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Abstract: Remote sensing for precision agriculture has been strongly fostered by the launches of the
European Space Agency Sentinel-2 optical imaging constellation, enabling both academic and private
services for redirecting farmers towards a more productive and sustainable management of the
agroecosystems. As well as the freely and open access policy adopted by the European Space Agency
(ESA), software and tools are also available for data processing and deeper analysis. Nowadays, a
bottleneck in this valuable chain is represented by the difficulty in shadow identification of Sentinel-2
data that, for precision agriculture applications, results in a tedious problem. To overcome the issue,
we present a simplified tool, AgroShadow, to gain full advantage from Sentinel-2 products and solve
the trade-off between omission errors of Sen2Cor (the algorithm used by the ESA) and commission
errors of MAJA (the algorithm used by Centre National d’Etudes Spatiales/Deutsches Zentrum
für Luft- und Raumfahrt, CNES/DLR). AgroShadow was tested and compared against Sen2Cor
and MAJA in 33 Sentinel 2A-B scenes, covering the whole of 2020 and in 18 different scenarios of
the whole Italian country at farming scale. AgroShadow returned the lowest error and the highest
accuracy and F-score, while precision, recall, specificity, and false positive rates were always similar
to the best scores which alternately were returned by Sen2Cor or MAJA.

Keywords: shadow detection; precision agriculture; AgroShadow tool; Sentinel2; Sen2Cor; MAJA

1. Introduction

The Sentinel-2 Multi-Spectral Imager (MSI) instruments deliver a remarkable amount
of global data with high spatio–temporal resolution (10–20–60 m with a revisit time of
5 days in cloud-free conditions) and spectral sampling, essential for numerous operational
applications such as land monitoring and risk assessment [1].

Nowadays agriculture is strongly influenced by technology and the availability of reli-
able and high-quality data can optimize production, maximizing profits [2]. In particular,
agricultural systems can take advantage of information of Sentinel-2 data, detecting varia-
tions in soil properties and crop yield, and improving more sustainable cropping practices
(i.e., water management, manuring and fertilizer application) [3–6]. To these purposes,
however, a reliable detection and discrimination of clouds/cloud shadows is crucial, and
the availability of free and open access big data has prompted to people provide end users
with easy and ready to use products and tools to automate the processes of atmospheric
correction and cloud/cloud shadow masking [7–10].

Many discrimination methods and approaches were developed in the past years both
for low and high-resolution remote sensing images [11–13]. Some of them are focused on
shadows casted by ground features as building or trees (especially for high resolution im-
ages) [14,15], other on topographic shadows [16,17], lastly on clouds classification [18–21].
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Mostafa [12] and Shahtahmassebi et al. [22] did a review of several detection and de-
shadowing methods for all the three categories. Hollstein et al. [23] made a comparison
between several classification techniques based on machine learning, among which were
decision trees, Random Forest and Bayesian, whereas [24] developed the Spatial Proce-
dures for Automated Removal of Cloud and Shadow (SPARCS) using a Neural Network
approach.

Cloud shadow masking can be even more challenging. Shadows, in fact, can create
misleading reflectance signals, as they can be casted over surfaces of similar spectral
signatures (e.g., dark soils, wetlands, or burned vegetation) [24–26], or by thin clouds with
soft boundaries [23]. To date, most of the automatic cloud shadows classification tools are
based on geometry-identification methods [26–28] by thresholding of a single spectral band,
reflectance differences or ratio, or derived indices (e.g., Normalized Difference Vegetation
Index—NDVI or snow indices).

Different services have developed tools to process Level2 products for Sentinel-2,
including cloud/cloud shadow masks. Sen2Cor [29,30], provided by the European Space
Agency (ESA), and MAJA [31,32], provided by Theia Data Center, are two of the most
largely employed examples. The main difference among them is the single-date approach
used by Sen2Cor for cloud detection and the multi-temporal approach used by MAJA.
Algorithms performances of Sen2Cor and MAJA, together with Fmask [10–26], were
compared by [25,33,34], revealing a quite good overall accuracy. However, the evaluations
of omission/commission errors were conducted considering a complete scene or a portion
of a few km.

