANN-CDR) and
the Multi-Source Weighted-Ensemble Precipitation (MSWEP) over Iran. Tekeli et al. [29]
pointed out that the TRMM Multi-satellite Precipitation Analysis (TMPA) Real Time (RT)
data (3B42RT) could be used for flash flood forecasting. A study by Haile et al. [30] sug-
gested that CMORPH can capture the seasonal and spatial patterns of rainfall over Lake
Tana basin in eastern Africa, but with varying degrees of accuracy that depend on topog-
raphy, latitude, and lake-versus-land conditions within the basin. However, only a few
studies have focused on extreme rainfall events [31,32].

The IMERG is the successor of TMPA, and the global products of IMERG have also
been evaluated. Some studies have compared GPM and TRMM products [14,33–37]. For
example, Wang et al. [38] indicated that IMERG correlates better with observations than
TMPA, whereas the bias of IMERG is larger than that of TMPA at multiple temporal and
spatial scales over Northeastern Tibetan Plateau. Liu et al. [39] compared IMERG and
TMPA monthly products on a global scale, and found that differences between IMERG and
TMPA vary with surface types and precipitation rates. Many studies have also found that
the complex terrain can also affect the accuracy of satellite precipitation estimation [40,41].
However, they have rarely used the latest version 06 release of IMERG. These earlier
studies are based on IMERG precipitation products that span over only a few years [42,43].
A comprehensive assessment of satellite-based precipitation products at the scale of a
megacity is lacking [44]. The IMERG V06 dataset is the latest IMERG products with a
relatively long time series. It also has a high 0.1-degree spatial resolution. Long time series
data could be used for other research. However, it is necessary to evaluate the applicability
before using it.

In this study, the land-based observations, continuous verification statistics (correla-
tion coefficient (CC), root mean square error (RMSE), and relative bias (RB)), and categorical
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verification statistics (probability of detection (POD), false alarm ratio (FAR), and critical
success index (CSI)) were used to systematically assess the performance of three IMERG
V06 products—IMERG Early Run, IMERG Late Run, and IMERG Final Run—between 2001
and 2016 in Jinan City. Using several extreme precipitation indices, the performance of
IMERG products was also assessed with respect to extreme precipitation events.

The remaining sections of this paper are organized as follows. The study area and
datasets are presented in Section 2. Continuous and categorical verification statistics and
extreme precipitation indices are introduced in Section 3. The three IMERG products are
assessed in Section 4. Sections 5 and 6 present the discussions and conclusions, respectively.

2. Study Area and Datasets
2.1. Study Area

Jinan City, the capital of Shandong Province in China, is located in Central Eastern
China, downstream of the Yellow River Basin and north of Mount Tai, between the 36◦10′N
and 37◦40′N latitudes and the 116◦12′E and 117◦44′E longitudes. As one of the first pilots,
Sponge Cities (a new generation of urban stormwater management concept in China),
Jinan City has a surface area of 8177 km2. It is covered by mountains, hills, and plains.
The elevation is higher in the southeast and lower in the northwest (Figure 1). It had a
population of more than 7 million in 2016.

Jinan City is located in the Northern Hemisphere at the middle latitudes, and has a
temperate continental monsoon climate. Average annual temperature is between 13 and
15 ◦C [45]. Mean annual precipitation in the study area is approximately 636 mm [46,47].
Precipitation is abundant between June and September. Precipitation distribution is con-
trolled by monsoon intensity and inter-annual variability in monsoon transit time. Precipi-
tation is higher in strong summer monsoon years.

Figure 1. Digital elevation model (DEM) over the study area and land station locations.
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2.2. Land Gauge Precipitation Data

Daily rain gauge data collected at 24 rain gauges of Jinan City between 2001 and 2016
were used in this study. The data were provided by the Jinan Hydrology Bureau. Although
the IMERG-F product has been adjusted according to Global Precipitation Climatology
Center (GPCC) products derived from global stations data, the 24 rain gauges used in this
study were not included. In addition, these data are recorded according to equivalent liquid
precipitation when the precipitation has fallen as snow. Li et al. [47] used these data to study
the precipitation characteristics of Jinan and proved that these data are independent and
have a good consistency. Station locations and elevations are shown in Figure 1. Detailed
information about 24 land observation stations are provided in Table 1. Beifeng (BF) station
and Gushan (GS) station lacked monitoring data for dozens of days. The missing data of
BF station is supplemented with the arithmetic mean method by using the data of three of
the nearest rain gauges (Qunjing, Dazhan, and Sandefan), while the data of Changqing,
Shaoer, and Wohushan is used in the Gushan (GS) station.

