
remote sensing  

Article

Spatiotemporal Heterogeneity Analysis of Yangtze River Delta
Urban Agglomeration: Evidence from Nighttime Light Data
(2001–2019)

Min Yu 1,2, Shan Guo 1, Yanning Guan 1,*, Danlu Cai 1 , Chunyan Zhang 1, Klaus Fraedrich 3, Zhouwei Liao 1,2,
Xiaoxin Zhang 4 and Zhuangzhuang Tian 2

����������
�������

Citation: Yu, M.; Guo, S.; Guan, Y.;

Cai, D.; Zhang, C.; Fraedrich, K.; Liao,

Z.; Zhang, X.; Tian, Z. Spatiotemporal

Heterogeneity Analysis of Yangtze

River Delta Urban Agglomeration:

Evidence from Nighttime Light Data

(2001–2019). Remote Sens. 2021, 13,

1235. https://doi.org/10.3390/

rs13071235

Academic Editor: Noam Levin

Received: 23 January 2021

Accepted: 19 March 2021

Published: 24 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China;
yumin@radi.ac.cn (M.Y.); guoshan@irsa.ac.cn (S.G.); caidl@radi.ac.cn (D.C.); zhangcy@radi.ac.cn (C.Z.);
liaozhouwei19@mails.ucas.ac.cn (Z.L.)

2 University of Chinese Academy of Science, Beijing 100049, China; tianzhuangzhuang17@mails.ucas.ac.cn
3 Max Planck Institute for Meteorology, 20146 Hamburg, Germany; Klaus.Fraedrich@mpimet.mpg.de
4 Department of Geosciences and Natural Resource Management, University of Copenhagen,

DK-1350 Copenhagen, Denmark; xzh@ign.ku.dk
* Correspondence: guanyn@radi.ac.cn

Abstract: The long-term changes of the relationship between nighttime light and urbanization related
built-up areas are explored using nighttime light data obtained from the Defense Meteorological
Satellite Program/Operational Linescan System (DMSP/OLS, data before 2013) and the Suomi Na-
tional Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP/VIIRS, data after
2012) and information of the spatiotemporal heterogeneity of urban evolution. This study assimilates
two datasets and diagnoses the spatial heterogeneity in administrative city scale based on built-up
area tendencies, temporal heterogeneity in pixel scale based on nighttime light intensity tendencies,
and GDP associated spatiotemporal variability over the Yangtze River Delta comparing the first
two decades of this century (2001–2010 versus 2011–2019). The analysis reveals the following main
results: (1) The built-up areas have generally increased in the second period with the center of fast
expansion moving southward, including Suzhou-Wuxi-Changzhou, Hangzhou, Ningbo, Nanjing,
and Hefei. (2) Urban development in the original city core has saturated and is spilling over to
the suburbs and countryside, leading to nighttime light intensity tendency shift from a “rapid to
moderate” and a “moderate to rapid” development (a “hot to cold” and a “cold to hot” spatial
clustering distribution). (3) The tendency shifts of built-up area and nighttime light intensity occur
most frequently in 2010, after which the urban development is transforming from light intensity
growth to built-up area growth, particularly in the developed city cores. The urban agglomeration
process with nighttime light intensity reaching saturation prior to the urban development spreading
into the surrounding suburbs and countryside, appears to be a suitable model, which provides
insights in addressing related environmental problems and contribute to regional sustainable urban
planning and management.

Keywords: long term nighttime light; spatiotemporal heterogeneity; urban agglomeration; tendency
shift; hot and cold spots

1. Introduction

Urban agglomeration is a highly developed spatial form of integrated cities, which can
be defined as a contiguously built-up area, shaped by one core city or by several adjacent
cities, sharing industry-, infrastructure-, and housing-land use with high-density levels
with embedded open spaces [1–3]. It has been witnessed worldwide in recent decades as
one of the most significant changes in human society, and as a “dynamic, multidimensional
socio-spatial process” [4]. Until now, 55% of the world’s population lives in the urban
areas, and it is predicted that this number will reach 68% by 2050 [5]. Although urban
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agglomeration has stimulated rapid economic growth, this process has brought many
environmental problems, including green space occupation, water scarcity, water and air
pollution, and the urban heat island effects, particularly for developing countries [6–10].