In this paper we present a novel tool for detecting cloud shadows from Sentinel-2
imagery at farming scale: the AgroShadow tool. The implementation of this tool is ex-
plained by the need for reducing misclassifications for precision farming applications over
different agroclimatic and orographic areas. Three main advantages make AgroShadow an
easy-to-use tool for shadow detection: (1) the tool is only based on the threshold method,
avoiding clouds’ location and solar geometry definitions; (2) the field scale requires low
computational efforts; (3) the tool provides a cloud shadow mask that can be integrated
into any other classifier.

The AgroShadow tool is primarily based on the modified-OPtical TRApezoid Model
(OPTRAM) soil moisture index [35], based on Short Wave InfraRed (SWIR-B12) band and
NDVI of Sentinel-2 MSI. To evaluate the robustness of the AgroShadow tool and to identify
environments where the shadow detection is eventually critical, we compared its perfor-
mance against manually classified areas, selected from Sentinel-2 scenes over different
geographic areas of Italy, with different shadow conditions and covering all seasons. We
also tested the accuracy of cloud shadow classifications at field scale made by Sen2Cor and
MAJA tools, to verify if they can be substantially improved by the AgroShadow tool.

2. Materials and Methods
2.1. Study Area and Data Retrieval

Eighteen locations were selected across the Italian territory (Figure 1), characterized
by different types of climatic conditions (from hot and dry to more humid areas) and by
morphology, including plains, hills and steep slopes.

To assess the effectiveness of the cloud shadow tool for agricultural applications, we
selected fields with different dimensions (among 30 and 200 ha). For each location (Table 1),
from 1 to 3 satellite imageries throughout 2020 were downloaded including several types
of cloud shadows (with soft/clear boundaries, related to thin clouds, low cumulus, etc.),
soil moisture, crops (cereals, rice, mixed crops, etc.), vegetation growing status, irrigation
practices (rainfed, irrigated, flooded) and different land covers.

Sentinel-2 imageries were downloaded both from the Copernicus Open Access Hub
(https://scihub.copernicus.eu/, accessed on 24 November 2020) and the Theia–Land Data
Center (https://theia.cnes.fr/, accessed on 26 November 2020).

https://scihub.copernicus.eu/
https://theia.cnes.fr/
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Figure 1. Study areas location (red dots) with samples of Sentinel2 scenes.

From the Copernicus Open Access Hub we selected the following Level-2A Bottom Of
Atmosphere (BOA) reflectance data and products: (i) 10m channels B4 and B8, representing,
respectively, the Red and Near InfraRed surface reflectance used to calculate NDVI; (ii)
20 m channel B12 (SWIR reflectance) used, together with the NDVI, for soil moisture
modeling and shadow mask; (iii) 10m True Color Image (TCI) composite, necessary to
manually identify shadows samples for the selected fields (Figure 2); (iv) 10m channel B2
(blue reflectance) and 20 m channel B11 (SWIR reflectance) used for discriminating soil
from water; (v) 20 m Scene CLassification (SCL) map to compare shadows identified by
our tool to those of Sen2Cor.

As additional comparison, we downloaded 20 m CLoud Mask (CLM) and MG2 files
from the Theia–Land Data Center.

Figure 2. AgroShadow classification rates. Numbers without brackets represent the pixels for each class; numbers in
brackets are the recall, in percentages. (a) The confusion matrix considers all the pixels, including areas to test bright land
covers (i.e., snow and concrete) and fields covered by light fog; (b) the matrix analyzes particular soil conditions, i.e., flooded
rice fields and foggy alluvial plains where AgroShadow makes more misclassifications. Colors refer to the probability of
true (blue)/false (red) prediction normalized by the total number of observations.
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Table 1. Main characteristics of the study areas and the number of scenes selected for each field. Land use classification is based on the European Space Agency-Climate Change Initiative
(ESA-CCI) Land Cover definition (MNV = Mosaic Natural Vegetation; CI = Cropland Irrigated; MC = Mosaic Cropland; CR = Cropland Rainfed; CBA = Consolidated bare areas). Height
AMSL = Height Above Mean Sea Level; DOY = Day-Of-Year; * for cloud scenes.