Table 1. Information on the 24 land observation stations in Jinan City.

ID Station
Name

Longitude
and Latitude

Elevation
(m) ID Station

Name
Longitude

and Latitude Elevation (m)

1 Shanghe (SH) 117.165 E, 37.314 N 13 13 Dazhan (DZ) 117.473 E, 36.722 N 55
2 Sungeng (SG) 117.023 E, 36.906 N 16 14 Sandefan (SDF) 117.523 E, 36.589 N 221
3 Jiyang (JY) 117.189 E, 36.988 N 16 15 Yanjiayu (YJY) 117.623 E, 36.639 N 226

4 Gushan (GS) 116.845 E, 36.498 N 72 16 Duozhuang
(DuoZ) 117.442 E, 36.516 N 442

5 Duanjiadian
(DJD) 116.734 E, 36.353 N 154 17 Wohushan

(WHS) 116.981 E, 36.492 N 226

6 Wande (WD) 116.928 E, 36.339 N 167 18 Wopu (WP) 117.181 E, 36.402 N 401
7 Changqing (CQ) 116.756 E, 36.572 N 34 19 Nangaoer (NGE) 117.040 E, 36.402 N 347
8 Donge (DE) 116.282 E, 36.176 N 35 20 Zaolin (ZL) 117.290 E, 36.522 N 541

9 Ligou (LG) 116.388 E, 36.172 N 110 21 Huangtaiqiao
(HTQ) 117.056 E, 36.703 N 19

10 Pingyin (PY) 116.456 E, 36.288 N 45 22 Qunjing (QJ) 117.322 E, 36.690 N 86

11 Beifeng (BF) 117.473 E, 36.672 N 94 23 Dachenjiazhuang
(DCJZ) 117.257 E, 36.828 N 16

12 Baiyunhu (BYH) 117.408 E, 36.835 N 15 24 Shaoer (SE) 116.940 E, 36.589 N 139

2.3. Satellite Precipitation Products

The GPM mission was initiated by National Aeronautics and Space Administration
(NASA) and the Japan Aerospace Exploration Agency (JAXA) as a global successor of
TRMM. It is an international network of satellites that provide next-generation global
observations of rain and snow. It centers on the deployment of a Core Observatory satellite
carrying an advanced radar/radiometer system to measure precipitation from space. Data
from the Core Observatory serve as a reference to unify precipitation measurements from a
constellation of research and operational satellites.

Information from the GPM satellite constellation is combined and precipitation over the
majority of the Earth’s surface is estimated using the IMERG algorithm. There are three main
types of IMERG products. The near real-time Early Run (IMERG-E) and Late Run (IMERG-L)
have minimum latencies of 4 and 12 h, respectively. The post real-time Final Run (IMERG-F)
has a minimum latency of 3.5 months.

In this study, the performance of the latest Version 06 release of IMERG products
(IMERG-E, IMERG-L, IMERG-F) at the daily scale between 1 January 2001 and 31 December
2016 was evaluated. The products were downloaded from the Precipitation Data Directory
(https://gpm.nasa.gov/data/directory (accessed on 18 March 2021)) using the wget tool. The
difference between local time and UTC is + 8 h.

3. Materials and Methods

To reduce additional uncertainty caused by interpolation, we only extracted satellite
data at the coordinates of the land stations [48]. It could be understood that the nearest

https://gpm.nasa.gov/data/directory
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grid IMERG data can be obtained according to the longitude and latitude of each station,
i.e., 24 stations correspond to 24 different grids.