China has been experiencing intensive urbanization since the 1980s, spatial forms of
integrated cities are also noticed, for example, the Beijing–Tianjin–Hebei (BTH), the Yangtze
River Delta (YRD), and the Pearl River Delta (PRD) regions [11–15]. Spatial and temporal
heterogeneities of urbanization were first noticed by the Chinese population geographer Hu
Huanyong in 1935 who proposed the “geo-demographic demarcation line” [16] separating
the eastern and western parts of the country. The eastern part covers 36% of China,
but accounts for 96% of the Chinese population. After 2000, the population in the west grew
faster than in the east, but the growth did not change the situation. Urbanization shares a
similar geographical distribution as population showing a fast development in the eastern
and a slow development in the western regions [17,18].

Understanding the spatiotemporal dynamics of the urban agglomeration is crucial
to optimize urban land use patterns, to support regional urban development strategies,
and thus to address environmental problems related to fast changes in urban land cover [19].
Nighttime light from the Suomi National Polar orbiting Partnership visible infrared imag-
ing radiometer suite (NPP/VIIRS) offers a new data source for extracting urban information.
Efforts have been made to rapidly extract relatively accurate urban areas such as built-
up [20] or impervious surface areas [21], and to reveal the responses of nighttime light
intensity to socioeconomic development, for example, urban land expansion [22], hu-
man population [23], electric power consumption [24], gross domestic product and other
socioeconomic variables [25–27].

The reported nighttime light based spatiotemporal heterogeneity of urban agglomera-
tion in China is analyzed using data either from a single satellite [28] or from assimilation
of more than one satellite [29–31]. It considers spatiotemporal heterogeneity by comparing
(1) the three major urban agglomeration: Beijing–Tianjin–Hebei, Yangtze River Delta and
Pearl River Delta [11,32]; (2) cities from eastern coastal region with cities from western
mountainous region [33,34]; and (3) city core with the surrounding suburbs [35]. In ap-
plications, NPP/VIIRS nighttime light data are of much better quality than the nighttime
light data from the Defense Meteorological Satellite Program Operational Linescan System
(DMSP/OLS), but these two datasets suffer from the drawbacks of blooming effects from
the near-infrared band [23,36,37]. Furthermore, DMSP/OLS images are inherently blurred,
due to the footprint expanding away from the nadir, the limited data storage and the
geo-location errors [38].

In summarizing, combined with nighttime light from the DMSP/OLS and NPP/VIIRS,
20 years of nighttime light data are provided as a response to the increasing demand
for analyzing the effects of the changes of built-up areas. However, to our knowledge,
few studies have been concerned with the data assimilation procedures associated with
a time changing threshold to identify the built-up areas from DMSP/OLS (data before
2013) and NPP/VIIRS (data after 2012), although this is necessary due to considerable
inconsistencies, different spatiotemporal quality, drawbacks of blooming effects and radio-
metric heterogeneities; in this paper, a time changing threshold is introduced to identify
the built-up areas. Thus, to obtain a consistent analysis, it is urgently needed to adopt such
novel approaches in order to calibrate DMSP/OLS (1992–2013) and NPP/VIIRS (2012 to
present) nighttime light datasets to monitor urban extension and the kind of its evolution
in the last 20 years. After introducing the methodology (Section 2), applications to Yangtze
River Delta show the spatiotemporal variabilities of urban agglomeration in terms of urban
area cover, nighttime light intensity, tendency shifts, and hotspot regions (Sections 3 and 4),
which is followed by the conclusion (Section 5).

2. Materials and Methods

The study area (Figure 1a), Yangtze River Delta, covers 3.7% of the Chinese land
but with 1/6 of Chinese total population and 1/4 of the total gross domestic product
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(according to the 2020 National Statistics Yearbook of China). Suitably employing the
tools introduced in the previous section (Figure 1b) provides a scheme for analyzing urban
agglomeration evolution.

Figure 1. Geographical setting of the Yangtze River Delta (a) and application flowchart (b).

2.1. Data and Preprocessing

The built-up areas of Suzhou in every four years commencing with 2002 are ob-
tained from the manual interpretation of the Landsat images, which are used as the
reference data (30 m × 30 m) to determine the optimal threshold for the DMSP/OLS
and NPP/VIIRS nighttime light data based built-up areas. The version 4 cloud-free
DMSP/OLS nighttime light data is an annual composite from 2001 to 2013 with a spa-
tial resolution of 30 arc-seconds (1 km), which is downloadable from the Nation Oceanic
and Atmospheric Administration’s National Geophysical Data Center (NOAA/NGDC).
These datasets (1992–2013) were obtained from six satellites (F10: 1992–1994, F12: 1994–1999,
F14: 1997–2003, F15: 2000–2007, F16: 2004–2009, and F18: 2010–2013) lacking on-board cali-
bration. To be comparable, the invariant region method [39] based intersatellite calibration
from Zhang et al. [32] are used. The NPP/VIIRS nighttime light monthly composite from the
NOAA/NGDC is available since 2012 (https://ngdc.noaa.gov/eog/index.html, accessed
on 3 July 2020) with a spatial resolution of 15 arc-seconds (0.5 km). Annual means are
calculated by averaging data from January to April and August to December (as summer
data are missing in the high latitudes of China). Both DMSP/OLS and NPP/VIIRS nighttime
light images are reprojected to the Albers Equal Area Conic projection. The NPP/VIIRS
nighttime light data was resampled according to the spatial resolution of DMSP/OLS
data (1 km × 1 km) by the nearest neighbor method. Geometric correction was applied to
DMSP/OLS data by manual interpretation comparing with the NPP/VIIRS data. ArcGIS
and ENVI software were used.

