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Abstract: The Qaidam Basin is a unique and complex ecosystem, wherein elevation gradients
lead to high spatial heterogeneity in vegetation dynamics and responses to environmental factors.
Based on the remote sensing data of Moderate Resolution Imaging Spectroradiometer (MODIS),
Tropical Rainfall Measuring Mission (TRMM) and Global Land Data Assimilation System (GLDAS),
we analyzed the spatiotemporal variations of vegetation dynamics and responses to precipitation,
accumulative temperature (AT) and soil moisture (SM) in the Qaidam Basin from 2001 to 2016.
Moreover, the contribution of those factors to vegetation dynamics at different altitudes was analyzed
via an artificial neural network (ANN) model. The results indicated that the Normalized Difference
Vegetation Index (NDVI) values in the growing season showed an overall upward trend, with
an increased rate of 0.001/year. The values of NDVI in low-altitude areas were higher than that
in high-altitude areas, and the peak values of NDVI appeared along the elevation gradient at
4400–4600 m. Thanks to the use of ANN, we were able to detect the relative contribution of various
environmental factors; the relative contribution rate of AT to the NDVI dynamic was the most
significant (35.17%) in the low-elevation region (<2900 m). In the mid-elevation area (2900–3900 m),
precipitation contributed 44.76% of the NDVI dynamics. When the altitude was higher than 3900 m,
the relative contribution rates of AT (39.50%) and SM (38.53%) had no significant difference but
were significantly higher than that of precipitation (21.97%). The results highlight that the different
environmental factors have various contributions to vegetation dynamics at different altitudes, which
has important theoretical and practical significance for regulating ecological processes.

Keywords: Qaidam Basin; vegetation dynamics; remote sensing; artificial neural networks;
machine leaning

1. Introduction

Vegetation plays an important role in terrestrial ecosystems and is one of the critical
indicators for evaluating ecological environmental systems [1]. The spatial distribution
of vegetation is the result of climatic conditions and the long-term relative stability and
fluctuation of human activities [2,3]. Temperature, precipitation, light and other climatic
factors determine the grade, distribution and zonal variation law of vegetation, forming
the general pattern of vegetation [4]. The vegetation spatial pattern changes reflect vegeta-
tion’s response to environmental conditions and human activities [5]. Vegetation dynamics
are sensitive to environmental changes and have significant dynamic and evolutionary
characteristics [6].

With the development of remote sensing technology and its application in ecosystem
research, researchers have carried out space monitoring of the landcover change dynam-
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ics [7]. A large number of data were used to represent the pattern of landcover, especially
the Normalized Difference Vegetation Index (NDVI). NDVI can describe biophysical char-
acteristics such as vegetation growth status and vegetation dynamics [8] and is usually
directly used to conduct research on global or regional vegetation classification and vege-
tation cover changes [5,9,10]. Based on the NDVI, Zhang et al. [6] studied the vegetation
change of the Kosh River basin in the central Himalayas from 1982 to 2011, and the re-
sults indicated that vegetation cover showed different trends in different periods, which
was mainly influenced by climate change. Reddy and Prasad [11] predicted the dynamic
change process of vegetation based on NDVI data and the long short-term memory (LSTM)
method and put forward a research method for predicting vegetation change, which is con-
ducive to taking positive measures to protect and improve regional vegetation. Therefore,
in this study, NDVI from 2001 to 2019 was selected as indicator of vegetation dynamics
in the Qaidam Basin.

The variation in vegetation cover is mainly affected by changes in environmental
factors. Many scholars have explored the effect of vegetation cover under the influence of
human activities and climate change [12–14], such as the correlation between NDVI and
meteorological factors via statistical methods [15,16]. However, most of these studies use
linear correlation to reflect the interaction between vegetation cover and climatic factors, so
it is difficult to describe the dynamic climate-ecosystem characteristics.

Some other studies focused on the relationship among different factors in soil–vegetation–
atmosphere complex systems by establishing vegetation models. In the early stages,
researchers proposed many models, such as the biogeographic model [17] and biophysical
model [18]. Later, global vegetation dynamics models have emerged, such as the Integrated
Biosphere Simulator (IBIS), Lund–Potsdam–Jena (LPJ) model [19] and spatially explicit
individual-based (SEIB) model [20]. These models integrate the dynamic process of bio-
physical vegetation on a large scale, which makes up for the deficiency of earlier models
and can effectively simulate and analyze the dynamic change process of terrestrial vege-
tation [21]. However, most of these models require extensive parameters and expensive
data. Moreover, most models’ parameters are historically based and so it is hard to reflect
the climate and other condition changes. Therefore, it is impossible to conduct quantitative
calculations on the importance of influencing factors of vegetation cover evolution.