Study Areas Lat Lon Land Use Fields Info Height
AMSL Area N. of Scenes Tiles DOY

(m) (ha)

Sondrio 46.34 10.33 MNV Snow/Mountain 1590 5.46 1 T32TPS 77
Palmanova 45.85 13.26 CI Irrigated area/Plain 7 198.49 1 T33TUL 164 *

Brescia 45.5 10.18 CI Close to urban area/Plain 113 38.07 2 T32TNR 124 *, 184 *
Vercelli 45.34 8.3 CI Rice/Flooding/Plain 150 127.32 3 T32TMR 105, 165, 247 *
Vicenza 45.26 11.52 CI Alluvial plain 12 133.99 2 T32TPR 164 *, 299 *
Piacenza 45.07 10.03 CI Close to the river/Plain 35 120.52 2 T32TNQ 124 *, 189 *

Alessandria 44.79 8.84 CI Close to river/Plain/Test clear sky 178 61.36 1 T32TMQ 187
Bologna 44.58 11.35 CI Close to urban area/Plain 24 32.73 2 T32TPQ 194 *, 219 *
Ravenna 44.41 12.29 CI Close to river and sea 0 111.18 2 T32TQQ 164 *, 254 *
Pesaro 43.86 12.83 MC Close to industrial area/steep slope 49–140 29.88 2 T33TUJ 121 *,206 *

Grosseto 42.88 11.05 CR Dry land/surrounded by hills 11 101.96 2 T32TPN 239 *, 274 *
Tuscania 42.41 11.84 CR Smooth hill 167 33.53 3 T32TQN 164 *, 291 *, 296 *
Avezzano 42 13.57 MC Large endorheic lake/Plateau 651 113.94 1 T33TUG 96 *

Foggia 41.36 15.6 CR Dry land/Plain 88 79.11 1 T33TWF 128 *
Caserta 41.02 13.99 CR Plain 0 80.54 1 T33TVF 118 *

Oristano 40 8.57 CR Close to river/wet area/Plain 0 39.43 3 T32TMK 169 *, 247 *, 282 *
Cretto di Burri 37.79 12.97 CBA Land art/Slope/ Concrete 417 7.84 1 T33SUB 208

Enna 37.57 14.35 CR Hilly/Slope 435 24.36 3 T33SVB 118 *, 158 *, 218 *
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2.2. The AgroShadow Tool

The AgroShadow detection tool relies on the modified-OPTRAM model, implemented
for estimating soil water content [35]:

W =
idexp(sd × NDVI)− STR

idexp(sd × NDVI)− iwexp(sw × NDVI)
(1)

where W is soil moisture, STR is SWIR (band 12, Sentinel 2) Transformed Reflectance,
calculated as:

STR =
(1 − SWIR)2

2 × SWIR
(2)

and where id and sd, iw and sw are, respectively, the dry and wet edges parameters of
exponential function of the model, depending on the STR–NDVI pixel distribution.

The processing chain, launched on fields defined on-the-fly by users, includes a series
of checks based on thresholds on reflectance ratio and indices, and k-means classification
algorithm, essential to avoid misclassifications.

The adopted criteria consist of:

• a threshold of B2/B11 < 1.5, to discriminate soil from water pixels;
• a k-means for classifying soil moisture values;
• a classified value ≤0 is detected as cloud;
• a classified value ≥1 is stated as possible shadow, snow or flooded condition;
• a threshold of TCI > 200, to distinguish snow pixels from shadows and flooded

condition;
• a 5-pixel buffer neighbouring the detected area with a soil moisture threshold >0.6 is

stated as flooded condition;
• a 5-pixel buffer neighbouring the detected area with a soil moisture threshold ≤0.6 is

stated as shadow.

Pixels turning out to be shadow are classified as NoData and not displayed on the
map. These checks disentangle the shadows classification from their geometric relation
with clouds and sun position, allowing the processing and classification of small portions
of land.