2.2. Background Noise Mask

Three background noise mask methods were selected for defining the upper/lower
limits to exclude background noise, gas, and fire cases (see Figure 2a–c): (a) an absolute

https://ngdc.noaa.gov/eog/index.html
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lower limit (0.3 × 10−9 W·cm−2·sr−1) and a relative upper limit (the city core) (referred as
T0.3 hereafter; see [24,30]; (b) an absolute lower limit (3 × 10−9 W·cm−2·sr−1) and a relative
upper limit (the city core) (referred as T3 hereafter; see [40]); and (c) the limits from the
NPP/VIIRS annual composite of 2015 (referred as T2015 hereafter; see [41,42]).

Figure 2. Results from three background noise mask methods for defining the upper/lower limits: (a) an absolute lower
limit (0.3 × 10−9 W·cm−2·sr−1) and a relative upper limit (the city core); (b) an absolute lower limit (3 × 10−9 W·cm−2·sr−1)
and a relative upper limit (the city core); and (c) the limits from the NPP/VIIRS annual composite of 2015. Addition-
ally, the corresponding sigmoid regression performance after applying the logarithmic (the middle row, d–f) and IHS
transformation (the bottom row, g–i) to the masked NPP/VIIRS data in 2013.

2.3. Data Assimilation

To obtain a consistent long nighttime light series, the approach developed by Zhao
et al. [30] (or Gibson et al. [43]) is employed: first, a logarithmic (or inverse hyperbolic
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sine (IHS)) transformation is performed to adjust the range of the NPP/VIIRS data to be
comparable with the DMSP/OLS data.

NPP/VIIRSNew = ln(NPP/VIIRS>T + 1)
or NPP/VIIRSNew = IHS(NPP/VIIRS>T)

= ln
(

NPP/VIIRS>T +
√

NPP/VIIRS2
>T + 1

) (1)

Here NPP/VIIRS>T (NPP/VIIRSNew) is the original (adjusted) NPP/VIIRS radiance
value; the constant 1 ensure data consistency with transformed NPP/VIIRS nighttime light
data greater than 0. T is the threshold for excluding background noise, gas, and fire cases.
Then, the overlapping data (2013) from DMSP/OLS and NPP/VIIRS were selected to fit
the coefficients a, b, c, and d for a sigmoid function comparison (see Figure 2).

f (x) = a +
b

1 + e−c(log NPP/VIIRSNew−d)
(2)

2.4. Threshold Setting for the Built-up Area

According to the method proposed by Small et al. [44] and Liu et al. [45], the optimal
threshold is determined in 2002, 2006, 2010, 2014, and 2018 when area from DMSP/OLS
and NPP/VIIRS nighttime light data closest to the area from the manual interpretation of
the Landsat images (see Figure 3a,b). A quadratic regression with R2 = 0.997 was applied to
set the threshold values for the remaining years (Figure 3d). The quadratic regression-based
threshold values of 2013 and 2017 were selected and tested with built-up areas from the
manual interpretation of the Landsat images (detailed accuracies see Section 3).

Figure 3. Cont.
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Figure 3. Geographical settings of (a1–a5) reference built-up areas from Landsat images, (b1–b5) corresponding nighttime
light based optimal built-up areas, and (c1–c5) built-up areas extracted by the same nighttime light threshold over Yangtze
River Delta. The optimum nighttime light threshold was determined according to (d) the non-linear fit of the threshold
values (DN) in 2002, 2006, 2010, 2014, and 2018, within which built-up areas from the nighttime light data were most similar
to the reference data in terms of the spatial area. Finally, (e) annual statistics of the built-up areas and averaged nighttime
light intensities over the Yangtze River Delta (calculated for 2001–2019).