With the development of machine learning, the innovation of data analysis methods
has been profoundly involved in traditional scientific research, providing new technologies
for the development of basic science [22,23]. For example, Buckland [24] used artificial
neural networks (ANN) to analyze the relationship between dust deposition and land
use, wildfire and climatic conditions. Benliay [25] evaluated the relationship between
vegetation change and climatic comfort factors by using an ANN model.

The Qaidam Basin is located in the north of the Qinghai-Tibet Plateau. It has an alpine
area, arid climate, complex topography and low and concentrated human activities.
It is an ideal region to study the relationship between vegetation and environmental
factors in a natural state. The Qaidam Basin is also one of the most sensitive regions
to global climate change due to the fragile ecological environment [26,27]. The vegeta-
tion dynamics in the basin can comprehensively reflect regional and even global climate
and environmental changes. Although there are reports about the relationship between
vegetation cover and climatic factors in the Qaidam Basin, most of them are only the corre-
lation between vegetation index and a single meteorological factor via linear correlation
statistics [28,29]. To quantitatively address the complex relationship of vegetation to sur-
rounding environmental factors, we constructed an ANN model to identify the responses
and contributions to the vegetation dynamics in the Qaidam Basin.

2. Material and Methods
2.1. Study Area

The Qaidam Basin is located in the northwest of China and bounded by the Aerjin
Mountains, Qilian Mountains, and the Kunlun Mountains from the northwest, northeast,
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and south. It is the world’s only large inland plateau basin, covering an area of 281,000 km2,
with elevations between 2653 and 6748 m above sea level, as shown in Figure 1.

Remote Sens. 2021, 13, 1240 3 of 19  

 

2. Material and Methods 
2.1. Study Area 

The Qaidam Basin is located in the northwest of China and bounded by the Aerjin 
Mountains, Qilian Mountains, and the Kunlun Mountains from the northwest, northeast, 
and south. It is the world’s only large inland plateau basin, covering an area of 281,000 
km2, with elevations between 2653 and 6748 m above sea level, as shown in Figure 1. 

The Qaidam Basin is a typical alpine dry continental zone with precipitation of 13.9–
564.2 mm and evaporation 1200–3500 mm. The average temperature is 4.6 °C, and the 
wind speed is 3.4 m/s. Inside the basin, the desert landscape dominates widely, including 
salt desert and sand desert. The vegetation coverage is low, mainly with the xeric and 
halophytic plant species, such as H. ammodendron, Artemisia desertorum, Phragmites 
australis, Ephedra sinica, Calligonum mongolicunl, Tamarix ramossissima Ledeb., Nitraria 
Schoberi L., and Achnatherum splendens [30]. The mountain areas of the basin are dominated 
by the meadow. In the piedmont plain, piedmont alluvial fan, alluvial fan, and 
surroundings of rivers and lakes, vegetation is usually luxuriant and plant species are 
relatively rich. The main land use types were grassland and unused land, accounting for 
51.6% and 44.9% of the basin, respectively [31]. The region is characterized by scarce 
precipitation, high desertification and cold temperature. It is a highly fragile ecological 
environment region.  

 
Figure 1. The study area of the Qaidam Basin. 

2.2. Data 
2.2.1. NDVI Data 

The average NDVI from May to October (growing season) was chosen to describe 
vegetation dynamics. The MODIS NDVI from 2001 to 2016 is from the National 
Aeronautics and Space Administration (NASA). The remote sensing image processing 
software MRT (MODIS Reprojection Tool)(NASA, USA) was used to transform the data 
format and projection conversion. ArcGIS (ESRI, Redlands, CA USA) and MATLAB (The 
MathWorks, Natick, MA USA) software were used to extract the data. The NDVI value is 
between −1 and 1. The negative value means that the ground cover is the cloud, water, 

Figure 1. The study area of the Qaidam Basin.