According to the universality of use and good performance, three continuous ver-
ification statistics and three categorical verification statistics are selected and shown in
Table 2. The continuous verification statistics contain a correlation coefficient (CC), a root
mean square error (RMSE), and a relative bias (RB) that were used to measure the accuracy
of IMERG products [7,9,30]. CC indicates the degree of agreement between satellite data
and station observations. RMSE describes the difference between satellite data and station
observations. RB indicates systematic bias between satellite products and station observa-
tions. Three widely applied categorical verification statistics that describe the contingency
of satellite precipitation estimates are the probability of detection (POD), a false alarm ratio
(FAR), and a critical success index (CSI) [37,41]. POD measures the hit rate or the fraction
of precipitation events detected correctly by satellite products. FAR denotes the fraction
of the precipitation events indicated by satellite products that were actually nonevents.
CSI describes the overall proportion of precipitation events correctly detected by satellite
products. Values of categorical statistics range from 0 to 1. In this study, 1 mm/day was set
as the threshold for precipitation events.

Table 2. Continuous and categorical verification statistics.

Name Formula Optimal Value

Correlation Coefficient (CC)
CC =

n
∑

i=1
(xi−x)(yi−y)√

n
∑

i=1
(xi−x)2 n

∑
i=1

(yi−y)2

1

Root Mean Square Error (RMSE) RMSE =

√
1
n

n
∑

i=1
(xi − yi)

2 0

Relative Bias (RB)
RB =

n
∑

i=1
(xi−yi)

n
∑

i=1
yi

× 100
0

Probability of Detection (POD) POD = H
H+M 1

False Alarm Ration (FAR) FAR = F
H+F 0

Critical Success Index (CSI) CSI = H
H+M+F 1

Note: n is the number of samples, i represents the ith sample, x denotes a precipitation estimate derived from
satellite data, y denotes precipitation measured at the land station, x and y denote mean values of x and y, H
represents the number of precipitation events that have been both observed and detected, M is the number of
precipitation events that have been observed but undetected, and F represents the number of precipitation events
not detected but observed.

The joint World Meteorological Organization Commission for Climatology (CCI),
World Climate Research Programme (WCRP) project on Climate Variability and Predictabil-
ity (CLIVAR) Expert Team on Climate Change Detection and Monitoring and Indices
(ETCCDMI) has developed a series of indices to identify and quantify extreme precipita-
tion events from daily rainfall data. Recent studies have described and analyzed many
extreme precipitation indices, which have been applied for global and regional climate
change studies [49–52].

Considering the precipitation characteristics in Jinan City, seven indices were selected
for this study (Table 3). These indices are a subset of those 27 core indicators defined
by the ETCCDMI. The indices of RX1day and R95p highlight the extreme precipitation
events that can pose a great risk to society. SDII indicates the degree of precipitation
intensity. Consecutive wet days (CWD) can be used to indicate flooding risk. R10, R20, and
R50 can be used to describe the precipitation pattern of a year. Daily scale data for each
year was used to calculate each extreme precipitation index. Moreover, to compare the
results of observation data and satellite data, the multi-year average value of each index
was calculated.
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Table 3. Extreme precipitation indicators.

Indicator Definition

RX1day Maximum 1-day precipitation amount
SDII Simple daily precipitation intensity index, precipitation per unit time

CWD Maximum number of consecutive days of precipitation
R10 Number of days with a precipitation amount more than 10 mm
R20 Number of days with a precipitation amount more than 20 mm
R50 Number of days with a precipitation amount more than 50 mm

R95p Precipitation that is greater than the 95% percentile

4. Results
4.1. Performance of IMERG Products at Multiple Temporal Scales
4.1.1. Daily Variations

Figure 2 shows density scatterplots of daily rain gauge measurements over Jinan City
and corresponding precipitation estimates from three IMERG products. Continuous verifi-
cation statistics quantifying the accuracy of the IMERG products are also shown in the
figure. The IMERG-F has the best performance. It has the highest CC (0.71) and the lowest
RMSE (5.85 mm) and RB (10.39%). Conversely, IMERG-E has the lowest CC (0.64) and
IMERG-L has the highest RB (28.67%). A positive RB represents an overestimate. Therefore,
precipitation estimates from all three products exceed rain gauge measurements, with
IMERG-E, IMERG-L, and IMERG-F estimates that are 125.83%, 128.67%, and 110.39% of
rain gauge measurements, respectively.

