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Abstract: The development of UAV (unmanned aerial vehicle) imaging technologies for precision
farming applications is rapid, and new studies are published frequently. In cases where measurements
are based on aerial imaging, there is the need to have ground truth or reference data in order
to develop reliable applications. However, in several precision farming use cases such as pests,
weeds, and diseases detection, the reference data can be subjective or relatively difficult to capture.
Furthermore, the collection of reference data is usually laborious and time consuming. It also
appears that it is difficult to develop generalisable solutions for these areas. This review studies
previous research related to pests, weeds, and diseases detection and mapping using UAV imaging
in the precision farming context, underpinning the applied reference measurement techniques. The
majority of the reviewed studies utilised subjective visual observations of UAV images, and only a
few applied in situ measurements. The conclusion of the review is that there is a lack of quantitative
and repeatable reference data measurement solutions in the areas of mapping pests, weeds, and
diseases. In addition, the results that the studies present should be reflected in the applied references.
An option in the future approach could be the use of synthetic data as reference.

Keywords: UAS; drone; unmanned aerial vehicle; in situ; reference data; ground truth; monitoring;
precision agriculture; smart farming

1. Introduction

The principle of precision farming is to treat different parts of agricultural fields
according to their specific needs. Remote sensing provides various approaches for detecting
differences within fields. Drones, also called unmanned aerial vehicles (UAV) or unmanned
aerial systems (UAS), are becoming an essential part of remote sensing tools in the precision
farming context. UAVs show unlimited potential in agriculture [1]. While there is great
pressure to boost food production [2], these UAV technologies, along with smart farming
and new data management strategies such as digital twins [3,4], have the potential to
revolutionise agriculture. Digital twins is the collection of digital data representing a
physical object. Their goal is to remove fundamental constraints concerning place, time,
and subjective observations. Rather than conducting direct decision support, remote
sensing data can enrich digital twins [4] in the future. Thus far, remote sensing and
moreover UAV imaging are addressed to offer direct decision support in the precision
farming context, and new studies are constantly being produced [1].

When considering the measurement techniques and technologies, their accuracy
is a fundamental question. To assess the measurement accuracy, or more widely, the
measurement quality, the true values of the measured quantities, i.e., ground truth, are
needed. The ground truth is assumed to be or validated as true; it is considered the
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response of the real world, and it is the ideal expected result. The author in [5] studied data
quality aspects more thoroughly in precision farming. To provide ground truth for UAV
measurements, external and possible independent measurements, later also referred to as
reference measurements, are needed. Reference data involve measurements or observations
of objects or phenomena of interest. The reference measurements need to be planned with
the UAV campaign, and they should often be collected or measured simultaneously, or
immediately before or after the flying campaign. Reference data are used to train the
remote sensing analysis method, to assess accuracy, and to verify the applied methodology.

Several reviews of UAV applications in agriculture have been published recently.
Ref. [1] reviewed platforms, controls, and applications, while the authors in [6,7] focused
on the applications and updated an earlier study [8]. The review in [9] had a biodiversity
approach. To our knowledge, no review studies focused on the reference data for UAVs in
the agricultural context.

There is a wide variety of UAV applications in precision farming, ranging from
miniaturised pollinators [10] and UAV spraying [1] to irrigation scheduling [11]. Our focus
is on the most common applications that support farm machinery practices during the
growing season. In addition, we exclude nitrogen and yield mapping based studies due to
the different nature of the reference data. In those studies, the references can be measured
from vegetation samples [12–14]. Instead, our study focuses on weeds, pests, and diseases
in the precision farming context. Pests and diseases cause annual yield losses between 20%
and 40% [15]. Furthermore, weed management was found to save billions of dollars [16].
Compared with these precision farming studies, the traditional phenotyping methods used
in breeding rely on trained experts to make a visual assessment of crop vigour and other
abiotic stresses [17]. However, traditional crop phenotyping methods are comparatively
slow, costly, laborious, and not easily applicable over large areas due to the number of
varieties to be considered and the frequent requirement of destructive sampling [18]. It
is interesting to study practical solutions that are used to collect reference data at the
precision farming scale. Integrated pest management is becoming a required action across
the European Union (Directive 2009/128/EC), and farmers are therefore expected to use
chemical plant protection only when a need for it is recognised, and even then, it should
be applied as precisely as possible, and the impacts are expected to be monitored by the
farmer. The need for precision farming actions and UAVs for observation and monitoring
is therefore becoming of increasing importance.

The articles studied in this review include a plant or crop that is cultivated, and these
studies utilised UAV imaging to detect weeds, pests, or diseases. The term “weed” is used
as a synonym for invasive/noxious plant species [19], in contrast to alien species. Pests are
insects or small animals that are harmful to plants, and diseases are abiotic and biotic plant
diseases that harm plants. In the detection applications based on UAV imaging, the attempt
is to distinguish weeds individually or in patterns. Similarly, there were also attempts
to distinguish the symptoms of pests and diseases in the target plants individually or in
patterns. The term “campaign” refers here to a field visit event. On the whole, the aim
of this study is to study practical solutions and the advantages of thorough planning of
reference data collection in the context of UAV imaging campaigns. Our main research
question therefore is, what kind of reference data UAV imaging studies related to pests,
weeds, and diseases are used?