The Qaidam Basin is a typical alpine dry continental zone with precipitation of
13.9–564.2 mm and evaporation 1200–3500 mm. The average temperature is 4.6 ◦C,
and the wind speed is 3.4 m/s. Inside the basin, the desert landscape dominates widely,
including salt desert and sand desert. The vegetation coverage is low, mainly with the xeric
and halophytic plant species, such as H. ammodendron, Artemisia desertorum, Phragmites aus-
tralis, Ephedra sinica, Calligonum mongolicunl, Tamarix ramossissima Ledeb., Nitraria Schoberi
L., and Achnatherum splendens [30]. The mountain areas of the basin are dominated by
the meadow. In the piedmont plain, piedmont alluvial fan, alluvial fan, and surroundings
of rivers and lakes, vegetation is usually luxuriant and plant species are relatively rich.
The main land use types were grassland and unused land, accounting for 51.6% and 44.9%
of the basin, respectively [31]. The region is characterized by scarce precipitation, high
desertification and cold temperature. It is a highly fragile ecological environment region.

2.2. Data
2.2.1. NDVI Data

The average NDVI from May to October (growing season) was chosen to describe
vegetation dynamics. The MODIS NDVI from 2001 to 2016 is from the National Aeronautics
and Space Administration (NASA). The remote sensing image processing software MRT
(MODIS Reprojection Tool) (NASA, USA) was used to transform the data format and
projection conversion. ArcGIS (ESRI, Redlands, CA USA) and MATLAB (The MathWorks,
Natick, MA USA) software were used to extract the data. The NDVI value is between
−1 and 1. The negative value means that the ground cover is the cloud, water, snow,
etc. The positive value indicates the vegetation covers: the larger the NDVI, the better
the coverage. The average of the NDVI values greater than 0 for all pixels from May to
October each year is calculated to obtain the annual NDVI from 2001 to 2016.
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2.2.2. LST Data

Land surface temperature (LST) is an essential indicator of the land–atmosphere en-
ergy balance [32] and one of the main factors affecting vegetation dynamics. The vegetation
growth requires not only a certain temperature level (temperature height) but also a certain
sum of heat, which is generally expressed by the cumulative value of daily temperature
in a period, i.e., cumulative temperature with the unit of ◦C. The MODIS LST is from NASA,
and the processing method is the same as the MOD13A3 NDVI. Due to sensors, clouds,
snow cover and other reasons, MODIS LST has missing data or errors. It is necessary to fill
and modify the LST data by kriging spatial interpolation based on Digital Elevation Model
(DEM) [33]. Then, the daily surface temperature is obtained by means of the maximum
and minimum temperature mean value method [34]. Finally, the sum of daily LST above 0
◦C was calculated, and accumulative temperature (AT) was obtained from 2001 to 2016.

2.2.3. Precipitation Data

Tropical Rainfall Measuring Mission (TRMM) 3B42RT remote sensing precipitation
products were adopted for this study. The details of correction procedures are documented
in Xu et al. [35]. To be consistent with the spatial resolution of NDVI and AT data, a 1 km
spatial resolution was adopted in the resampling process of ArcGIS to obtain the annual
scale precipitation data from 2001 to 2016 in the study area.

2.2.4. Soil Moisture Data

The Global Land Data Assimilation System (GLDAS) generates global fields of land
surface fluxes via combining advanced land surface models and a large number of surface
observation data. It was jointly developed by NASA and the National Oceanic and Atmo-
spheric Administration (NOAA). In this study, soil moisture (SM) data with 0.25◦ spatial
resolution [36] and a depth of 0–10 cm in GLDAS was used. Moreover, the resampling
process was conducted to get the 1 km spatial resolution SM data from 2001 to 2016.

2.3. Methods
2.3.1. Linear Regression Model

The linear regression was used to analyze the variation trend of environmental factors
in this study. Linear regression is an effective and simple trend analysis tool. Its core is to
detect sudden changes (the direction of increase or decrease) in time series and describe
the possible generation process [37]. The equation is shown below:

Y = a·X + b (1)

where X is the independent variable, and Y is the dependent variable, b is the intercept,
and a is the regression slope.

