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Abstract: In this paper, we propose a new discriminative dictionary learning method based on
Riemann geometric perception for polarimetric synthetic aperture radar (PolSAR) image classification.
We made an optimization model for geometry-aware discrimination dictionary learning in which
the dictionary learning (GADDL) is generalized from Euclidian space to Riemannian manifolds,
and dictionary atoms are composed of manifold data. An efficient optimization algorithm based
on an alternating direction multiplier method was developed to solve the model. Experiments
were implemented on three public datasets: Flevoland-1989, San Francisco and Flevoland-1991.
The experimental results show that the proposed method learned a discriminative dictionary with
accuracies better those of comparative methods. The convergence of the model and the robustness of
the initial dictionary were also verified through experiments.

Keywords: PolSAR image classification; Riemannian sparse coding; discriminative dictionary learn-
ing; joint training

1. Introduction

Polarimetric synthetic aperture radar (PolSAR) is a powerful tool in remote sens-
ing, which transmits and receives electromagnetic waves in different states. Unlike 2D
images, SAR complex images containing four polarized matrices could provide more
detailed information using different polarimetric channels. Due to increasing demands of
disaster assessment, field interpretation, and environmental monitoring, PolSAR image
classification attracts more and more attention, in which the core problem is the feature
representation of PolSAR images.

Until now, the representation of PolSAR images has still been challenging. The po-
larimetric decomposition methods [1–3], the informative signature methods [4–9], the
dimensional reduction methods [10–13] and the sparse representation methods [14–18]
are four ways to represent PoISAR images. Generally, the decomposition methods could
not represent the original data perfectly because some information is lost while decom-
posing, and the classification performance is not desired. The polarimetric SAR response
contains three real and three complex parameters, and signatures contain the inherent
characteristics of PolSAR data. As the informative signatures are correlated with each
other, these informative signature methods result in the curse of dimensionality and the
high computational complexity of classifiers. Moreover, the existing dimensional reduction
methods are pixel-wise, which neglects the structure of PolSAR images.

Recently, inspired by the success of sparse representation in image classifications and
image restoration, sparse representation has been used for PolSAR image classification, and
sparse representation has achieved promising results [15,16] in Euclidean space. The classical
descriptors of polarimetric SAR, covariance and coherency matrices, are of Hermitian semidef-
inite and form a Riemannian manifold. These sparse representation-based methods [17,18]
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implement sparse representations of PolSAR images under a Riemannian manifold, and then
train a classifier to achieve superior classification results. Admittedly, these results show that
the Riemannian manifold is a better representation space for PolSAR images.

However, the limitations of the above-mentioned sparse representation methods are
three-fold: (1) they are implemented on vector-valued data; (2) the Riemannian structure is
neglected; (3) the classification model is not jointly optimized—that is, sparse representation
is separated from the classification.

In order to solve the problems, in this paper, we propose the geometry-aware discrim-
inative dictionary learning method (GADDL). In contrast to the existing vector-valued
sparse representation method, we made a tensor-valued dictionary with which the data in
the form of symmetric positive definite (SPD) matrices are represented as sparse conic com-
binations of SPD atoms. Moreover, we made a joint optimization model which unifies the
sparse representation and classifier. Concretely, in order to avoid losing implicit informa-
tion caused by extracting features from a Hermitian positive definite (HPD) matrix, each of
the dictionary atoms is described as an HPD matrix directly. Considering that conventional
Euclidean metrics are not suitable for a Riemannian manifold, various divergences and
metrics are implemented. In fact, this framework is robust in classifying different types
of land cover, and gives perfect performance in all experiments. We highlight the main
contributions of this paper as follows:

(1) We propose a novel geometry-aware discriminative dictionary learning framework
for PolSAR image classification. Each data point is represented as a nonnegative linear
combination of HPD atoms from the learned dictionary with a large margin of constraint,
such that the coding coefficient for the original data point is characterized by encoding the
category information and intrinsic Riemannian geometry information.

(2) We present an efficient optimization algorithm to solve the proposed model. All
the variables, including the atoms of the HPD dictionary, the coding coefficients and the
large margin hyperplanes, can be jointly training in a unified framework.