2. Methodology

Our bibliographic analysis in the domain under study involved four main phases:
(a) the collection of related studies; (b) a detailed review; (c) an analysis of the studies; and
(d) a comparison with other agricultural imaging topics. In the first phase, a keyword-based
search for journal articles and high-quality conference papers was performed from the
web scientific indexing service Web of Science (WoS) core collection. Similar to a review
of machine learning in agriculture [20], we made a comprehensive review of selected
applications. For search keywords, we used questions that restrict the findings to drones
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and that presented applications in the area of precision farming. Our search terms were (1)
“drone*” or “uav*” or “unmanned” in the title section; (2) “pest*” or “*disease*” or “weed*”
in the title section; and (3) “precision farming*” or “precision agri*” or “site specific” in
the topic. The topic includes the title, abstract, author keywords, and Keywords Plus.
Adding “smart farming” or UAS (unmanned aircraft systems) to the search criteria did not
yield more results. The last search was made on 27 October 2020. In total, 41 results were
retrieved, of which 36 were accepted for the review: 27 studies concerned weed detection;
3 studied pest detection; and 6 studied disease detection. One of the included papers [21]
only had an extended abstract available in English. The excluded studies addressed
spreading systems; they were reviews of other topics or were otherwise irrelevant to our
topic. There were 6 publications from 2020, 5 from 2019, and 12 from 2018. The earliest
publication was from 2012. The eight most cited articles considered weed applications.

In the second phase, the selected 36 papers were analysed one by one while the
following questions were considered:

1. What was the research topic, and what were the studied crops and the precision
farming scenario that the research targeted?

2. What were the tools and parameters for the imaging of the weeds/pests/diseases?
3. What was the applied reference data, and how were they used?
4. How was the operational timing presented?
5. What were the processing and analysis methods, including data resampling, for

different resolutions?
6. What are conclusive procedures for planning an imaging campaign?
7. How were these methods differentiated from other agricultural imaging topics?

For question 7, other relevant research articles were analysed in contrast to the articles
included in our core review. We present our findings in Section 3.

3. Reference Measurements
3.1. Study Topics

The studied crops included maize [21–26], rice [27–30], wheat [31–34], barley [33,35],
oat [36], soybeans [37,38], beans [39], spinach [39], vine [40–43], sugar beet [26], oilseed
rape [44], sunflowers [45–50], cotton [51], grass [52], and meadows [53–56]. All fields except
meadows were cultivated in a monocultural way. The six disease studies considered maize
streak virus, mildew disease, and general leaf diseases of vines, cotton root rot, maize blight
disease, and general soybean leaf diseases. The three pest studies considered the Phylloxera
vine pest and general pest detection in vines, rice, and maize. The weed studies mostly
considered general natural and nondiscriminated weeds. Detailed studies were done for
thistles (Cirsium spp.), johnsongrass (Sorghum halapense), and pigweed (Amaranthus spp.).

As the selected papers addressed precision farming applications, almost all had a
future goal of developing a site-specific on-time application for pesticides or herbicides.
However, one paper [22] was dedicated to developing phenotyping tools for disease
resistance. All studies had a certain technology solution as a target, and they could
therefore be rated using the technology readiness level (TRL) [57] classification. Most of the
studies had a concept that was tested in a relevant environment and at most in a couple of
different fields from a single year. They all therefore fit between the TRLs of 3–6. The study
by Rasmussen et al. [33] had the highest TRL of 6; it described procedures for detecting
green weeds in preharvest cereals using off-the-shelf UAVs, and the authors suggested
a simple model for preharvest weed mapping with separate ICT tools. Studies [42,44]
conducted the first outdoor tests with selected tools and therefore presented the lowest
TRLs of 3.

3.2. UAV Imaging Campaigns

All the imaging campaigns were operated in constant altitudes. Figure 1a presents
the main flying altitudes in relation to article publication years, with one main altitude
per publication. The highest altitude (excluded from Figure 1) was 400 m [44], and the
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lowest altitudes were 1 m [34] and 2 m [37]. Three different altitude categories may be
identified with equal distribution: (1) close range imaging at 1–25 m, optimised for spotting
detailed information, often from individual images; (2) low-altitude imaging, 25–50 m
being currently optimal for optics, especially with multispectral cameras; and (3) high-
altitude drone imaging at 70–120 m, optimised for the mapping of large areas. The overall
average flying altitude was 49 m in all studies except for disease studies, which was 43 m.
There were no trends in flying altitudes in relation to publication years after 2017. Figure
1b shows the relation between the size of the study area and the flying altitude. Many of
the studies tested different altitudes [24,26,33,34,45,46,49,50].
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Figure 1. Information regarding flying altitudes based on reviewed publications: (a) main flying altitudes in the articles
related to publication years (one case in 2012 with an altitude of 400 m was excluded); (b) the mapped hectares (logarithmic
scale) in relation to flying altitudes.

Two relatively larger areas can be noted, both for weed mapping in several fields:
18 fields covered 110 hectares in the study by Lambert et al. [32], and eight fields covered
20 hectares in the study by Rasmussen et al. [33]. The latter study also tested several flight
altitudes (10, 20, 30, 40, and 50 m) and concluded that 40 m was practical for weed mapping
with mature cereals. Most of the studies focused on one or two nearby field plots and had
an average study area coverage of five hectares. The imaging areas as a whole emphasise
the nature of experimental studies. The presented field areas represent the reported test
sites that were imaged with the main instruments. In some close-range applications, the
whole field was not imaged.

Most of the studies produced orthophotos. They were used in almost 70% of cases.
The other studies used raw images. However, in the disease studies, these two approaches
were evenly split. According to the authors in [33], whether orthomosaics or individual
nadir images are used has a minor impact on image analysis. For orthomosaic computation,
the commercial Agisoft Photoscan software (Agisoft LLC, St. Petersburg, Russia) was
the most applied, while in four studies, the Pix4D Mapper software (Pix4D S.A., Prilly,
Switzerland) was used. The latter was the most common in the UAVs for precision
agriculture reviews [7]. In our review, the planned image overlaps varied greatly, with the
highest being 90% side and forward overlaps from 70 m [30], and the lowest being 30%
side and 60% forward overlaps.