Table 4 shows the performance of IMERG products in detecting general precipitation
events (daily precipitation amount < 20 mm) and heavy and extreme precipitation events
(daily precipitation amount ≥ 20 mm). Performance of IMERG-F is slightly better than
that of IMERG-E and IMERG-L even though differences between the products are small.
For general precipitation events, performance of IMERG-F is superior. It has the highest
average POD (0.949) and CSI (0.615) and the lowest average FAR (0.364). However, it has
only the second highest POD for heavy and extreme precipitation events. For general
precipitation events, POD values in all three products are acceptable and exceed 0.94. For
heavy and extreme precipitation events, POD values are much lower and are at 0.518, 0.567,
and 0.558 for IMERG-E, IMERG-L, and IMERG-F, respectively. The CSI values show that the
ability of the IMERG products to successfully detect general precipitation events (52–61.5%)
is considerably better than their ability to detect heavy and extreme precipitation events
(31.4–36.8%). Furthermore, FAR values for general precipitation events are lower than
those for heavy and extreme precipitation events. High FAR and low POD and CSI values
indicate that the ability of IMERG products to detect heavy and extreme precipitation
is still low. It may because IMERG products have better ability to preserve the general
precipitation threshold. However, the ability to estimate heavy and an extreme rainfall
threshold still needs to be improved.

Table 4. Mean categorical verification statistics: probability of detection (POD), false alarm ratio
(FAR), and critical success index (CSI) (Heavy and extreme precipitation represents daily precipitation
amount greater than or equal to 20 mm).

Products POD FAR CSI

General
Precipitation

IMERG-E 0.944 0.463 0.520
IMERG-L 0.947 0.405 0.576
IMERG-F 0.949 0.364 0.615

Heavy and
Extreme

Precipitation

IMERG-E 0.518 0.557 0.314
IMERG-L 0.567 0.544 0.338
IMERG-F 0.558 0.480 0.368
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Figure 2. Cont.
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Figure 2. Density scatterplots of IMERG products versus 24 gauge observations at a daily scale.
Correlation coefficient (CC), root mean square error (RMSE), and relative bias (RB) are measures of
the accuracy of IMERG precipitation estimates.

4.1.2. Monthly Variations

Table 5 shows the average continuous verification statistics for IMERG precipitation
estimates. “Monthly” indicates statistics for monthly estimates for each month between
January 2001 and December 2016. “Flood season” indicates statistics for the flood season,
i.e., from June to September. Performance of IMERG-F is better than that of IMERG-E and
IMERG-L. Annually, IMERG-F has average CC, RMSE, and RB of 0.95, 25.12 mm, and
10.39%, respectively, based on monthly data. For the flood season, IMERG-F has the best
performance of the three products and has the highest CC (0.91) and the lowest RMSE
(23.34 mm) and RB (9.92%). It is interesting that IMERG products have lower CC, RMSE,
and RB for the flood season. It may be due to the amount of data. More data would increase
the correlation, but also the error. The IMERG-L has the highest RMSE (44.51 mm at a
monthly scale and 38.47 mm for the flood season) and RB (28.67% for a monthly scale
and 20.35% for the flood season) and has the worst performance of the three products.
Generally, the IMERG-F has the best performance, especially for flood seasons.

Figure 3 shows average monthly precipitation from rain gauges and all three IMERG
products. Temporal variation of monthly precipitation is adequately captured by all IMERG
products. Precipitation mainly occurs during the flood season, i.e., from June to September.
Almost all IMERG products overestimate precipitation in all months, while IMERG-E
slightly underestimates precipitation in April and June, and IMERG-L also slightly under-
estimates precipitation in April.
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Table 5. Average continuous verification statistics for IMERG precipitation estimates. Monthly
indicates statistics for monthly estimates for each month between January 2001 and December 2016.
The flood season indicates statistics for the flood season, i.e., from June to September.