2.5. Area Tendency and Light Intensity Tendency

To estimate the long-term urban agglomeration development, a linear regression
analysis (against year from yr = 1, 2, . . . n) was employed to determine x, the area tendency
and light intensity tendency from the time development on city scale and pixel scale.
The results are subjected to an F-test with all significance levels on the p-value < 0.05 level
(unless noted otherwise).

tendency(x) =
n ∗ ∑n

yr=1 yr ∗ xyr −
(

∑n
yr=1 yr

)(
∑n

yr=1 xyr

)
n ∗ ∑n

yr=1 yr2 −
(

∑n
yr=1 yr

)2 (3)

2.6. Hot and Cold Spot Analysis

The Getis-Ord Gi* statistic has been widely adopted to analyze biological habitat [46],
epidemic disease [47], and crime [48] to identify the significant spatial clusters of high
values (hot spots) and low values (cold spots), which characterize the intensity of the
geographic relation between observed data within a region. This functionality has been
included in the automatic output of the hot spot analysis (Getis-Ord Gi*) tool in ArcGIS
software [49], and is calculated as follows:

Gi∗i (Z)=
∑n

j=1 wi,jxj − X ∑n
j=1 wi,j

S

√ [
n ∑n

j=1 w2
i,j−

(
∑n

j=1 wi,j

)2
]

n−1

(4)

with wi,j =

{
1, distance to xj < 100 km or 3 km
0, distance to xj > 100 km or 3 km

and X = ∑n
j=1 xj/n and S =

√
∑n

j=1 x2
j /n −

(
X
)2.

Gi∗i (Z) is the Getis-Ord Gi* statistical z-score value for an administrative city or a pixel
i, which describes the spatial dependency of i on all the surrounding administrative cities or
pixels j. xj represents the magnitude of area tendency or light intensity tendency at location
j, and X is the averaged magnitude over all the cities or pixels n. wi,j is the spatial weight
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value between the administrative city or pixel i and j, whose value equals either 1 or 0
defined by the distance between i and j. In this study, distances of 100 km and 3 km were se-
lected for city scale and pixel scale, respectively. Clusters of high values (hot spots) and low
values (cold spots) passing the 90% confidence level were categorized from the long-term
tendencies of nighttime light intensity and area coverage. For a detailed method description
see [50] and https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-statistics-toolbox/
h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm (accessed on 11 January 2021).

2.7. Tendency Shift

Pettitt’s test is a non-parametric test for detecting the tendency shift in a time series [51].
Here it was applied to the time series of the built-up areas and nighttime light intensities
with the null hypothesis that there is no tendency shift or change-point in a time series.
The test statistic Kt,N and the associated probability P are given. Years in the time series
with P(t0) ≤ 0.05 were considered to be statistically significant change-points in a given
time series.

Kt,N = max
∣∣∣∑t

i=1 ∑N
j=t+1 sgn

(
xi − xj

)∣∣∣ , 1 ≤ t < N (5)

P(t0) = 2exp
{
−6K2

t,N/(N3 + N2)
}

(6)

where sgn
(

xi − xj
)
=


1, xi − xj > 0
0, xi − xj = 0

−1, xi − xj < 0
.

3. Results
3.1. Background Noise Mask and Data Assimilation

Areas of three background noise masks indicate T0.3 > T2015 > T3 for the Yangtze
River delta. Gibson [42] indicates that using the NPP/VIIRS annual composite for 2015
(T2015) as the background noise mask has the advantage of creating a like-with-like series
to link to DMSP/OLS (because the NPP/VIIRS annual composite was processed to the
same standard as the DMSP/OLS composite). However, when applying the sigmoid
regression after the logarithmic and IHS transformation to the masked NPP/VIIRS data in
2013 (Figure 2), the results indicate that ln(NPP/VIIRS > 0.3 + 1) performs with a higher
R2 value of 0.9697 (see Figure 2). Thus, the logarithmic transformation was used in the
following analysis.

3.2. Threshold Setting for the Built-Up Areas

The nighttime light based built-up areas and their thresholds in Suzhou from 2001
to 2019 were extracted with the methods presented in Section 2 based on the manual
interpretation of the Landsat images in 2002, 2006, 2010, 2014, and 2018 (see Figure 3).
Accuracy test between nighttime light based built-up areas and Landsat images interpreted
areas in the years 2013 and 2017 shows overall accuracies of 92.99% and 92.19% with
Kappa coefficients of 0.67 and 0.66, respectively. That is, the selected thresholds for built-up
regions extraction in the present study have credibility. Therefore, the spatiotemporal
evolution of the built-up regions in Yangtze River Delta is extracted based on the threshold
from Figure 3d. The following results are noticed (see also Figure 3e):