The UAV platforms also showed large variation. The most used was the Microdrones
MD4-1000 quadcopter (Microdrones, Rome, NY, USA), which was one of the first user-
friendly and economic solutions on the market about ten years ago. Other frequently used
platforms were the lightweight DJI Phantom drones (DJI, Shenzhen, China), representing
the first wave of cheap off-the-shelf UAVs. The other UAVs used were rotorcraft-type
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multicopters such as the Scanopy Quadcopter (Scanopy, Quincy, France), DJI s800 EVO, DJI
Matrice 600 (DJI, Shenzhen, China), HiSYstems Hexa XL (MikroKopter, Moormer-land, Ger-
many), Geo-Konzept XR6 (geo-konzept GmbH, Adelschalg, Germany), 3DRobotics SOLO
(3DR, Berkeley, California, USA), and Hydra-12 Onyxstar (AltiGator, Waterloo, Belgium),
and the fixed-wing SenseFly Ebee (SenseFly SA, Cheseaux-sur-Lausanne, Switzerland) and
Tuffwing Mapper (TuffWing LLC, Boerne, Texas, USA). These UAVs can be classified in
four categories: (1) lightweight fixed wings; (2) lightweight multicopters with integrated
camera; (3) more customisable multicopter bodies with their own camera setups; (4) com-
mercial medium-sized platforms with custom cameras. Figure 2 illustrates examples of
such drones with relevant cameras. These present a wide variety of available commercial
UAVs where only very small multicopters, large fixed winds, and very large multicopters
were not represented.
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Figure 2. Four types of unmanned aerial vehicles (UAVs), shown from left to right: (1) fixed-wing Parrot Disco and Parrot
Sequoia multispectral camera; (2) DJI Phantom 4 and Phantom 4 Multispectral RTK; (3) custom-built Carboncore hexacopter
and Specim AFX10 push-broom hyperspectral camera; and (4) DJI Matrice 210 with Micasense Altum multispectral
camera onboard.

In all the studies, the drone camera was pointed directly at the ground, i.e., in the
direction of the nadir. This technique is adopted from aircraft-based aerial imaging. The
optimal direction to observe the phenomenon of interest was not covered or questioned
in the articles, although several studies analysed the raw images directly. Some studies
generated 3D models based on the nadir images.

The dominant camera solutions were RGB (red green blue) cameras. CIR (colour
infrared) or NIR (near-infrared) cameras were used in eleven studies, and nine studies used
multispectral cameras. Only one study also used a hyperspectral camera (Headwall Nano-
Hyperspec, Headwall Photonics Inc., Bolton, MA, USA); this particular study focused
on the phylloxera pest on grapevines [42]. The reporting of the wavelengths used in the
applications varied. In the reported cases, the applied wavelengths were as follows (with
the percentage of how many cases used that wavelength in their analysis): blue 450 nm,
78%; green 560 nm, 100%; red 660 nm, 96%; red-edge 735 nm, 39%; NIR 780 nm, 22%;
NIR 800 nm, 9%; and NIR 850 nm, 22%. The review in [7] found that only 20% of the
vegetation health studies used RGB images, while the rest applied multispectral images.
Those findings differed from ours.

The average ground sample distance (GSD) in the reported studies was 4 cm, and 30%
of the studies had a GSD smaller than 1 cm. The lowest GSD in the data capture phase
was 25 cm with grapevine pests [42], and the highest reported resolution was 30,000 pixels
per soybean leaf [37] collected with a Sony Exmor RGB camera (Sony, Tokyo, Japan). The
imaging resolutions are examined in more detail in the next chapter.

The reviewed studies focused on naturally infested fields. Artificial inoculation was
used only in the maize phenotyping study [22]. Untreated controls and delayed sprayings
were used in some cases, but all the weeds in all cases were naturally infested.

3.3. Reference Measurements for Development and Evaluation

We found two main uses of the reference measurements, i.e., to teach the classification
system and to evaluate the study results. In a typical case, the reference measurements were
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split randomly into training and validation sets, and no additional reference data were used
for evaluation. Three different types of reference data were used: in situ measurements,
visual analysis from the image data, and sample plot trials. About half the studied cases
included only visual observations. Table 1 presents information about the various reference
methods and the image data collected in the articles. They are divided into nine categories
based on the crops and the application goal: diseases, pests, weeds in a rice field, weeds in
a sunflower field, weeds in a maize field, weeds in a wheat field, weeds in a barley field,
weeds in other farm fields, and mixed meadows. The references and imaging approaches
used were spread across these categories.

Table 1. Reviewed studies in nine categories with information on main reference methods, collected UAV data types, and
possible differentiation between weed species.

Category Reference Data Data Type Number/Size of
Study Areas

Differentiation
between Weed Species Reference

Diseases Visual, digital
records

Multispectral
images, RGB 1–3/0.3–33 ha Not applicable [21,22,37,40,41,51]

Pests Traps count,
visual

RGB, multi- and
hyperspectral
images

1–2/3.2 ha-10 km2 Not applicable [42–44]

Weeds:

Rice Visual from
images

RGB, multispectral
images 1/0.5–2 ha No [27–30]

Sunflower Visual labelling RGB, CIR 1–3/1.0–4.2 ha No [45–49]

Maize
Visual, square
frames, manual
counting

RGB, CIR,
multispectral
images

1–2/0.015–2.1 ha No [23–26]

Wheat
Visual from
images, field
observations

RGB, multispectral
images 1–5/2–3000 ha Yes [34] [31–34]

Barley
Visual from
images, field
observations

RGB, multispectral
images 1–3/0.2–3 ha No [33,35]

Other crops
Visual from
images, field
observations

RGB, CIR 2/Not mentioned No [36,38,39,52]

Meadows Visual and in situ
polygons, points CIR 1/10 ha No [53,54,56]

The following list provided by Vanegas et al. [42] is an example of the attributes used
for grapevine pest detection:

1. Tree number
2. Latitude
3. Longitude
4. Block number
5. Row number
6. Panel (group of four to six grapevines)
7. Tree variety
8. Expert visual vigour assessment
9. Digital vigour model (calculated classes 2–5 based on imaging)
10. Multispectral derived indices and bands
11. Hyperspectral derived indices and bands
12. Soil conductivity data

Attributes 1–6 consider the spatial location of the studied unit; attributes 7 and 12 pro-
vide external reference information; attribute 8 is a reference based on visual observations;
and attributes 9–11 are based on drone imaging data. The total number of reference mea-
surements varied from 12 to 1000. Although in some cases the definition of single reference
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measurement is not clear, about half of the studies applied only less than 100 reference
samples. Both extreme values were field observations of weeds in a square [30,33]. Robust
machine learning applications may use thousands of reference samples.