2.3. Sen2Cor Classification

The SCL algorithm of the Sen2Cor tool [29,30] classifies pixels in 12 possible classes
(https://dragon3.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-2a/algorithm,
accessed on 10 February 2021): unclassified pixels (with cloud-low-probability), three types
of clouds (cloud—medium-probability, cloud—high-probability, thin cirrus), two types of shad-
ows (dark area and cloud shadow), snow, vegetation, not-vegetated, water, saturated or defective
pixels, no data (Table S5 of the Supplementary Materials). The algorithm consists of a
threshold-filtering method applied to the Top Of Atmosphere (TOA) reflectance of Level-
1C spectral bands, bands ratio, and indices. Once the clouds map is defined, the cloud
shadow mask is obtained integrating the “radiometric” identification of potential cloud
shadows from dark areas [36] by their spectral signatures and the “geometrically proba-
ble” cloud shadows defined by the final cloud mask, sun position and distribution of the
top-cloud height. Pixels are classified as “cloud shadow” after several steps of threshold
filtering.

2.4. MAJA Classification

The latest version of the MAJA tool for clouds and cloud shadows detection is based
on an update of the original Multi-Temporal Cloud Detection (MTCD) method described
by [32]. The MTCD method compares a reference composite image containing the most
recent cloud-free pixels with the latest image in order to identify, throughout thresholds
on several reflectance bands, possible cloudy pixels by an increase in reflectance in time.
If the time between the reference image and the last image to be processed is too long, a

https://dragon3.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-2a/algorithm
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mono-temporal cloud mask is also defined. A time correlation test of neighborhood pixels
is also made. The comparison is not performed at full resolution to reduce computational
time and avoid misclassifications. Once cloud mask is available, the same multi-temporal
and thresholds concepts were used to identify the darkening of pixels by cloud shadows.
The procedure generates a “geometric” and a “radiometric” cloud shadow mask, the
latter especially used to identify shadows casted by clouds outside the image. The final
clouds/cloud shadows classification mask (CLM), released by the Theia–Land Data Center
with 10–20 m resolutions, defines classes by a set of binary bits (https://labo.obs-mip.
fr/multitemp/sentinel-2/theias-sentinel-2-l2a-product-format/, accessed on 10 February
2021): all clouds except the thinnest and all shadows; all clouds (except the thinnest); clouds
detected via mono-temporal thresholds; clouds detected via multi-temporal thresholds;
thinnest clouds; cloud shadows cast by a detected cloud; cloud shadows cast by a cloud
outside image; high clouds detected by 1.38 µm (Table S3 of the Supplementary Materials).
The Theia–Land Data Center also distributes a “geophysical mask” (MG2) where the two
shadow classes of CLM are grouped in a single class and a topographic shadows class is
included (Table S4 of the Supplementary Materials).

3. Results and Discussion
3.1. AgroShadow Tool Validation

Validation of the AgroShadow tool consists of comparing shadow-masked areas
identified by our tool with reference shadow polygons visually recognized on TCI band
composition, both for each area and date.

The performance of the shadow mask methodology is evaluated throughout confusion
matrices. A first check (Figure 2a) is made for the shadow/no shadow classifier, additionally
considering the pixels of other classes that can induce misclassifications due to fog or used
as test-sites for bright land covers (i.e., concrete and snow).

The rate of classification for each class concerning the other classes shows very good
values (Table 2). The true positive rate of the no shadow correctly predicted pixels has a
recall of 98.82%, with most misclassifications occurring between no shadow and shadow
classes and for crop fields coated by light fog (false positives), which is not recognized (see
Avezzano (FOG)—T33TUG field, on 5 April 2020 in the Supplementary Materials, p. 13).
The shadow predicted pixels have a true positive rate recall of 70.49%, with omission errors
(false negative) referred to the no shadow class slightly higher than the commission errors
(false positive).

In Figure 2b the multiclass confusion matrix includes particular conditions over
vegetated areas, i.e., flooded rice fields and foggy alluvial plains. In this case, also, the true
positive rate is good, with a recall of 89.01% for vegetated pixels. Misclassification between
shadow and vegetated classes has an omission error higher than the commission error. The
false positive rate for incorrectly classified pixels in the shadow class is due to the particular
soil condition. In fact, the field is a rice paddy with a rotation flooding system. Before
the seeding, when the bare soil of a parcel is flooded turning its color from light to dark
brown, this creates a sharp contrast with the nearer parcels that is wrongly confused with
a shadow (see Vercelli—T32TMR field, on 14 April 2020 in the Supplementary Materials,
p. 20).