2.3.2. Pearson Correlation Analysis

The Pearson correlation was used to present the relationship between environmental
factors and NDVI [38,39]. Here, we use the Pearson correlation coefficient to analyze
the correlation and significance between NDVI and precipitation, AT and SM at pixels from
2001 to 2016 at the confidence level of 0.05 and 0.01. The formula is as follows:

rxy =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

(2)

where rxy is the correlation coefficient between the xi and yi, xi and yi are the values of
the two variables in i year, respectively.
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2.3.3. Mann–Kendall Nonparametric Test

Mann–Kendall (MK) Nonparametric test is a commonly used method to analyze
the trend of time series data [40]. It does not require samples to conform to a certain distri-
bution, nor is it disturbed by a few unusual values. It has the advantages of a wide range
of tests, high quantization degree and a low level of human involvement. The following
Equations (3) and (4) are used for the MK test statistic S.

S =
n−1

∑
i=1

n

∑
j=i+1

sgn
(
xj − xi

)
(3)

sgn
(
xj − xi

)
=


1 xj − xi > 0
0 xj − xi = 0
−1 xj − xi < 0

(4)

where, S is the Mann–Kendall test statistic, n is the length of the time series, xj and xi are
sequential data values in time series j and i. The statistic S is nearly a normal distribution
when sample sizes larger than ten. The variance Var(S) is calculated by Equation (5).

Var(S) =
1

18

[
n(n− 1)(2n + 5)−∑

t
t(t− 1)(2t + 5)

]
(5)

in which t is the extent of any given tie and Var(S) represents the variance of S. The stan-
dardized MK test statistic Zc was calculated using Equation (6):

Zc =


S−1√
Var(S)

S > 0

0 S = 0
S−1√
Var(S)

S < 0

(6)

A positive value for S indicates a positive trend. In contrast, a negative value for S
indicates a negative trend. The trend is significant when Zc is greater than the standard
normal variate Zα/2, where α was the percent significant level. From the standard normal
table, the critical value of Z(1−α/2) for a value of 0.05 is 1.96.

2.3.4. Artificial Neural Network Models

The ANN is commonly used to model complex relationships between input and
output. It has the advantages of parallel processing, nonlinear mapping, and adaptive
learning ability, providing an effective way to simulate and evaluate complex nonlinear
systems [41]. In this study, AT, precipitation and SM were selected as the inputs and NDVI
as the output. The data of AT, precipitation, SM and NDVI were used as the annual mean
from 2001 to 2016, with a resample spatial resolution of 10 km and a total data volume of
2810 × 4 × 16. See Figure 2 for the structural diagram of the model.
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Figure 2. The structure of the artificial neural network model.

The model was developed via MATLAB R2016a, of which the model training function
is “trainbr”, the transfer function is “tansig”, and data segmentation is in “dividerand”
random form. The model will automatically select 70% of the sample data for training and
the remaining 30% for testing. The performance of the model is evaluated by the root mean
square error (MSE). Last, the determination coefficient (R2), relative bias (bias) and Nash
efficiency coefficient (NSE) were used to evaluate the simulation accuracy of the ANN.
The formula is as follows:

Bias =

m
∑

i=1
(Sndvii −Ondvii)

m
∑

i=1
Ondvii

× 100% (7)

NSE = 1−

m
∑

i=1
(Ondvii − Sndvii)

2

m
∑

i=1

(
Ondvii −Ondvi

)2 (8)

where Ondvi is the average value of MODIS NDVI, Sndvi is the NDVI obtained by model
simulation, and m is the number of samples. The R2 value determines the degree of
correlation: the closer the R2 value is to 1, the closer the model NDVI simulation value
is to the MODIS NDVI value, and the higher the goodness of fit of the model. Relative
bias indicates the degree of numerical deviation between the NDVI simulation value of
the inverse model and the MODIS NDVI value. The closer bias is to 0, the higher the model
simulation accuracy is. The value of NSE ranges from minus infinity to 1, where the closer
the NSE value is to 1, the better the model quality and the higher the model credibility.
An NSE close to 0 indicates that the simulation results are close to the average level of
the MODIS NDVI values. An NSE much less than 0 indicates that the model cannot
be trusted.