3.3.1. In Situ Measurements

Two studies applied spectroradiometer measurements on the test sites [51,54,56].
However, all the studies applying multispectral cameras used reference panels at the test
site. The spectroradiometers were used to calibrate reflectance. For example, on the day of
the flight, Wang et al. [51] used a spectroradiometer to measure calibration panels from five
points and averaged the results. The study in [56] used a spectrometer (Unispec Enterprises
Inc., Washington, DC, USA) to measure spectral signatures of different weeds and used
data to identify interesting wavelengths. Figure 3 presents an example of the reflectance
signatures of weeds in our similar study in 2019.
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Figure 3. Reflectance signatures of different crops on 23 July 2019: different oat (Avena Sativa) leaves, yellow star thistle
flower (Centaurea Solstitalis) weed, and dandelion (Taraxacum Officinale) weed in our unpublished study. The presented
signatures were raw data measured with a CI-710 leaf spectrometer (CID Bio-Science, Camas, WA, USA).

A GNSS (global navigate satellite system) has typically been used with reference data
collection [12–14], but only a few exploited it in this review. The study presented by Zisi
et al. [53] used GNSS positioning and collected large homogenous weed patches from a
meadow, and the study by de Castro et al. [45] measured sunflower heights with a ruler
and used a GNSS for positioning.

Three weed studies [24,25,46], all published before 2017, applied 1 m × 1 m reference
plots that were semi-randomly placed in the field. The study by Lopez-Granados et al. [24]
explained that each of the applied 50 squares were georeferenced with a differential GNSS
and were photographed to compare the observed weed density with the outputs from the
image classification of the weed density estimation. The number of weeds was estimated
from the photographs of the squares. According to the study in [25], the weed coverage in
the on-ground photographs was determined through the application of a greenness index.



Remote Sens. 2021, 13, 1238 8 of 21

Figure 4 presents a similar case at an early growth stage, showing a ground image
(Figure 4a) and a small part of an orthophoto originally collected with a DJI Phantom 4
drone at an altitude of 30 m. The images were taken on 7 June in Hyvinkää in Finland in
an organic oat field and were automatically processed using the DroneDeploy software
(DroneDeploy Inc., San Francisco, CA, USA). In this case, the squares were left in the field
while the imaging was carried out.
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Figure 4. Reference square (1 m × 1 m) for weed observations at our test site in 2019: (a) a close-up
photo of the square, number, and reflectance calibration target; (b) the same square in the orthophoto
calculated from drone images showing same weeds (the calibration target was located near landing
area in the ortophoto).

The study in [26] used a 9 m × 9 m grid square, but collected weed scouting data from
four small 0.1 m2 counting frames at each centroid per grid square. The study presented by
Lambert et al. [32] used 20 m × 20 m plots that were located manually. The ground-truth
map was also drawn manually based on the assessment of relative weed densities by
three trained observers. With a known location, Vanegas et al. [42] studied pest traps as a
reference, and Chivasa et al. [22] estimated diseases visually from plot trials on a scale of
1 to 9. As an example of a simple approach, Kerkech et al. [40] stated that disease spread to
all untreated areas and provided reference data for unhealthy grapevines.

All the UAV campaigns took place during the growing season, and it is often recom-
mended not to visit the field to avoid crop damage caused by walking and the possible
spread of pests and diseases. The authors in [33] avoided this by using sprayer tracks in
the late ripening growth stages of barley and wheat. In their visual field studies, two weed
scientists scored the number of square metres infected with thistle weed from each side of
10 m wide strips bordered by sprayer tracks. In each of their eight campaigns, four 600 m
long strips were scored after being divided into 70 evaluation plots made visible from the
air with blue sticks. The area of the evaluation plots ranged from 20 to 1000 m2, depending
on weed density.

3.3.2. Visual Image Analysis

The majority of the studied articles applied manual visual analysis of UAV images to
extract a reference. The methods were typically explained at general level. For example,
“images were visually examined, and the plants were annotated” [34], or “the annotator
was trained to draw rectangular bounding boxes around weed patches” [38]. Although
visual UAV image analysis can be convenient to carry out, it can also be time-consuming.
With a 0.54 hectare test site, the study by Huang et al. [28] reported that the manual labelling
for 91 images took a total of 60 h. The weed density was obtained by visual judges under
the instruction of agronomy experts working at the pixel level. The study in [51] used a
graphic pad to digitise and classify infected regions of cotton.
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Two methods were commonly used to help visual classification and digitising: Image
thresholding and crop row detection. Hough transform is identified as one of the most
common machine vision methods for crop row detection [58,59]. The thresholds were
adjusted interactively: If weed patches were misclassified as crops by the default threshold,
the threshold was adjusted to a lower value and vice versa [33]. These visual analyses may
always be subjective. Figure 5 shows an example of subjective weed segmentation based
on the relative threshold determined visually by an expert.
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assumed to be weeds (image width approximately 10 m).

In the cases where UAV images were manually studied, the assumption was that the
study targets were visible to the naked eye. This assumption was studied by the authors
in [33], where their study demonstrated that flight altitude in the range of 10 to 50 m
with corresponding image resolution in the range of 3–15 mm per pixels did not influence
detection of Cirsium arvense.