1) Nighttime light intensity thresholds for DMSP/OLS indicate a systematic shift from
1 per year between 2000 and 2012 (thresholds change from 44 to 57), while NPP/VIIRS
data are much more stable with the threshold value 58 after 2013. 2) Area expansion
(averaged nighttime light intensity) increased by four to five times from 5000 km2 in 2001
to 24,000 km2 in 2019 (from 5.18 in 2001 to 21.2 in 2019). 3) Two stage transforms from
moderate to fast developments of the built-up areas and the averaged nighttime light
intensity were divided around 2010, and further detailed explanations about the most
frequent shifted years with Pettitt’s test see Section 4.3.

https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-statistics-toolbox/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm
https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-statistics-toolbox/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm
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3.3. Accuracy Test with MODIS Data

Shi et al. [20] reported that for 12 Chinese cities, thresholds vary from 2.9 to
23.7 × 10−9W·cm−2·sr−1 (or DN from 22 to 61). Thus, a further accuracy test compar-
ing our threshold based built-up area with the urban built-up area from MODIS Land
Cover products (MODIS 12Q1, 500 m spatial resolution) in 2005, 2010, and 2015 (see
Table 1) was calculated, to test whether the threshold of Suzhou was representative for
deriving urban extent for all the cities over the Yangtze River Delta. The results show
overall accuracy reaching 97.56%, 97.29%, and 95.49% with Kappa coefficients of 0.66, 0.68,
and 0.65, respectively.

Table 1. Accuracy test comparing nighttime light based built-up area with the urban built-up area
from MODIS Land Cover products (MODIS 12Q1, 500 m spatial resolution) in 2005, 2010, and 2015.

2005 2010 2015

Overall accuracy (%) 97.56 97.29 95.49
Kappa coefficient 0.66 0.68 0.65

4. Analyses and Discussion

DMSP/OLS data F18 2010-2013 are considered problematic, because it records much
higher DN values than earlier DMSP/OLS satellites [52]. Results from splitting the data
into two decades (that is, 2001–2010 and 2011–2019) might be affected rather by differ-
ent sources of nighttime light data than by inherent urban and nighttime light change
tendencies. A sensitivity test, to exclude the possible lacking assurance from (1) satellite
differences, (2) sensor drawbacks, and (3) data assimilation, is designed by calculating
the original (excluding F18 and without data assimilation) area and/or nighttime light
intensity tendencies of the DMSP/OLS data in 2001–2009 versus the NPP/VIIRS data in
2012–2019 (also without F18 and data assimilation; Figure 4).

Figure 4. The original (excluding F18 and without data assimilation, in blue) versus employing data assimilation (see
Section 2, in yellow): (a) area and (b) nighttime light intensity tendencies of the DMSP/OLS data in 2001–2009 versus the
NPP/VIIRS data in 2012–2019.

In built-up area detection (Figure 4a), the possible drawbacks from satellite, sensor,
and data assimilation are excluded because, instead of using a constant nighttime light
threshold, the optimal thresholds are determined in 2002, 2006, 2010, 2014, and 2018 when
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area from DMSP/OLS and NPP/VIIRS nighttime light data were closest to the area from
the manual interpretation of the Landsat images. Accuracy tests in 2013 and 2017 with built-
up areas from the manual interpretation of the Landsat images show overall accuracies of
92.99% and 92.19% with Kappa coefficients of 0.67 and 0.66. In addition, the area tendency
ratios of NPP/VIIRS to DMSP/OLS with versus without data assimilation were similar
and about 3 (1504/481 km2/year = 3.12 versus 1623/460 km2/year = 3.52).

The NPP/VIIRS nighttime light intensity tendencies with/without data assimila-
tion are compared (2012–2019) and presented as a frequency (number density) distribu-
tion in Figure 4b. Despite regional deviations, the NPP/VIIRS light intensity tendencies
with/without data assimilation over the Yangtze river delta were almost linear. That is,
the possible drawbacks from satellite, sensor, and data assimilation show less sensitivity
in the following tendency analysis. Therefore, two periods (2001–2010 versus 2011–2019)
were analyzed over the Yangtze River Delta, with built-up area tendency on administrative
city scale (Section 4.1), nighttime light intensity tendency on pixel scale (Section 4.2), and in
spatiotemporal joint analysis combining tendencies of built-up area and nighttime light
intensity (Section 4.3).