The contribution of each environmental factor to the NDVI in the ANN model is also
calculated by the connection weight method proposed by Garson [42], and the formula is
as follows:

ACi =
b

∑
j=1

∣∣∣Wij ×Wjk

∣∣∣, k = 1, 2, . . . , c (9)

RCi =
ACi

a
∑

i=1
ACi

× 100% (10)
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where ACi and RCi represent the absolute and relative contributions of the ith input to
the kth output, respectively; a, b and c represent the number of neurons in the input layer,
hidden layer and output layer of the model, respectively.

3. Results
3.1. Vegetation Dynamics Variations
3.1.1. Spatiotemporal Variations

According to Figure 3, the increasing trend of growing season NDVI is apparent with
a 22% increase in the past 16 years. The linear relationship correlation coefficient is r = sqrt
(0.475) = 0.690 (p < 0.05), which confirms a significant relationship with an increasing rate
of 0.001/year.
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Figure 3. The variation of the Normalized Difference Vegetation Index (NDVI) in the Qaidam Basin.

The spatial distribution of the growing season NDVI from 2001 to 2016 is shown
in Figure 4. The results show that the NDVI ranged from 0 to 0.46, with an average value of
0.10. However, the standard deviation reached 0.08, which suggests that spatial variation
was considerable. As can be seen from Figure 4, the value of NDVI in the growing season
gradually decreased from the southeast to the northwest. The statistical results indicate
that the area with an NDVI value greater than 0.3 in the growing season accounted for
20.27% of the basin area, most of which occurred in the southeast region. The area with
growing season NDVI less than 0.05 accounted for 15.18% of the basin area, most of which
occurred in the northwest region.
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3.1.2. Spatial Trend Variations

Figure 5 shows the NDVI changes in the basin. Figure 5a shows an increasing trend of
varying degrees from 2001 to 2016, and the increasing trend was obvious in the southeastern
of the Basin, Qilian Mountains and the southwestern Kunlun Mountains. The areas
showing a downward trend are mainly distributed around the lake in the center of the basin,
and the main reason may be that the increase in lake area leads to the death of vegetation,
resulting in the decline of NDVI.

Figure 5b shows the significances of the growing season NDVI changes. The increasing
area was over 55% of the total area. It is worth noting that regions with extremely significant
increasing trends accounted for 34.98% of the basin area, mainly concentrated in the basin
region near the Kunlun Mountain (southeast region) and Qilian Mountain (northeast
region). In contrast, the proportion of growing season NDVI decreasing regions (including
nonsignificant decline, significant decline and extremely significant decline) was less than
10% of the total area. The reason was supposed to be the increased vegetation submerged
in the lake in recent years, which has led to a decrease in NDVI. Table 1 presents the statistics
of the NDVI variation trends.
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Figure 5. The variation trends (a) and significances (b) of the NDVI in the Qaidam Basin 2001–2016.

Table 1. Statistics of the NDVI variation trend in the Qaidam Basin.

z Value Trend of NDVI Percentage/%

z ≤ −2.58 Extremely significant decline 0.66
−2.58 < z ≤ −1.96 Significant decline 0.64
−1.96 < z ≤ 0 Nonsignificant decline 6.55

0 < z < 1.96 Nonsignificant increase 35.67
1.96 ≤ z < 2.58 Significant increase 21.49

2.58 ≤ z Extremely significant increase 34.98

3.1.3. Vegetation Dynamics with Elevation

Along with altitudes, the distribution of vegetation also has a noticeable difference,
shown in Figure 4. Therefore, it is of great significance for vegetation restoration and
ecological protection in the complex topography (2653–6748 m) of Qaidam Basin to deeply
understand the law of vegetation dynamics with elevation.

We divided the elevation into individual 200 m bins (2600–6600 m) for the detailed
analysis, and the NDVI variations at different elevation belts are shown in Figure 6. It can
be found that the NDVI gradually increased 0.06 at 2600–2800 m, sharply increased 0.12 at
4400–4600 m, decreased to 0.01 at 5400–5600 m, and fell to 0 when above 5600 m. The peak
values of the NDVI appeared along the elevation gradient at 4400–4600 m.
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Figure 6. Multi-year average NDVI variations along the elevations.