3.4. Timing of the Imaging

The UAV campaigns were carried out mostly in one of the following timeframes:
(a) the early growth stage; (b) during herbicide treatments; and (c) the late ripening growth
stage. If the growth stages were presented, they were presented in the Zadoks scale [60]
for cereals or using BBCH (Biologische Bundesanstalt, Bundessortenamt und Chemische
Industrie) [61], which is based on Zadoks but is generalised to the growth stages of mono-
and dicotyledonous plants. These scales present the growth stages from 0 to 99, and
more generally in 10 principal growth stages: germination (00); leaf development (10);
formation of side shoots (20); stem elongation (30); booting, i.e., development of harvestable
vegetative plant parts (40); inflorescence emergence (50); flowering (60); development of
fruit (70); ripening (80); senescence (90). The early stages (BBCH lower than 30) included
only weed studies but covered 60% of them. The authors in [50] found that the early-
growth stages of sunflowers (14–16 BBCH) gave the best results for weed mapping. In
the early-growth stage, the plant rows are visible; weeds can be disarrayed, and they can
be larger and higher than cultivated plants. The UAV imaging at the mid-growth stage
just before the precision application reveals the latest near real-time information. This can
be challenging for a few reasons; for example, the weed plants were similar in size or in
some cases smaller than the maize plants [25], but for pests and diseases, it can be essential.
With weeds, only rice, maize, and sunflower campaigns were conducted in the mid-growth
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stages. The imaging during the late ripening stage was due to the occurrence of visual
differences. For example, healthy vines did not begin to exhibit leaf discoloration [43], or
the mature cereals’ crop colour did not turn yellow yet [33]. Figure 6 presents an example
of late-growth stage imaging, in which green couch grass (Elymus repens) can be detected
from a yellow ripened wheat field. In such cases, the exploitation of a precision farming
application can be done by patch-spraying glyphosate before or after harvest, during the
next growing season, or by harvesting selectively.
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Late campaigns also had some difficulties. The authors in [33] noted that a fraction of
the weed shoots appeared under the crop canopy, and they collected references by walking
in the field. This was an observation undertaken during a field visit. To select the optimal
timing, the studies frequently observed the fields. The authors in [36] exploited satellite
imagery from previous years for the preliminary optimisation of weed mapping in an oat
field at the ripening stage.

3.5. Data Processing and Analysis Solutions

Tsouros et al. [7], in their related review of precision agriculture UAV applications,
listed the three most common image processing methods for analysing UAV imagery for
precision agriculture: (1) photogrammetric techniques, (2) machine-learning methods,
and (3) vegetation indices calculations. As previously presented in our study, 70% of the
studies applied photogrammetric techniques and calculated orthophotos after preliminary
calibrations. In several cases, digital surface models (DSM) were also calculated. In some
cases, the mosaic data were already resampled to a lower resolution at this stage.

As the next step, object-based image analysis (OBIA) was the most used approach.
In OBIA, pixels are grouped into objects based on spectral similarity, shape, or neigh-
bourhood. This required algorithm development, and the methods behind them typically
played a key role in each article. For example, in study by de Castro et al. [45], the
OBIA algorithm combined DSM, mosaics, and machine-learning techniques such as ran-
dom forest (RF). The plant heights from DSM were estimated and used as a feature in
the automatic sample selection by the RF classifier. Then, RF randomly selected a class-
balanced training set, obtained the optimal feature’s values, and classified the image,
requiring no manual training and removing errors due to a subjective manual task [45].
Several studies applied OBIA [24,25,31,46,48,50,53] as an approach and applied the RF
technique [22,23,32,36,45]. In a typical case, the data were randomly divided into training
(70–80%) and validation (20–30%) sets. Other methods used techniques such as convolu-
tional neural networks [27,38–40], a K-means support vector machine [51], a multilayer
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perceptron model combined with automatic relevance determination [54], unsupervised
ISODATA (Iterative Self-Organizing Data Analysis Technique) [30], and the supervised
Kohonen network and counter-propagation artificial neural network [56]. The authors
in [29] referred to LeCun et al. [62] in stating that fully convolutional networks (FCN)
are an automatic feature learning algorithm that can address the disadvantages of OBIA
approaches [33,63]. The number of training samples needed depends on the algorithm,
the number of input variables, and the complexity of the problem [64]. In general, increas-
ing the training sample size also increases the analysis classification accuracy [65]. From
reference data, these methods need information about which class each reference belongs.

All of the studies aimed to classify imaged data into relevant classes. A methodology
based on threshold detection from hue histograms was proposed by the authors in [66],
for example. The number of classes in the studies was between two and six and was most
often three. Some examples include a two-class study involving a target weed or anything
else [53]; a four-class study involving shadow, ground, healthy, symptomatic [40]; and a
six-class study involving soil, wheat, and four different weed species [34]. The linkage
between the number of classes and the characteristics of the reference data is essential. In
some cases, new classes that were not used as a reference, such as shadows or soil, were
developed during the classification process to improve the classification quality. In many
cases, it was not relevant to interpret classified data at the pixel level. Four different kinds
of interpretation were found: (1) a pixel-by-pixel classification [28]; (2) resampled windows
such as 3 × 3 pixels [53] up to 64 × 64 pixels [39]; (3) small zones [36] or homogenous
clusters [37]; or (4) metric plots ranging from 0.5 m × 0.5 m [46] to 20 m × 20 m [32].

The studies reported generally very good and promising results. However, this is due
to the coverage and nature of the reference data, the low number of test fields in each study,
the relatively high number of measured variables, and the freedom in applied classification
methods. Technically, overteaching is often avoided, but the datasets are so small that no
generalisations can be made. A visual image analysis can be an iterative process when the
analysis ends at the moment when classification results are adequate.