(3) We conducted the extensive evaluation of our method on two challenging datasets,
where significant improvements over state-of-the-art PolSAR classification methods
were achieved.

2. Related Work

Many methods represent PolSAR images, divided into four classes: the polarimetric
decomposition methods, the informative signature methods, the dimensional reduction
methods, and the sparse representation methods.

Polarimetric decomposition method. The polarimetric decomposition methods use
different polarimetric decomposition methods with a physical scattering mechanism such as
statistical, scattering, texture, spatial, and color information. Cloude–Pottier [1] employed a
three-level Bernoulli statistical model to generate estimates of the average target scattering
matrix parameters from the data. Yamaguchi [2] extended the three-component decomposi-
tion method introduced by Freeman and Durden [3] to a four-component decomposition
method dealing with a general scattering case, such as surface scattering, double-bounce
scattering, volume scattering, and helix scattering from objects. Hence, the target’s structure
information can be deduced as the sum of all four scattering components. However, the
existing decomposition methods could not represent the original data perfectly because some
information is lost while decomposing, and the classification performance is not desired.

Informative signature method. Informative signatures are used in supervised PolSAR
image classification and are selected by different classifiers, such as neural networks [4],
SVMs [5–7], Adaboost [8] and random forest [9]. For each pixel, the polarimetric SAR
response contains three real and three complex parameters, and signatures contain the
inherent characteristics of PolSAR data. As the informative signatures are correlated with
each other, these methods result in the curse of dimensionality and the high computational
complexity of classifiers.
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Dimensional reduction method. A dimensional reduction is a popular tool in PolSAR
image classification. PCA and independent component analysis are implemented on the
high-dimension polarimetric data for dimension reduction to form the feature vectors [10–12].
Laplacian eigenmaps are used to process the, and nonlinear dimensionality reduction in [13].
The existing dimensional reduction methods are pixel-wise, which neglects the structure of
PolSAR images.

Sparse representation method. Sparse representation is used for PolSAR image
classification and sparse representation has achieved promising results. He et al. [14] firstly
employed a sparse coding algorithm to transform the features extracted from the wavelet
domain as the sparse representation vectors for classification. Zhang et al. [15] combined
the multi-dictionary algorithm with the simplified matching pursuit (SMP) algorithm to
simplify the procedure and achieved higher accuracy. Xie et al. [16] applied the D-KSVD
algorithm under the non-subsampled contourlet transform (NSCT)-domain to obtain
more useful information. However, PolSAR image classification is a high-dimensional,
nonlinear mapping problem. The sparse representation with the Euclidean distance does
not favor this problem, because the classical descriptors of polarimetric SAR, covariance,
and coherency matrices are of Hermitian semidefinite and form a Riemannian manifold.
Some non-Euclidean distance is combined with sparse representation. Fan et al. [17]
proposed a Stein-sparse, representation-based classification method, which employed a
Stein kernel on a Riemannian manifold instead of Euclidean metrics in sparse representation
among different frequency bands. Zhong et al. [18] implemented the sparse coding on
covariance matrices under the circumstances of the Riemannian manifold. The dictionary
atoms were formed by k-means, and SVM was learned for class prediction.

Differently from the above methods, we propose a novel, geometry-aware discrimi-
native dictionary learning framework under the Riemannian metric and a joint-training
method for PolSAR image classification. This method directly extracts features from the
HPD matrix in Riemannian space, which can avoid losing implicit information. The pre-
sented optimization algorithm can solve the proposed model in which the atoms of the HPD
dictionary, the coding coefficients, and the large margin hyperplanes can be jointly trained.

3. Preliminaries
3.1. PolSAR Coherence Matrices

Compared to single-polarization SAR, the fully PolSAR transmit and receive electro-
magnetic waves in different states, whose signals consist of the amplitude and phase, form
a complex matrix instead of a simple value. Therefore, each resolution cell of the PolSAR
image can be described as a complex scattering matrix S.