4.1. Spatial Heterogeneity in the Administrative City Scale

The built-up areas in each city of Yangtze River Delta from 2001 to 2019 are extracted
with the threshold presented in Figure 3d. A linear regression is applied to the built-up
area time series of each city and the tendencies with significance p-value < 0.05 are used for
a further hot and cold spot analysis (Figure 5).

In the first period of 2001–2010 (Figure 5a), a rapidly increasing tendency of the
built-up area could be diagnosed as a scattered distribution center around the core city of
Shanghai, from a fast to a slow development Suzhou > Shanghai > Wuxi > Changzhou
with the associated tendency values 126.94 > 66.84 > 42.53 > 32.29 km2/year, respec-
tively. While cities far away from Shanghai like Anqing, Chizhou, and Xuanchen in the
Southern Anhui province, and Quzhou, Wenzhou, and Taizhou in the Southern Zhejiang
province show no significant increasing tendencies of built-up area. In the second period of
2011–2019 (Figure 5b), the rapidly increasing tendencies clustering the surrounding cities
into one metropolitan domain, which means that cities close to Shanghai and along the
costal line undergo a rapid built-up area expansion, with Ningbo > Suzhou > Hangzhou >
Shanghai revealing tendency values 121.81 > 109.05 > 91.86 > 87.69 km2/year. Inner land
cities with a relatively long distance to Shanghai show lower tendency values of urban
spatial expansion, that is Huangshan < Chizhou < Tongling < Huainan < Huaibei with the
tendency values 0.78 < 3.26 < 7.33 < 9.01 < 9.36 in Anhui Province. All the findings are
in agreement with “the Riverside Development Belt”, “the Shanghai-Hangzhou-Jinhua
development belt”, and “the coastal development belt” development plan (2015–2030) [53].

Hot spot and cold spot distributions for the two periods highlight the significant
spatial clusters of high area tendency values (hot spots) and low area tendency values
(cold spots). In the first period of 2001–2010 (Figure 5c), the hotspots of built-up area
tendencies are clustered around the core city Shanghai (as a concentration distribution),
surrounded by Suzhou, Wuxi, Changzhou, Nantong, and Jiaxing, which is consistent
with a previous study [54]. By contrast, in the second period of 2011–2019 (Figure 5d),
the hotspot areas were no longer clustered with the core city Shanghai but spreading to
the southern regions of the Yangtze River Delta. Hangzhou, Shaoxing, and Jinhua from
Zhejiang province replacing Wuxi and Changzhou bloom in terms of the built-up area.
That is the spatial form of integrated cities from several provinces (or urban agglomeration)
was noticed (see also Figure 5b and [55,56]). Cold spots locate on Bengbu, Chizhou,
and Huangshan, Anhui province, which may be related to floods, population exodus,
and low industrialization in Northern Anhui [57], and mountainous area limitation and
natural landscape protection (Huangshan National Forest Park) in Southern Anhui [58].
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Figure 5. Tendencies and hotspot detection in 2001–2010 and in 2011–2019 over the Yangtze River Delta: (a,b) linear
regression tendencies of the built-up area and (c,d) hotspot analyses from the linear regression tendency.

4.2. Temporal Heterogeneity in the Pixel Scale

As nighttime light intensity is closely related to electricity consumption, it has been
used as an indicator of the growth of built-up areas. The linear nighttime light intensity
tendencies of significance (p-value < 0.05) over Yangtze River Delta were calculated for a
further hot and cold spot analysis (Figure 6) and show the following results:

From the first to the second period, spatial heterogeneity of a “rapid to moderate”
and a “moderate to rapid” increasing tendency could be diagnosed. In the period of 2001–
2010 in Figure 6a (2011–2019 in Figure 6b), rapid (moderate) increasing tendencies of the
nighttime light intensity are concentrated as a cluster around Suzhou surrounded by Wuxi,
Jiaxing, Changzhou, and Shanghai, with averaged nighttime light intensity tendency values
of 2.50 > 2.15 >1.87 > 1.84 > 1.61 (1.04, 1.06, 1.78, 1.48, 0.94) per year. In contrast, inner cities
in Zhejiang province, Quzhou, Huzhou, Jinhua, and Zhoushan have been undergoing
a “moderate to rapid” transition increasing from 0.58, 0.92, 0.93, 1.23–1.80, 1.85, 1.80,
and 2.08 per year in terms of the averaged nighttime light intensity tendencies (2001–2010
versus 2011–2019). Similarly, inner cities in Anhui province, Chuzhou, Anqin, Lu’an,
and Bengbu have increased from 0.60, 0.68, 0.68, 0.69–1.74, 1.64, 1.84, and 1.62 per year.
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Hot spot and cold spot distributions for the two periods highlight the significant
spatial clusters of high nighttime light intensity tendency values (hot spots) and low night-
time light intensity tendency values (cold spots). Heterogeneity of a “hot to cold” and
a “cold to hot” spatial distribution could be diagnosed. In the first period of 2001–2010
(Figure 6c), the statistically significant hotspots of nighttime light intensity tendency are
mainly concentrated around Suzhou with a “Z”-shape distribution as mentioned in previ-
ous studies [56,59], surrounded by cold spots in its suburbs and the countryside. In contrast,
for the period of 2011–2019 (Figure 6d), the statistically significant cold spots of the night-
time light intensity tendency occupied the “Z”-shape, including Shanghai, Suzhou, Wuxi,
Changzhou, Hangzhou, and Ningbo.