Table 2. AgroShadow classification metrics for shadow/no shadow, fog, snow and concrete classes.

Classes Error Accuracy Precision Recall Specificity False Positive Rate F Score

Shadow 0.051 0.949 0.908 0.705 0.988 0.012 0.794
Snow 0.000 1.000 1.000 0.878 1.000 0.000 0.935

Concrete 0.000 1.000 1.000 1.000 1.000 0.000 1.000
Fog 0.014 0.986 0.000 0.000 1.000 0.000 0.000

No Shadow 0.065 0.935 0.938 0.988 0.649 0.351 0.962

https://labo.obs-mip.fr/multitemp/sentinel-2/theias-sentinel-2-l2a-product-format/
https://labo.obs-mip.fr/multitemp/sentinel-2/theias-sentinel-2-l2a-product-format/
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3.2. Comparison with Sen2Cor and MAJA Tools

The comparison between the performances of AgroShadow, Sen2Cor and MAJA
shadow masking methods is made through binary shadow/no shadow confusion matrices
(Figure 3). Compared to the other tools, regarding on the whole shadow and no shadow
classes, the AgroShadow rate of classification is extremely good, even if the true positive
rate of shadow class of MAJA-CLM and no shadow class of Sen2Cor have higher recalls.
Additionally, analyzing the overall commission/omission errors, the AgroShadow tool
generally shows lower values than the other tools (Figure 3).

In particular, even though MAJA-CLM is able to detect almost all shadow pixels,
with a recall of 97.97%, its false positives (red box of Figure 3c) are clearly higher than
AgroShadow misclassifications (upper-right pink box of Figure 3a), especially for particular
soil conditions, such as flooded rice fields and alluvial plains (Supplementary Materials,
Table S2). This high commission error is due to the lower resolution of the classification
process [30] and a misinterpretation of areas with a sharp reflectance decrease due to a
sudden or strong modification in soil moisture or crop management. On the contrary,
Sen2Cor (darker pink box of Figure 3b) misses more shadow pixels (lower-left pink box of
Figure 3a), most of them wrongly classified as vegetation, dark area (representing topographic
shadows) or unclassified (Supplementary Materials, Table S1). Finally, MAJA-MG2 is the
tool with an overall quite high shadow misclassification (Figure 3d).

Figure 3. Confusion matrices of shadow/no shadow binary classification for AgroShadow, Sen2Cor and MAJA tools, excluding
snow and concrete test areas and foggy fields. Numbers without brackets represent the pixels for each class; numbers in
brackets are the recall, in percentages. (a) Confusion matrix of AgroShadow classification; (b) confusion matrix of Sen2Cor
classification; (c) confusion matrix of MAJA-CLM classification; (d) confusion matrix of MAJA-MG2 classification. Colors
refer to the probability of true (blue)/false (red) prediction normalized by the total number of observations.
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Metrics of shadow classifiers (Table 3) confirm the validity of the AgroShadow tool
for applications at farming scale, strongly reducing the loss of information, which is
essential for precision farming practices. The precision, recall, specificity, and false positive
rates are very good, with values quite similar to the best scores; the error has the lower
value, and accuracy and F score are the highest. Even the number of completely missed
classifications is contained, as for MAJA-CLM. Additional results are reported in Tables
S1 and S2 of the Supplementary Materials. Table S1 compares false negative (missing
shadows) classifications of the three tools based on nine Sen2Cor classes, whereas Table
S2 is focused on the correct/incorrect classification of four scenes related to particular
conditions: fog, snow, concrete and a rice-alluvial plain.

Table 3. Comparison between classification metrics of AgroShadow, Sen2Cor and MAJA shadow classes for all the scenes
(bold numbers indicate the best metrics, underlined numbers are values quite near to the best metrics). CLM = clouds/cloud
shadows classification mask; MG2 = geophysical mask.