In addition, we analyzed the change rates of NDVI and environmental factors at
different elevation gradients from 2001 to 2016. As shown in Figure 7, the largest increasing
rates of NDVI, precipitation, AT and SM occurred at the elevation bin of 4000~4200 m,
4400 m, 2800 m and 4600~5600 m (except 5000 m), respectively. The regions with a higher
rate of NDVI increase are close to those with higher rates of precipitation increase, which
may be an important factor for the increase in NDVI.
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3.2. Responses of Vegetation Dynamics to Environmental Factors
3.2.1. Spatial Response

The dynamic change process of vegetation is very complex. If the relative contribution
of various environmental factors is not clear, the driving force of vegetation’s dynamic
activity will be hard to recognize. Figure 8a shows the significance of the spatial pattern
NDVI–precipitation correlation. In the Qaidam Basin, an area of 74.1% shows a positive
relationship between the NDVI and precipitation, but only 18.25% of them passed the sig-
nificance test (including significant and extremely significant increases). These areas, which
have more precipitation, are mainly distributed in the Kunlun Mountains in the southeast
and the Qilian Mountains in the northeast of the basin.
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Figure 8. Spatial pattern of NDVI and precipitation (a), accumulative temperature (AT) (b) and soil
moisture (SM) (c) correlation significance.

It can be seen from Figure 8b that the area of 57.5% shows a positive relationship
between the NDVI and AT. However, only 16.5% of them passed the significance test (in-
cluding significant and extremely significant increases). These areas are mainly distributed
in the center and northwest of the Qaidam Basin. It is worth noting that in the growing
season, NDVI is negatively correlated with the AT in the southern, southeastern and north-
eastern alpine regions of the basin. However, these areas are positively correlated with
precipitation and SM.

Figure 8c shows the NDVI and SM correlation significance. The area of 76.4% shows
a positive relationship between the growing season NDVI and SM, and only 19.9% of
them passed the significance test (including significant and extremely significant increases).
These regions are mainly distributed in the Kunlun Mountains in the southeast, the oasis
area in the Piedmont Plain and the Qilian Mountains in the northeast of the basin.
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3.2.2. Relationship Among Pixel-Level NDVI and Environmental Factors

Usually, the precipitation, AT and SM are considered critical factors to vegetation
dynamics [43,44]. However, along the elevation gradient, the factor change’s combined
effects on vegetation dynamics are still unclear [45]. To test the relations, we explored at
a pixel scale based on the distribution data of elevation, NDVI, precipitation, AT and SM
in the years from 2001 to 2016. The results are shown in Figure 9 and Table 2.
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Table 2. Correlation between NDVI and environmental factors.

Pearson Coefficient NDVI Precipitation AT SM

NDVI 1
precipitation 0.562 ** 1

AT −0.438 ** −0.748 ** 1
SM 0.507 ** 0.789 ** −0.698 ** 1

Note ** represents the significance level of 0.01.

As shown in Figure 9a, when the elevation is lower than 2900 m, the precipitation is
0–110 mm, the high NDVI value is mainly concentrated in the low-elevation area, indicating
that the NDVI in the region is less affected by precipitation. When the elevation is from
2900 to 3900 m, the NDVI increases with increasing precipitation, which indicates that
the precipitation is one of the main factors affecting the NDVI in this altitude range. When
the altitude is higher than 3900 m, there is no apparent correlation between precipitation
and the NDVI, indicating that precipitation is not the main controlling factor of the NDVI.
As a whole, there is a significant positive correlation between NDVI and precipitation with
a correlation coefficient of 0.562 (p < 0.01), as shown in Table 2.

As the AT and NDVI, it showed a significant negative correlation (p < 0.01) illustrated
in Table 2. However, when AT was less than 1100 ◦C most located the area of elevation
> 4500 m, with a decrease in elevation, the AT and NDVI gradually increased, presenting
a positive correlation and indicating that temperature is an important factor for the dy-
namic change in vegetation in high-altitude areas. When the AT is from 1100 to 4400 ◦C,
the NDVI is relatively dispersed. With the decrease in altitude, the AT gradually increased,
and the whole NDVI presented a decreasing trend. When the AT is greater than 4400 ◦C,
the corresponding elevation is mostly below 3000 m, and then, the NDVI is low and has
an obvious aggregation (Figure 9b).

Similarly, as shown in Figure 9c, the SM was approximately 0.15 in the low-elevation
area due to the high temperature and evaporation. The NDVI is mainly concentrated
in the low-value area, about 0.05. In the high-elevation range, the SM increased significantly,
while the NDVI is no longer centralized in the low-value place, and the distribution
became relatively homogeneous. Overall, the SM and NDVI exhibited a significant positive
correlation, with a correlation coefficient of 0.507, as shown in Table 2.