Figure 6. Tendencies and hotspot detection in 2001–2010 and in 2011–2019 over the Yangtze River
Delta: (a,b) linear regression tendencies of the nighttime light intensity and (c,d) hotspot analyses
from the linear regression tendency.

4.3. Spatial-Temporal Joint Analysis

Two periods’ hot spot and cold spot analyses (2001–2010 versus 2011–2019) over the
Yangtze River Delta with built-up area tendency in administrative city scale (Section 4.1)
and nighttime light intensity tendency in pixel scale (Section 4.2) list cities with high and low
tendency values. To further diagnose (1) the tendency shift in the time series and (2) the total
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gross domestic product (GDP) associated spatiotemporal variability in the 41 administrative
cities over Yangtze River Delta. Pettitt’s test [51] is applied to the time series of the built-up
areas and nighttime light intensities, and then 41 administrative cities are categorized based
on local total gross domestic product, into fast-developing cities, moderate-developing
cities and slow-developing cities. Jenks Natural Breaks Classification Method [60] is applied
to make sure within category are more similar than the between category.

4.3.1. Tendency Shift Detection

In the urbanization process of southward development and several inner cities’ boom-
ing, 22 (29) cities undergo statistically significant tendency shifts in terms of the annual
built-up area (nighttime light intensity) (Figure 7). Years with statistically significant ten-
dency shifts occur most frequently in 2010: in total, 19/41 cities show the tendency shift
for built-up area (8/41 cities) or nighttime light intensity (13/41 cities). In the Yangtze
River Delta, the cities with statistically significant tendency shift belong to the hot spot
cities (see Figures 5d and 6d) are highlighted in bold (Figure 7a,b) emphasizing both a
southward and an inner cities’ development.

Figure 7. Cities in the Yangtze River Delta: Statistics of tendency shift of the years with significant (95%) confidence:
(a) built-up area change and (b) averaged nighttime light intensity change calculated by the Pettitt’s method; (c) related
histogram of the tendency shifted years and hotspot cities in 2011–2019 are highlighted in bold (see also Figures 5d and 6d).

4.3.2. GDP Associated Spatiotemporal Variability

Gross domestic product (GDP) is an indicator of economic activity, which closely
relates to the development level of a region and has a strong correlation with nighttime
light intensity [61]. Thus, fast-, moderate-, and slow-developing cities were categorized
according to the total GDP (2001–2018) of the 41 cities in Yangtze River Delta (Figure 8).
The normalized statistics provide the following information:
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Figure 8. Based on the total gross domestic product, cities in Yangtze River Delta are divided into three regions: (a) the fast-,
moderate-, and slow-developing cities. Statistics comparison over the three regions is calculated in terms of the tendencies
of the normalized area and the nighttime light intensity between (b) 2001–2010 and (c) 2011–2019.

(1) The fast-developing cities show an increase (decrease) of the built-up area (night-
time light intensity) tendency from the first to the second period, with 0.14–0.47 to 0.57–0.85
(0.40–0.77 to 0.08–0.47). (2) The moderate- and slow-developing cities increase both in
the built-up area and the nighttime light intensity tendency, with 0.03–0.08 to 0.29–0.51
and 0–0.06 to 0.08–0.19 in terms of built-up area tendency, 0.25–0.34 to 0.41–0.75 and 0.11–
0.21 to 0.40–0.67 in terms of nighttime time light intensity tendency. (3) Comparing fast-,
moderate-, and slow-developing cities in the first period, the increases of nighttime light
intensity tendency all exceed the increases of built-up area. In the second period, the
increases of the built-up area tendency in moderate- and slow-developing cities are still less
than the increases of the nighttime light intensity tendency. However, the increases of the
built-up area tendency in fast-developing cities overwhelm the increases of the nighttime
light intensity tendency due to the nighttime light saturation in the city cores and a fast
expansion to suburbs and countryside.