Period Precipitation Products CC RMSE (mm) RB (%)

Monthly
IMERG-E 0.88 43.21 25.83
IMERG-L 0.88 44.51 28.67
IMERG-F 0.95 25.12 10.39

Flood season
IMERG-E 0.81 37.23 17.02
IMERG-L 0.82 38.47 20.35
IMERG-F 0.91 23.34 9.92

Figure 3. Average monthly precipitation from land stations and IMERG products.

4.1.3. Annual Variations

Figure 4 shows variations of CC, RMSE, RB, rain gauge measurements, and IMERG pre-
cipitation estimates at the annual scale between 2001 and 2016. These continuous verification
statistics are calculated based on the daily scale values of each year. The IMERG-F has the
best overall performance. Multi-year average CC, RMSE, and RB are 0.83, 3.77 mm, and
10%, respectively, and the difference between average annual precipitation measured at
land stations and IMERG-F average annual precipitation estimate is 66.3 mm. Of the three
products, IMERG-F consistently has the highest CC, except for the years of 2002, 2007,
2010, and 2013. It also has the lowest RMSE between 2001 and 2016, indicating superior
performance. It also has the lowest RB, except for the years of 2005 and 2012. The IMERG
products can reasonably reproduce the annual precipitation variations observed at land
stations. The IMERG-F overestimates annual precipitation by 2.8 to 131 mm.
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Figure 4. Annual continuous verification statistics for IMERG products, precipitation estimates from IMERG products, and
land station precipitation measurements from 2001 to 2016 over Jinan City.

4.2. Spatial Differences between Satellite Precipitation Products

The spatial distribution of continuous and categorical verification statistics provides
information on the accuracy of satellite precipitation products at different locations and
contributes toward minimizing errors in hydrological studies where satellite products are
used [53–55]. Based on daily scale data for each year, multi-year average values of these
statistics of each station were calculated.

Figure 5 shows spatial distributions of the continuous verification statistics for the
three IMERG products. While values vary, spatial distributions share similar characteristics
with high CC values in Southeastern Jinan (red points), and low RMSE values in South-
western Jinan (green points) and high RB values in Eastern Jinan (red points). In order to
compare the differences of satellite products, Zhou et al. [56] explained the proportion of
stations with a CC value greater than 0.70 and RMSE value less than or equal to 5 mm.
In this study, the CC and RMSE values were adjusted with 0.67 and 6.5 mm appropriately
because of the relatively small number of gauges used in this study. For IMERG-E, 16.7% of
the stations have CC exceeding 0.67. This percentage increases to 41.7% for IMERG-L and
100% for IMERG-F. For IMERG-E and IMERG-L, 25% of the 24 stations have RMSE below
6.5 mm. This percentage increases to 100% for IMERG-F.
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Figure 5. Spatial distributions of continuous verification statistics (CC, RMSE, RB) for IMERG products.

Figure 6 shows spatial distributions of POD, FAR, and CSI over Jinan City. Spatial
distributions of POD, FAR, and CSI are similar in all IMERG products. It could find that
the distribution of POD is similar to values more than 0.9. For FAR, the green points
(lower FAR) are mostly distributed in the southeast, for CSI, the red points (higher CSI) are
also mostly distributed in the southeast. In general, all three products have similar POD
and higher CSI and lower FAR, and, hence, better ability to detect precipitation over the
mountainous region of Southeastern Jinan City. It is possible that the observed precipitation
at a high elevation is relatively direct, while the precipitation at low elevation is more
easily affected in the process of rain falling. However, further studies with more data are
needed to explain this phenomenon. Overall, IMERG-F has the best detection ability with
the highest average POD (0.949) and CSI (0.615) and the lowest average FAR (0.364).
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Figure 6. Spatial distributions of categorical verification statistics (POD, FAR, CSI) for IMERG products.