3.3. Exploration of the Relative Contribution Rate of Environmental Factors

Taking the relation between NDVI and impact factors fitted along with elevations,
we found the maximum inclusive elevation range and the best correlation coefficient
from the fitting results. Three elevation belts were finally divided: elevation ≤ 2900 m;
2900 < elevation ≤ 3900 m and elevation > 3900 m. Then, the model was trained and
tested by the raster data of elevation, NDVI, precipitation, AT and SM from 2001 to 2016.
The fitting relations of the three elevation intervals were obtained. The linear regression
results of the simulated NDVI and MODIS NDVI are shown in Figure 10 and Table 3.

Figure 10 and Table 3 show that the number of hidden layers in each model is 2.
The number of hidden layer neurons in the low- and middle-elevation models is 11,
while in the high-elevation model it is 25, showing that the effects of comprehensive
environmental factors on the NDVI are more complex and more challenging than those of
the low- and middle-elevation models.
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Table 3. Model accuracy evaluation parameters.

Elevation
<2900 m 2900–3900 m >3900 m

Train Test Train Test Train Test

Hidden layer 2 2 2
Number of neurons 11/11 11/11 25/25

R2 0.9420 0.8394 0.9243 0.8331 0.9098 0.7623
RMSE 0.0202 0.0303 0.0228 0.0335 0.0330 0.0553
NSE 0.9016 0.8981 0.8741

It was also found at the low elevations (<2900 m) that the simulation accuracy of
training R2 was the highest at 0.9420, the corresponding RMSE was the lowest (0.0202),
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and the testing R2 reached 0.8394 (Figure 10a and Table 3). It indicates that the NDVI is
highly correlated with the precipitation, AT and SM within this elevation range. When
the elevation is greater than 3900 m, R2 is relatively lower both in the training and test
periods: 0.9098 in the training and 0.7623 in the test period (Figure 10c and Table 3).
This indicates that the NDVI in the high-elevation area is correlated to the precipitation,
AT and SM to a certain extent, and it also is affected by other factors. In the mid-elevation
region (2900–3900 m), the R2 and RMSE for both the training and test are within the ranges
of the other two models (Figure 10b and Table 3). The NSE values of the three models are
0.9016, 0.8981 and 0.8741, respectively, and the constructed model is reliable overall.

According to the ANN model, the relative contribution rate of precipitation, AT and
SM to vegetation dynamics is calculated as shown in Table 4.

Table 4. Relative contribution rate of environmental factors of NDVI dynamics (%).

Impact Factors
Relative Contribution Rate

DEM (<2900 m) DEM (2900–3900 m) DEM (>3900 m)

AT 35.17 27.93 39.50
Precipitation 32.53 44.76 21.97

SM 32.30 27.31 38.53

4. Discussion

In arid and high-altitude areas, the vegetation dynamics are susceptible to climate
change [46]. The distribution of vegetation is often controlled by climate models, showing
a non-stationary, nonlinear complex process [47]. Therefore, it is difficult to describe
the relations between vegetation and environmental factors only with the traditional
correlation analysis method. In this study, we used machine learning to build an artificial
neural network fitting model to quantitatively simulate and analyze the influences and
contributions of various environmental factors on vegetation dynamics.

Precipitation, AT and SM are the three major environmental factors impacting the spa-
tiotemporal vegetation distribution [48–50]. Table 2 shows a significant positive relation-
ship between the NDVI and precipitation, with a correlation coefficient of 0.562. Spatially,
the NDVI in the Kunlun Mountains in the southeast of the basin and Qilian Mountain
in the northeast of the basin showed a very significant correlation with precipitation
(Figure 4). In most cases, more precipitation will promote vegetation restoration, especially
in arid and semi-arid regions, where SM is the key factor [51,52]. Zhu et al. [53] showed
that precipitation was the main factor determining the basic vegetation distribution pattern
in the Qaidam Basin and impacted vegetation growth. Furthermore, this study found
that precipitation, as the dominant factor, contributed 44.76% to the vegetation dynamics
in elevation areas of between 2900 and 3900 m (see Table 4). This was considered mainly to
be because of the low mountainous area in the southeast close to the humidity source of
the Indian Ocean. Under the influence of a strong monsoon, the windward slope generates
more precipitation in the growing season [53], promoting vegetation growth and has higher
vegetation coverage, making precipitation the leading factor in this region.