In summary, in the first period of their evolution, fast-developing cities were domi-
nated by increasing nighttime light intensity, while in their second period this increase was
shifted to an increase of the built-up area. The increases of the built-up area tendencies
were positively related to the GDP, showing fast > moderate > slow city development,
and the growth of built-up areas lagged behind the growth of light intensity. The “fast to
slow” transition of the nighttime light intensity tendency indicates whether the city core
was fully developed. In this sense, moderate- and slow-developing cities show potential
for a “fast to slow” conversion of the nighttime light intensity tendency in the future.

5. Conclusions

The global urbanization process, where human population, material demands of
production, human consumption, and urban waste discharge expand and become more
intense, has recently emerged as a sustainability challenge in an increasingly urbanized
world, particularly for more rapidly changing developing countries [62]. Nighttime light
signals derived from the Defense Meteorological Satellite Program’s Operational Line scan
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System (DMSP/OLS) first provide striking remotely sensed data to analyze spatiotemporal
changes in global urbanization processes [63]. Then, the Suomi National Polar orbiting
Partnership Visible Infrared Imaging Radiometer Suite (NPP/VIIRS) nighttime light data of
much higher quality than the nighttime light data from the DMSP/OLS are used to quantify
the relationship between night lighted areas and urbanization variables, including urban
expansion [22], population growth [64], electric power consumption [24], gross domestic
product [42], and socioeconomic parameters [23,25]. However, to our knowledge, few stud-
ies have been concerned with the data assimilation from DMSP/OLS (data before 2013)
to NPP/VIIRS (data after 2012) associated with a time changing threshold to define the
built-up areas, but which is necessary due to considerable inconsistencies, different spa-
tiotemporal quality, drawbacks of blooming effects and radiometric heterogeneities.

Thus, research on long-term changes of urbanization over rapidly changing Yangtze
River Delta may provide insights in diagnosing how long-time spatiotemporal hetero-
geneities of the urban evolution so as to provide insights in predicting a further urban
agglomeration on a regional and global scale. This study compares dynamics of urbaniza-
tion in 2001–2010 and 2011–2019 in the city unit scale and pixel unit scale, and the main
conclusions are as follows.

(1) Comparing the two periods of area expansion indicates a general increase of
the built-up areas in the second period of 2011–2019, and its geographical development
gradually moves southward in the Yangtze River Delta. The hierarchy of the urbanization
process of focusing on the core city is less obvious in the second period. Suzhou–Wuxi–
Changzhou, Hangzhou, Ningbo, Nanjing, and Hefei contribute a fast development in
the urban agglomeration, which is in agreement with the development plans for the
Yangtze River Delta (2015–2030) to construct a networked of spatial pattern distribution
characterized by “one mega, five circles and four belts” [53].

(2) The development transitions of a “rapid to moderate” and a “moderate to rapid”
and the “hot to cold” and a “cold to hot” distribution indicate a continuous urban expansion.
That is, regional development is first associated with a rapid increasing light intensity in
the core cities, until the saturation of the light intensity. Then the rapidly increasing light
intensity spills over, and thus accelerates the development of the surrounding suburbs and
countryside in terms of both built-up area and light intensity. Likewise, the development
of the surrounding suburbs and countryside appear to repeat this kind of development
process “rapid to moderate” or “hot to cold”, which spills over (once more) when the
nighttime light intensity saturated.

(3) The tendency shift of the built-up areas and nighttime light intensities for the
41 administrative cities over Yangtze River Delta occurs mainly in the year 2010, which in-
dicates a decade as a characteristic time scale of urban evolution. Thereafter, the urban
development characteristic has changed from a centralized pattern to a scattered distri-
bution and undergoes an urban agglomeration process. In the process, the development
time sequence is first the light intensity growth and then built-up area growth. In a de-
veloped (developing) city core, light intensity tendency is less (greater) than the built-up
area tendency.

In general, urbanization is one of the extreme processes in land use and land cover
change. Urbanization induced change of in surface parameters, including increased at-
mospheric greenhouse gas concentration, aerosol emissions, and land use and land cover
change, is a major component for the formation and evolution of urban climates [65–67].
It accounts for effects like the urban heat island [68,69], affecting not only local and regional
climates, but also water resources, air quality, human health, and biodiversity and ecosys-
tem functioning [70]. Thus, research on the long-time evolution process of global/regional
urbanization may provide insights in addressing the environmental problems arising from
long-term and rapid urbanization and strengthening global or regional sustainable urban
planning and management.
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