3.6. General Campaign Planning

This chapter section summarises the workflow in the reviewed papers. The first step
is to determine the imaging classification classes that are the purpose of the campaign. The
second step is to determine the other classes that will exist and to plan the timing of the
campaign in relation to be able to distinguish between classes, and to determine what kind
of reference data can be collected in order to benefit data in practice. In the next step, the
imaging campaign tools and parameters are planned, and the campaigns are carried out.
Then, suitable preprocessing, processing and analysis are carried out. Figure 7 presents a
bottom-up demonstration of the campaign planning conducted from in the studied articles.
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The workflows from the imaging data preprocessing to the classification phase were
often at the core of the articles, and detailed descriptions were given.

3.7. Differences with Other UAV Imaging Applications

UAV-based remote sensing has also been widely employed to estimate crop bio-
physical parameters (e.g., biomass, yield, leaf area index (LAI), and plant height) and
biochemical parameters (e.g., nitrogen content). These studies often involve the laboratory
analysis [14,58] of reference data. For example, the reference for biomass or grass yield is
usually measured with a “cut and dry” method or a rising plate meter [67]. The rising plate
meter is a simple indirect instrument for estimating grass yield, based on the compressed
height (CH) of the sward [68]. Cut and dry is a direct method for measuring grass yield,
and it involves cutting and weighing a sample of fresh grass from a precisely measured
area at a specified cutting height. After weighing, the sample is dried in an oven to de-
termine the amount of dry biomass [67]. Cut and dry is the most common reference data
collection method in biomass estimation studies, and it has been used in various recent
studies [69–73]. The method provides objective reference data, but the cutting phase can
include lot of variation. In studies where biochemical parameters such as the nitrogen
or digestibility of grass were estimated, the reference samples were analysed in a labora-
tory, most commonly using the NIRS (near-infrared spectroscopy) technique [69,72,73],
providing numerical comparable values.

In the data classification phase, supervised machine-learning methods rely on training
samples (Figure 8). The variation in the quality of reference samples needs to cover the
studied phenomena completely [74].
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Some additional studies applied imaging analysis and machine learning for weeds,
pests, or diseases [75–79] without focusing on UAV operations. The reference data approach
was similar to this review. For example, the study by Ebrahimi et al. [75] used a robot arm
in a greenhouse to detect pests on a strawberry flower and only used visual observations
from the images as a reference.

Our review scope restricted some pest and disease studies because those studies used
detailed information about pests or diseases in their title. The authors in [80] reviewed the
use of remote sensing technologies in precision pest management that focus on arthropod-
induced stress reactions. They listed 10 studies applying drone-based hyperspectral,
multispectral, and RGB remote sensing to detect arthropod-induced stress in crops and
orchards, including two of the three studies included in our search results [42,58]. These
10 studies included the following species: grape, wheat, onion, canola, cotton, potato, and
sorghum. Typically, these studies quantified either the symptoms caused by the pests
and/or the number of pests, with two exceptions [80]. In the case of fall armyworm
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(Spodoptera frugiperda) in wheat fields [71], the reference data were reported to consist of the
reported outbreaks by farmer. UAV-based RGB imaging was seen as having the potential
to predict the movement and damage cause by this pest [81]. In canola (Brassica napus), soil
and plant tissue nutrient analyses were also used as a reference method [82], and it was
used in determining the relationship between potassium deficiency and the susceptibility
to green peach aphids. The review in [80] also listed 9 studies using orbital sensors,
26 studies using aerial (manned aircraft), and 75 studies using ground-based hyperspectral
or multispectral remote sensors. This indicates that remote sensing technologies are quite
widely studied in the detection of insect outbreaks, but only a few reports described the
use of UAVs. In contrast with the reference methods that are often used with UAV and
aerial studies, ground-based measurements often used controlled infestations, and orbital
studies in particular relied mainly on the calculation of arthropods [80].

Late blight caused by Phytophthora infestans is regarded as the most important disease
of potato (Solanum tuberosum) worldwide and is a threat wherever potatoes are grown [83].
Many studies have therefore focused on utilising UAV-acquired spectral imagery to monitor
late blight disease incidence and severity [84–88]. Generally, the aim of the UAV studies
on late blight was to detect the disease symptoms and assess their severity to develop an
easy, albeit reliable, method for disease detection that could be used in agronomic trials
and at farm scale. All the studies were based on rigorously designed experiments set up
in experimental contexts [84,85,87,88] or in farmers’ fields [86]. In most studies, the visual
assessments of the disease symptoms and their severity were used as reference data for
the images [85–88]. The assessments were carried out by experts several times during the
growing season, and in some studies, the assessments were made according to the known
guidelines (EPPO, European and Mediterranean Plant Protection Organization) [87,88].
The authors in [86] explained the ground truth measurements as follows: “Expert visual
evaluation of severity of P. infestans under field conditions was done at the plot level
and for each of the four image acquisition campaigns. Disease severity was estimated by
sampling at random four plants on each plot and computing the average percentage of
the disease-infected foliar area.” In [84], the authors compared UAV-acquired image data
with data collected using a ground-based hyperspectral field spectrometer instead of visual
assessments. No artificial inoculation was used in these studies because outbreaks of late
blight usually occur spontaneously when no fungicides are used.