In this region, a significant negative relationship between vegetation growth and
AT exists. However, as the topographic height difference of the Qaidam Basin is 4095 m,
the environmental conditions of different elevations are also greatly different, which have
different influences on the vegetation in this area. As shown in Figure 9b, the AT is
negatively correlated with the NDVI overall but positively correlated with the NDVI
in high-altitude regions. According to Table 2, when the elevation is higher than 3900 m,
the relative contribution rate of AT reaches 39.50%. It is shown that AT has the greatest
influence on the NDVI within this region. We know that the temperature in the high
mountain area around the Qaidam Basin is lower, which plays a dominant role in vegetation
growth and change. This result is consistent with the commonly accepted knowledge in this
area of research.
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In general, the rise of surface temperature extends the growing season in the high
northern latitudes and promotes vegetation growth [54,55]. However, on the other hand,
due to continued global warming, the surface temperature may inhibit vegetation growth
and lead to vegetation degradation due to drought caused by warming. In this study, it can
be found that when the elevation is between 2900 and 3900 m, the relative contribution
of precipitation is 44.76. This finding indicates that the drought caused by temperature
rise may affect vegetation growth in this region. Many studies have shown that drought
has resulted in the delay of the start of the growing season (SGS) in grassland ecosystems
in Northeast China [22], declining in net ecosystem productivity (NEP) [56], and reduction
in water use efficiency (WUE) [57].

SM plays a vital role in vegetation restoration and community succession, and main-
tains extra water from melting glaciers, ice and precipitation in arid and semi-arid regions.
Affected by precipitation, air temperature, vegetation, soil texture, topography and other
factors, the spatiotemporal distribution of SM shows strong heterogeneity, especially
in the cold alpine mountainous areas [58,59]. There is a significant positive relationship
between vegetation dynamics and SM in this region, with a correlation coefficient of 0.507
(Table 2). In terms of spatial distribution, the areas with significant correlation were mainly
distributed in the southeast of the basin and the central basin of the front edge of the oasis
core area along Golmud-Nuomuhong. Saline and alkaline wetlands are mostly distributed
in these places, and the flat terrain and relatively dense runoff make up for the lack of
precipitation [53], which leads to the growth of dense halophytic vegetation in these places.

5. Conclusions

In the Qaidam Basin, the NDVI in growing season ranged from 0 to 0.46, with an aver-
age value of 0.10. The region has undergone a remarkable vegetation restoration process
with an increasing rate of 0.001/year (p < 0.05). Regions with significantly increasing NDVI
were mainly found in the Kunlun Mountain Basin (southeast region) and Qilian Mountain
Basin (northeast region). Analysis of the vegetation dynamics with elevation indicated that
the vegetation coverage in low altitude areas was better than that in high altitude areas,
and the peak values of NDVI appeared along the elevation gradient at 4400–4600 m.

In this study, the NDVI was significantly correlated with precipitation, AT and SM
(p < 0.01), the contribution rate of each factor was found along with three altitude ranges.
In the low-elevation region (<2900 m), the contribution rate of AT to the NDVI dynamic
was the largest (35.17%). In the mid-altitude area (2900–3900 m), the contribution rate of
precipitation (44.76%) was significantly higher than that of AT (27.93%) and SM (27.31%).
When the altitude was higher than 3900 m, the contribution rates of AT (39.50%) and SM
(38.53%) had no significant difference and were much higher than that of precipitation
(21.97%).

Our analysis suggests that the NDVI dynamics are closely related to precipitation,
AT and SM, and different environmental factors have different contributions to vegeta-
tion dynamics at different elevations. The comprehensive relations between vegetation
dynamics and environmental factors may improve the eco-environmental management
and desertification control for this region and other similar arid mountain-basin systems.

It is highlighted that machine learning is an effective method to quantitatively identify
the contribution of impacts to changes in vegetation dynamics, especially in analyzing
large and complex systems. It is hoped that this research will serve as the foundation for
future studies that are similar in nature.
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