4.3. Extreme Precipitation Indices

Table 6 shows values of seven selected extreme precipitation indies derived from land
station measurements and IMERG products. For RX1day, IMERG-E and IMERG-L esti-
mates exceed the value derived from rain gauge data by 1.24 mm and 8.79 mm, respectively.
The IMERG-F estimate is below the value derived from rain gauge data. For SDII, IMERG
estimates are similar to the value derived from rain gauge data, indicating that IMERG
products can be used to derive acceptable estimates of yearly precipitation intensity. For
the number of consecutive wet days (CWD) and the number of days with high rainfall
(R95p), estimates from IMERG products consistently exceed the value derived from station
datasets. It may because IMERG products have overestimated the light precipitation events,
which often occur at the beginning or the end of precipitation events. For R50, IMERG-L
has the best performance of the three products. The IMERG-L R50 estimate is the closest to
that derived from rain gauge data, with a difference of only 0.19 days. The IMERG-E and
IMERG-F R50 estimates are both lower than the R50 value derived from rain gauge data.
For R20 and R10, the performance of IMERG-F is superior. Differences between IMERG-F
estimates and values derived from station measurements are 0.78 days (for R20) and 2.01
days (for R10), which are acceptable considering the total sample size of 5844 days.
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Since IMERG estimates of extreme precipitation indices have an acceptable level of
accuracy, IMERG products can be used to derive extreme precipitation indices in areas
without station data.

Table 6. Values of seven extreme precipitation indices derived from land station measurements and
IMERG products.

Extreme Precipitation Index Station IMERG-E IMERG-L IMERG-F

RX1day 82.23 83.47 91.02 74.39
SDII 12.34 10.06 11.26 10.41

CWD 4.99 5.90 5.51 5.74
R95p 326.72 393.77 425.34 369.40
R50 2.27 1.98 2.46 1.80
R20 9.71 11.40 12.15 10.49
R10 18.78 23.17 23.61 20.79

4.4. Probability Density Function of Precipitation Intensity

The probability density function (PDF) indicates the probability of the occurrence of
a range of events and has been used in many studies to evaluate the quality of satellite
precipitation products [57]. In this study, the PDFs were constructed from daily data.
Figure 7 shows PDFs of precipitation intensity derived from land station measurements
and IMERG products over Jinan City. The PDFs have been calculated for nine precipitation
intensity categories. Land station data indicate that 81.27% of the days during the study
period fall under the intensity category of 0–0.1 mm/day, 3.82% fall under the category of
0.1–1 mm/day, 6.69% fall under the category of 1–5 mm/day, 2.94% fall under the category
of 5–10 mm/day, 2.55% fall under the category of 10–20 mm/day, 1.13% fall under the
category of 20–30 mm/day, 0.62% fall under the category of 30–40 mm/day, 0.36% fall
under the category of 40–50 mm/day, and 0.52% fall under the category of more than
50 mm/day.

Figure 7. Probability density functions of precipitation intensity derived from land station measure-
ments and IMERG products.

Figure 7 shows that the highest proportion of precipitation falls under the category
of 0–0.1 mm/day, and the lowest proportion falls under the category of 40–50 mm/day.
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For the categories of 0.1–1 and 40–50 mm/day, all IMERG estimates exceed the proportion
derived from land station data. However, for the category of 0–0.1 mm/day, all IMERG
estimates are below the proportion derived from land station data. It may be because the
evaporation of raindrops before reached the ground, which lead to the overestimation of
satellite products. For the category of more than 50 mm/day, IMERG estimates are similar
to the proportion derived from land station data, with IMERG-E and IMERG-L estimates
exceeding the proportion derived from land station data and the IMERG-F estimate being
less than the proportion derived from land station data.

5. Discussion

The assessment of IMERG products over Jinan City indicates that the long-latency
IMERG-F product generally performs better than the short-latency IMERG-E and IMERG-L
products at all temporal scales. This difference is mainly attributed to quasi-Lagrangian
time interpolation, high-quality rain gauge data, and a climatological adjustment. The
assessment of continuous verification statistics shows that the long-latency IMERG-F
product has higher correlation coefficients and lower relative errors and root mean square
errors, indicating that calibration of satellite products with rain gauge data can increase
the accuracy of satellite-derived precipitation estimates. Compared with the short-latency
products, the long-latency IMERG-F product also has an improved ability in precipitation
detection. It has lower rates of falsely reporting non-events as precipitation events and
missing reporting actual precipitation events.