Hyperspectral imaging with remote sensing has shown the potential to detect the
symptoms of potato virus Y (PVY) [89,90] and potato blackleg caused by Dickeya and
Pectobacterium bacteria [91]. These diseases are especially harmful in seed potato crops, and
their management is primarily based on the use of certified pathogen-free seed tubers and
the removal of symptomatic plants that can serve as an inoculum source. The identification
of the infected plants at an early developmental stage is therefore of utmost importance.
The authors in [89] and [90] aimed to distinguish infested plants from healthy plants
at individual plant level, using spectral reflectance. Image data were acquired using
ground-based systems such as a hand-held field spectrometer [89] or tractor-mounted
line-scan cameras [90,91]. Reference data were collected by visually monitoring the disease
symptoms several times during the growing season. In addition, the authors in [89]
confirmed the visual observations with laboratory analysis, i.e., the presence of PVY using
enzyme-linked immunosorbent assay (ELISA) and the identification of the PVY strain using
a reverse transcriptase polymerase chain reaction (RT-PCR). The positions of the infected
plants were either marked in the field [89] or stored using a real-time kinematic global
navigation satellite system (RTK-GNSS) [90,91] that allowed the infested (and healthy)
plants to be linked to their acquired images. In contrast with the other disease studies
mentioned earlier, the authors in [90,91] used artificial inoculation. Ref. [91] inoculated seed
tubers with one of the causal bacteria of potato blackleg (P. carotovorum subsp. brasiliense),
whereas Ref. [90] set up the experiment using seed lots that were especially selected for
their high level of PVY-infection.
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Challenges related to the reference material as well as the need to apply novel imaging
technologies can be demonstrated by the case of Fusarium head blight (FHB), which is
one of the most important diseases in cereals. FHB can cause devastating yield losses [92],
but its largest related problem is the accumulation of harmful mycotoxins, which lead to
rejections in the cereal trade. What makes FHB a difficult disease to manage is that it has
a range of Fusarium species as causal agents that make it favour various environmental
conditions. It spreads efficiently through air and seeds, and it overwinters in various
crop residues [93,94]. It is also difficult to assess the prevalence of FHB in the field. The
symptoms can be mixed with maturation, especially with crops such as oats, and the
disease can be quite unevenly spread in fields because it may spread from infested seeds
or overwintered crop residue. Plant breeders must therefore rely on inoculated disease
nurseries to get evenly distributed infections, and they also need to include analyses made
for grain samples [95] to screen resistance to FHB. These analyses, such as the determination
of mycotoxin content by enzyme-linked immunosorbent assays (ELISA), are expensive,
and alternative methods like NIR spectroscopy are being considered for analysing the yield
samples or for making field phenotyping more reliable by chlorophyll fluorescence [96] or
hyperspectral sensors [97], and RGB [98].

In the field, the time window for hyperspectral imaging was determined for grain
filling stages [97] on a ground-based study, and this was successfully applied in a study in
which FHB was monitored 60 m above a wheat field [99]. Up to 98% accuracy was achieved
by a backpropagation neural network model for ground data where 50 individual plants
per plot were classified with a disease severity scale from 0 to 5 from 50 randomly selected
plots on the studied field. The authors claimed that the combination of spectral and textural
features selected for modelling in their study should be easily applicable to other areas
resembling the studied field [99], which is commonly a restraint for the application of
hyperspectral imaging campaigns. The authors in [100] suggested that UAVs carrying
hyperspectral sensors could provide valuable information beyond the range of the RGB
spectrum [100], and this may be why there are no reports of UAV applications for RGB
cameras detecting FHB, despite the existence of several studies such as [98] that used RGB
images to detect FHB from ground level.

The management of FHB requires the integration of several practices such as tillage,
crop rotation, cultivar resistance, fungicides, and postharvest practices [94,101]. Fungicide
use can be recommended by risk models [102], but not all crops and regions have these
models, and infections and mycotoxins can also be formed after the fungicide application.
Moreover, at least from the Nordic perspective, the suggested timings of flight campaigns or
phenotyping for FHB occur after the time window for spraying has passed. Nevertheless, in
addition to plant breeders who would welcome a high-throughput phenotyping solution to
replace the currently applied costly and laborious phenotyping tools [103], UAVs could be
used to plan harvesting so that the contaminated parts of the field are harvested separately,
and the data could be used as a supplementary component to adjust weather-based risk
models [100].

4. Discussion

A total of 36 articles was included in this review, and the articles were published in
a wide variety of journals. These studies present recent applications of the UAV-based
imaging of weeds, pests, or diseases for precision farming. Our review focused on the
ground truth data of these applications. The majority of the applications mainly considered
visual image analysis as a reference classification, while some of the applications collected
in situ data.

We observed that there were no standardised approaches or methods for the reference
data collection, and subjective classifications were needed. There is a need to develop trace-
able methods to access reference data in this area. We recommend that future publications
should focus more on a detailed description of the reference data collection and ground



Remote Sens. 2021, 13, 1238 15 of 21

truth descriptions related to their work. In particular, subjective observations can have a
critical impact on the quality of the results.

Weed, pest, and disease identifications have traditionally been subjective or binary,
relying on observations such as “20% infested”, “weed existing”, and “occurring pests”.
Observations such as the number of pests can be very time-critical. The studies selected
for this review did not involve laboratory analysis of references. Visual observations were
often seen to fulfil certain requirements. For example, the weight of the weeds or crops was
not measured in sample plots. This was because the existence of weeds was interesting, not
the actual amount itself. This also means that there were no human errors related to in situ
sample collection and processing. Another remarkable observation was that there were
hardly any plot setups such as the artificial contaminations that are typical of phenotyping
studies. The majority of the studies concentrated on real growing conditions at a near-field
scale. Due to the low TRL levels, this approach can be challenged.

The imaging campaigns and data analysis were not coherent, except for the nadir
imaging direction. In some cases, other directions could reveal the target and present the
vertical structure of the plants. The variation between the growing seasons and growth
conditions was not studied to a great extent. This is probably because of the low TRLs.
There was also variation in GSDs, the actual applied resolution, and the size of the single
reference unit. UAV imaging is still a relatively new approach, and the traditional data
capture resolutions could be matched in the future.