S =

[
SHH SHV
SVH SVV

]
. (1)

Consider the reciprocal backscattering SVH = SHV ; the Pauli scattering vector of the
polarization matrix is expressed as:

k =
[SHH + SVV , SVV + SHH , 2SHV ]

T
√

2
, (2)

where the superscript T denotes the matrix transpose.
In general, the scattering properties of complex targets are determined by different

independent sub-scatterers with their interactions, and the spatial speckle must be used
to reduce the inherent speckle in the SAR data. Therefore, for a complex target, such as
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a multi-look PolSAR image, the scattering properties used to be described as statistical
coherence matrix T, which is a 3× 3 nonnegative definite Hermitian matrix.

T = 1
N

N
∑

i=1
kk∗T =

 〈
|A|2

〉
〈AB∗〉 〈AC∗〉

〈A∗B〉
〈
|B|2

〉
〈BC∗〉

〈A∗C〉 〈B∗C〉
〈
|C|2

〉
 =

 T11 T12 T13
T21 T22 T23
T31 T32 T31

 , (3)

where A = SHH + SVV , B = SHH − SVV and C = 2SHV . < · > denotes the ensemble
average in the data processing, N is the number of looks, the superscript ∗ denotes complex
conjugation, and T denotes transpose operation of vector or matrix.

3.2. Discriminative Dictionary Learning

Assume that x ∈ Rm is an m dimensional vector with class label y ∈ {1, 2, ..., C},
where C denotes the number of classes. The training set with n samples is denoted as
X = [x1, x2, ..., xn] ∈ Rm×n, and it also can be denoted as X = [X1, X2, ..., XC], where Xc
is the subset of nc training samples of class c. We can denote the learned dictionary as
D = [d1, d2, ..., dK] ∈ Rm×K, in which di represents the atom. Let Z = [z1, z2, ..., zn] denote
the coding vector of X over dictionary D; then a general discriminative dictionary learning
(DDL) model can be formulated as:

〈D, Z〉 = arg min
D,Z

R(X, D, Z) + λ1‖Z‖p
p + λ2L(Z) , (4)

where R(X, D, Z) is the reconstruction term, and L(Z) denotes the discrimination term for Z.
p is the parameter of the lp − norm regularizer. λ1 and λ2 are the trade-off parameters. By
using a single dictionary shared among all classes, we can further get the following model:

〈D, Z〉 = arg min
D,Z

‖X− DZ‖2
F + λ1‖Z‖p

p + λ2L(Z) . (5)

Intuitively, the discrimination can be induced by using a large margin criterion. In
this case, we introduce a discriminant function S(z, y) ∈ R that measures the correctness of
the association between coding vector z and class label y. Then, the general large margin
discriminant term can be described as:

L(Z, y, S) = min{R(S(z, y)) + θ
n
∑

i=1
ξi},

s.t. 1−
(

S(zi, yi)− Ŝ(zi, yi)
)
≤ ξi, i = 1, ..., n; ξi ≥ 0, i = 1, ..., n ,

(6)

where Ŝ(zi, yi)
∆
= maxy∈Y\{yi}S(zi, yi), which means, for each coding pattern zi, we want to

make sure that S(zi, yi) of the correct association is greater than all the scores S(zi, y) of the
incorrect associations, where y 6= yi. R(S) is a regularization term to constraint the complexity
of function S. The slack variables ξi, following the standard SVM derivation, are introduced to
account for the potential violation of the constraints. Recently, the SVGDL [19] was introduced
as a special case of general large margin DDL. By setting S(zi, yi) = yi(ω

Tzi + b), Ŝ(zi, yi) = 0
and R(S) = ‖ω‖2

2, the discrimination term of two-class classification problem becomes:

L(Z, y, ω, b) = min‖ω‖2
2 + θ

n

∑
i=1

max
(

0, 1− yi(ω
Tzi + b)

)
. (7)

For multi-class classification, SVGDL simply adopts the one-vs-all strategy by learning
C hyperplanes W = [w1, w2, ..., wC] and corresponding biases b = [b1, b2, ..., bC]. We can
formulate SVGDL as:

〈D, Z, W, b〉 = arg min
D,Z,W,b

‖X− DZ‖2
F + λ1‖Z‖p

p + λ2

C

∑
c=1

L(Z, yc, ωc, bc) , (8)
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where yc = [yc
1, yc

2, ..., yc
n], yc

i = 1 if yi = c, or yc
i = −1. || · ||F is the Frobenius norm.