Different climatic and topographic conditions may lead to different spatial and tem-
poral distributions of precipitation in Jinan City [46]. Previous studies have established
the influence of elevation on satellite precipitation estimates [58]. To explore the spatial
differences, the performance of IMERG products in Jinan City as a function of elevation was
also evaluated (Figure 8). Of the three products, the performance of IMERG-F is generally
superior at all elevations. Of the three continuous verification statistics, CC and RMSE
increase with elevation, even though the increase in CC is small. Conversely, RB decreases
rapidly with increasing elevation. Of the three categorical verification statistics, there are
small variations in the performance of the three IMERG products with increasing elevation.
On the whole, the long-latency IMERG-F product has the highest POD and CSI and the
lowest FAR at any elevation, and, thus, the best precipitation detection ability. However,
POD and FAR decrease and CSI increase with growing elevation, indicating the need
for improvement.

IMERG datasets showed overestimation of daily precipitation. It may be explained
by the precipitation intensity assessment. IMERG products generally overestimate pre-
cipitation, which might have something to do with the algorithm. Estimates of extreme
precipitation indices have an acceptable accuracy. This indicates that IMERG products
could be used for extreme precipitation indices. While this study has shown that IMERG
products, especially IMERG-F, can provide high-resolution precipitation estimates for
research, considerable bias at some stations could be found. Furthermore, the precision of
high-resolution satellite-derived precipitation estimates can be improved by taking into
account topographic effects using downscaling techniques [59–61].

In addition, event-based rainstorm data are used frequently as input in urban rainstorm
waterlogging simulation models (e.g., SWMM, MIKE URBAN, and Infoworks ICM). IMERG
products also have precipitation data at a half-hour scale. Therefore, future studies should pay
attention to the accuracy of IMERG precipitation products at sub-daily scales [62]. Moreover,
error component models should be used to assess sources of errors [63].
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Figure 8. Continuous and categorical verification statistics for IMERG products at the daily scale at different elevations.

6. Conclusions

The latest IMERG V06 dataset fuses the early precipitation estimation collected during
the operation of the TRMM satellite (2000–2015) with more recent precipitation estimation
collected during operation of the GPM satellite (2014–present). Using daily precipitation
data from the rain gauge networks in Jinan City from 2001 to 2016, which are not used by
IMERG, a comprehensive assessment of IMERG products was conducted at daily, monthly,
and yearly scales. Three continuous verification statistics (CC, RMSE, and RB) and three
categorical verification statistics (POD, FAR, and CSI) were used to assess the accuracy and
detection ability of the IMERG precipitation products. On the basis of the results, major
conclusions are summarized as follows.
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1. With high CC and low RMSE and RB, IMERG-F performs better than IMERG-E and
IMERG-L at all temporal scales (daily, monthly, and yearly). At the daily scale, the ability
of satellite products to detect general precipitation is clearly superior to the ability to detect
heavy and extreme precipitation. Nevertheless, all IMERG products could adequately
capture monthly precipitation trends and distributions.

2. There is considerable spatial variability in the performance of the three IMERG
products. Values for CC and RMSE are the highest in Southeastern Jinan City, while RMSE
is relatively low in Southwestern Jinan City. For all IMERG products, their ability to detect
precipitation is superior over the mountainous region of Southeastern Jinan City. However,
these results need further study to explain.

3. For seven extreme precipitation indices, differences between IMERG estimates
and values derived from land station measurements are acceptable, indicating that the
characteristics of the indices are adequately captured by all IMERG products (Table 5). For
IMERG-F, R20 and R10 estimates are closer to values derived from land station measure-
ments, indicating that IMERG-F is superior at detecting moderate precipitation events.

4. Categorical verification statistics indicate that three IMERG precipitation products
perform better at high elevations. At all elevations, the performance of IMERG-F is better
than that of IMERG-E and IMERG-L. However, POD and FAR decrease and CSI increase
with the growth of elevation, indicating the need for improvement.
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