Pest and disease infestations are often associated with the unfavourable moisture
conditions of soil and vegetation, i.e., excess water or drought. In contrast with weed,
pest, or disease detection, soil moisture regime-related UAV applications are commonly
based on the thermal region of the spectra [104,105], although visible reflectance [106] or
multispectral data [107] are also widely used. Thermal imaging was not considered in the
reviewed articles. Recently, UAV-based methods that are based on ground-penetrating
radar [108] and synthetic aperture radar [109] also began to emerge. An accurate knowledge
of the moisture conditions could be exploited to improve the efficiency of pest and disease
detection by targeting the detection at the parts of the field where pests and diseases
are most likely to occur. Thermal imaging can also be indirectly employed to detect the
signs of some diseases such as Verticillium wilt in olive [110], which reduces the waterflow
to the plant and thus induces water stress. However, thermal imaging is sensitive to
the environmental condition of the image capturing, such as the illumination conditions,
canopy architecture, and maturity of crops [111]. Sensors of thermal cameras also have
relatively low-pixel resolution compared with ones used in visible and near-visible imaging.

It is clearly a future challenge to develop automated image analysis and the give timely
support for decision making and field actions. Moreover, there is a lack of quantitative
reference data in the studied topic. There is especially a need for a more systematic
approach to the manual classification of the images, and field measurements are always
recommended at some level. One approach is to use simulation or synthetic means of
creating reference data. This approach will remove the uncertainty of the ground truth and
reduce the need for the manual labelling of the data, but this creates another problem that
researchers are trying to overcome, i.e., having synthetically created images that may look
unrealistic to the vision algorithms compared with real images and scenes. This problem
is called the reality gap; it is also referred to as the sim2real gap and is an active area of
research [112]. It is the major obstacle to the adoption of synthetic reference data creation.

However, recent advances in the computer vision domain led to the emergence of
several studies that attempt to bridge the sim2real reality gap. These studies either train
convolutional neural networks only on synthetically generated data [113] or combine
training on synthetic and manually labelled reference data [114,115]. Studies that combine
synthetically generated data with manually labelled reference data have shown promising
results [115]. In the context of agriculture, the authors in [116] generated synthetic images
of Arabidopsis (small flowering plants) from 3D models that can potentially accelerate the
field of plant phenotyping [116]. The study in [113] generated synthetic data for different
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seeds, including barley and wheat, against a black background; the goal was to detect and
segment each seed in the pictures. The manual labelling of each seed would take a long
time compared to creating the reference data using simulation. The authors claimed a high
accuracy and concluded that the same approach could be extended to other crops like rice,
oats, and lettuce [113].

This synthetic creation of data is an emerging new field of research that will allow for
the reduction of the manual labelling costs of reference data, especially after the sim2real
gap is solved [112]. We suggest that simulation training could be the next research direction
that opens more possibilities for the use of UAVs in precision farming. However, there are
two main barriers to the immediate adoption of synthetic data creation. First, bridging
the sim2real gap remains an unsolved problem. Second, there are few ready-made tools
that can generate photorealistic synthetic reference data, and it takes labour and time
to utilise current simulation engines for this purpose. With more funding and research
entering the area, it can be speculated that these two barriers will eventually be crossed,
and new possibilities within UAVs and precision farming will become available. In cases
where the collection of reference data is laborious or subjective, synthetic data may provide
comprehensive results. This ties in with the introduced digital twin [117] concepts. Another
and more traditional development direction would be to formalise the future research
topic from the reference data perspective, especially acknowledging that data quality could
make a difference. Achieving high quality requires the management of spatial, radiometric,
and spectral resolution, temporal resolution, cluster accuracy precision, positional accuracy,
thematic precision, temporal validity, data completeness, spatial redundancy, readability,
accessibility, and consistency [5,118].

5. Conclusions

The reviewed studies were developing straight forward precision applications for a
wide variety of different crops. The studies applied wide variety of drone types, nadir
imaging with replanned flying pattern, constructed orthophotos, and developed machine
learning methods to distinguish the targets. Only a small set of reference data was used,
and it was split between learning and validation. The reference data were mostly col-
lected by visual examination of drone images. It was essential to plan the timing of the
imaging campaign to fit the suitable growth state, i.e., when the target is visible. Typi-
cally, the mapped data were resampled to larger units before the classification process.
Figures 7 and 8 present the baseline for the processing. In contrast to other mapping topics
in agriculture, the mapping of pests, weeds, and diseases is challenging because of the
subjective nature of the targets. Generally, a better control of the references is needed in
future works.

The majority of the studied applications used visual image analysis as reference data,
and there was a large variation in the resolution of the applied data. The principles of
subjective analysis could be introduced more thoroughly. Moreover, the impact on the
results should be evaluated. As such, the role of the reference data quality and quantity was
bypassed in the studies. As an alternative or as an addition, simulated reference data can
be seen as a potential approach to develop sufficient imaging analysis methods. The core
starting point is to identify the true quality and quantity of reference data. According to our
review, we suggest the following main considerations for the future imaging campaigns
with pests, weeds, and diseases:

1. Carefully define the characteristics of the reference data and how they are measured
in order to make the process repeatable. The reference data were often not defined
accurately.

2. Consider other imaging methods, camera directions, campaign timing, and imaging
wavelengths to better make the target objects visible. Imaging possibilities were not
considered in the studies.

3. Focus on reference data quality and quantity. The studies did not focus on these, and
the quantity was heavily affected by the convenience factor.
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4. Adjust classification methods to make them suitable for the reference data characteris-
tics. There should be reference data for each class.

5. Consider all remote sensing data quality aspects presented in [118]. Due to the nature
of feasibility studies, these aspects were not met.

6. Elaborate on the classification results in contrast to the collected reference data quality
and quantity. This is very important. A majority of studies presented overwhelming
results because the involved data were so limited.

7. Evaluate the possibility to exploit synthetic data for reference at least for some level.
This was not considered in the studies.

8. Adapt general study goals and plans according to the TRL classification. TRLs were
not mentioned in the studies, but the adaptation can help define the requirements
and can especially give a realistic framework for the customer or for the end user.
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