3.3. Sparse Coding on Riemannian Manifold

There are some internal relations between elements in the HPD matrices, which may
be dropped in the case of extracting features by decomposing the original data directly. Al-
though these symmetric positive definite matrices form an open subset of Euclidean space,
it is much easier to capture the internal logic while observing in the Riemannian manifold.
Chetat et al. [20] extended the dictionary learning and sparse coding to the Riemannian
space where the representation loss is computed via the affine invariant Riemannian
metric (AIRM).

For a dataset X = {X1, X2, · · ·, Xn}, where Xi is a HPD matrix, assume that we
obtain the third-order tensor dictionary B = {B1, B2, · · ·, Bm}; the goal is to find a list of
nonnegative vectors A = {α1, α2, · · ·, αn}, which makes each Xi approximate to Bαi under
the AIRM. Thus, the sparse coding problem can be described as:

min
B,A

d2
R(X ,BA) + ‖A‖+ ‖B‖ , (9)

where d2
R(∗) is the geodesic distance, given by dR(X, Y) =

∥∥∥Log(X−
1
2 YX−

1
2 )
∥∥∥

F
.

In [20], the convex constraint of objective function can be described as:

A := {αi|Bαi≺Xi, and αi ≥ 0} . (10)

4. Proposed Method

In contrast to most methods which extract many features via various decomposed
functions and further reduce their dimensions, we only implement the original coherent
matrix without any preprocessing, except speckle filters. Then, we cluster the initial
geometry-aware dictionary of each category under the Riemannian metric instead of
Euclidean metric, which retains vital discriminative information as much as possible.
Moreover, we merge these initial dictionaries to form a discriminative dictionary. Finally,
we propose a joint optimization strategy to optimize the discriminative dictionary learning
and classifier training alternately. The framework is shown in Figure 1. Different from
other methods that generate the dictionary only once and then optimize the classification
model, the proposed joint optimization method can make the dictionary more robust and
suitable to the current classification task. In the following, we derive our optimization
equation and the details to solve the equation.

Sea

Buildings
Grass

Mountain

C
la

ssifier tra
in

in
g Discriminative 

Dictionary

Cluster

Cluster

Initial dictionary

Initial dictionary

Figure 1. The framework of our method in the training phase.
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4.1. Riemannian Discriminative Dictionary Learning for PolSAR Data

The existing dictionary learning approaches usually apply only to vector data in
Euclidean space. However, the typical representations of PolSAR data are HPD covariance
matrices, which forms an open subset of space Hd of d × d Hermitian matrices. Since
the PolSAR data are sampled from the Riemannian manifold instead of Euclidean space,
the proposed method extends DDL into Riemannian DDL in the following two ways
to accommodate PolSAR data. Firstly, the PolSAR data could be kept in matrix form,
avoiding losing information when treating them as vectors. Secondly, instead of direct use
of Euclidean distance, HPD matrices are usually found to be inferior in performance. The
intrinsic Riemannian distance corresponds to a geodesic distance on the manifold of HPD
matrices. The intrinsic Riemannian distance is a more reasonable similarity measure and
can be introduced to reformulate the reconstruction term in Equation (4).

Let X = {X1, X2, ..., XN} denote a set of N HPD data matrices, where Xi ∈ Hd
+. Let

Md
n be the product manifold achieved by the Cartesian product of n HPD manifolds—i.e.,

Md
n = Hd

+ × n ⊂ Rd×d×n. Given the labels yi ∈ {1, 2, ..., C}(i = 1, ..., N) of the training
set X , the proposed model aims to learn a third-order tensor (dictionary) B ∈ Md

n. Each
frontal slice of B denotes a HPD dictionary atom Bj ∈ Hd

+(j = 1, ..., M), and we represent
each Xi approximately by a conic combination of atoms in B, i.e., Xi ≈ Bzi, where zi ∈ Rm

+

and Bz ∆
=

M
∑

j=1
Bjz

j
i . For a M−dimensional vector zi, zj

i denotes the j−th dimension of zi.