Tools Error Accuracy Precision Recall Specificity False Positive
Rate F Score N◦ of Missed

Scenes

AgroShadow 0.054 0.946 0.908 0.705 0.988 0.012 0.794 3
Sen2Cor 0.107 0.893 0.915 0.301 0.995 0.005 0.454 11

MAJA-CLM 0.354 0.646 0.291 0.980 0.589 0.411 0.448 3
MAJA-MG2 0.180 0.820 0.416 0.555 0.866 0.134 0.475 12

To visually explain differences among the three classification tools, in the Supple-
mentary Materials we provide some TCI reference images, and the corresponding fields
classified by the AgroShadow, Sen2Cor and MAJA tools.

As recently highlighted by [25,33], our findings confirm a poor performance of
Sen2Cor in identifying cloudy/shadowed observations, with a high rate of underesti-
mations and the highest number of missed scenes (i.e., 11 wrongly identified as clear
scenes, Table 3). Likewise, our analysis shows that the multi-temporal cloud mask enables
MAJA to perform better than Sen2Cor, but with high commission errors (shadow overesti-
mation). Considering the aim of our study for precision agriculture applications, the risk
is including images erroneously classified as no shadow/clear sky (Sen2Cor) or skipping
many containing usable information (MAJA). AgroShadow has the added value of reduc-
ing both the high omission errors that characterize Sen2Cor and the high commission errors
of MAJA, in a sort of reduction in the weaknesses of the two state-of-the-art tools, while
preserving and improving their strengths. This result also prevents the computational
effort required by the implementation of multiple algorithms in a sort of ensemble tool,
as suggested by [33] for cloud detection, by [37,38] for different remote sensing applica-
tions, or by [39] that integrate spectral, temporal and spatial information in a three-step
cloud/shadow detection. In addition, the AgroShadow tool classifies shadows without
clouds’ location, only being based on the threshold method, thus avoiding propagation
errors due to cloud misclassification. It should be noted that we chose to evaluate the
algorithms in areas that show a high interest in terms of agricultural activity without any
limitation or preference in terms of disagreement between the three tools and "visual truth".
Furthermore, the pool of selected study areas includes combinations of different land use,
simple or more complex orography and proximity to rivers or the sea, clear sky, any kind
of clouds and shadows (shape and dimensions) which make this comparison as complete
as possible for correct use and replicability over a broad range of scenarios.

This study contains only a limitation with regard to the modified-OPTRAM soil
moisture index. Indeed, this model may require calibration for areas with climatic and mor-
phologic conditions that differ from those used for its implementation (i.e., Mediterranean
environment, flat-hills and plateau areas, rainfed and irrigated crops) [35].
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4. Conclusions

Current methods for the classification of cloud shadow rely on geometry-identification
methods by thresholding of the single spectral band, reflectance differences or ratios,
or derived indices with a single or multiple-date approach and have shown obvious
deficiencies in terms of shadow identification, especially at finer scales.

To eliminate such deficiencies, this paper introduces a new tool—AgroShadow—based
on two thresholds (B2/B12 and RGB) model for soil moisture retrieval and its classification
capable of handling and identifying any kind of shadows dimension, orientation and shape.
Comprehensive tests demonstrate the full capacity of the proposed tool in dealing with
different types of scenarios, such as land use, orography, soil and crop conditions with a
substantial benefit in Precision Agriculture applications. The results of approximately 0.8
in terms of F-score and error of 0.054 indicate the superior capability to classify shadows
of the AgroShadow tool, while the precision, recall, specificity, and false positive rates are
always similar to the best scores obtained with Sen2Cor and MAJA.

AgroShadow is a simplified tool able to create ready-to-use Sentinel-2 data and can be
easily integrated in any image processing chain, thus facilitating interoperability.

However, the proposed method is strictly linked to the OPTRAM model for the soil
moisture estimations: it is essential to achieve a correct OPTRAM calibration to avoid
shadow misclassification. Furthermore, our tool may fail over bare soil flooded areas
surrounded by dry bare soils.

Our planned future work will consist of overcoming this issue and testing AgroShadow
in environments with climate and soil conditions different from Mediterranean ones.

Supplementary Materials: Sen2Cor and MAJA tools are available online at https://www.mdpi.
com/2072-4292/13/6/1219/s1. Additional information concerning comparison among AgroShadow,
Sen2Cor and MAJA tools and examples of TCI reference images and shadow classifications achieved
by AgroShadow.
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