Based on that notation, the objective function of Riemannian discriminative dictionary
learning (RDDL) for HPD data can be defined as:

min
B,W,Z,b

1
2

N
∑

i=1
d2

R(Xi,Bzi) + λ1‖Z‖p
p + λ2

C
∑

c=1
L(Z, yc, ωc, bc) + λ3Ω(B) , (11)

where the function Ω(·) represents the regularizer on the dictionary tensor. Here, we

use the trace regularization, i.e., Ω(B) =
M
∑

i=1
Tr(Bi), as it is simpler and performs well

empirically. The geodesic distance d2
R(X, Y) is referred to as the affine invariant Riemannian

metric, which has been proven to be invariant to affine transformations of the input
matrices. With this objective function, the proposed method can not only effectively
capture the Riemannian geometric structure of the HPD manifold, but also properly
encodes the support vector-induced, large margin discriminative information into the
learned dictionary to guide the classification better.

4.2. Model Optimization

The solution of our model can be summarized in two key steps: Riemannian discrimi-
native dictionary learning and classifier training. Two steps can be trained in a joint way in
an iterative manner.

4.2.1. Discriminative Dictionary Learning

In contrast to the vectorial DDL formulations in Equation (8), for which the subprob-
lems are convex with respect to each variable, the RDDL model in Equation (11) is neither
a jointly convex problem nor separately convex for its subproblems. Hence, we adopt an
alternative minimization scheme for updating B, Z, and 〈W, b〉 respectively. The detailed
optimization procedure can be partitioned into three steps alternatively.

Optimize Z: When B and 〈W, b〉 are all fixed, for a given data matrix Xi ∈ Hd
+, the

minimization of Z can be formulated as the following subproblem:

min
zj≥0

Θ(zj)
∆
= 1

2 d2
R
(
Xj, Bzj

)
+ λ1

∥∥zj
∥∥p

p + λ2
C
∑

c=1
L
(

zj, yc
j , ωc, bc

)
= 1

2

∥∥∥∥Log
M
∑

i=1
zi

jX
− 1

2
j BiX

− 1
2

j

∥∥∥∥2

F
+ λ1

∥∥zj
∥∥p

p + λ2
C
∑

c=1
L
(

zj, yc
j , ωc, bc

)
.

(12)
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For class c, if yc
i (w

T
c zi + bc)− 1 > 0 in the previous iteration, we use

∥∥yc
i (w

T
c zi + bc)− 1

∥∥
2

to approximate the hinge loss L(zj, yc
j , wc, bc) defined in Equation (7). We also can set the

hinge loss to zero directly due to its computational simplicity and the better smooth property.

Lemma 1 ([20]). Let B, C and X be fixed SPD matrices. Consider the function f (x) = d2
R(xB +

C, X). The derivative f ′(x) is given by f ′(x) = 2Tr(log(S(xB + C)S)S−1(xB + C)−1BS),
where S ≡ X−

1
2 .

According to the Lemma 1, we can derive the partial derivative of Θ(zj) with regard
to zi

j as follows:

∇zi
j
Θ(zj) = Tr(Log(Sj(Bzj)Sj))(Sj(Bzj)Si)

−1 + λ1 p + 2λ2β jyc
j ω

i
c , (13)

where β j = yc
i (w

T
c zi + bc)− 1.

Given the above derivative, the subproblem Equation (12) can be efficiently solved by
using the spectral projected gradient (SPG) method, which is described in detail in [21]. An
important issue of the proposed model is that the choice of l1 norm or l2 norm regularizes the
coding vector z. It is a common way for the existing dictionary learning method to take the
sparsity as a primary principle for learning a discriminative dictionary. Nevertheless, in the
experiments, we grant a l2 norm regularizer.

We repeat Equation (12) until convergence in order that the optimization of each zi
has a closed-form solution. From Figure 2a, the eigenvalue of Equation (11) becomes lower
with iterations, and the curve approximates to parallel to the c-axis after updating z nearly
500 times.
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Figure 2. Experiment on simulated PolSAR data. (a) Eigenvalue while optimizing sparse coding z. (b) Eigenvalue while
optimizing dictionary B.

Optimize B: Assuming Z and 〈W, b〉 are all fixed, the minimization of B can be
formulated as the following nonconvex optimization problem:

min
B∈Md

n

Θ(B) ∆
= 1

2

N
∑

i=1
d2

R(Xi,Bzi) + λ3Ω(B) = 1
2

N
∑

i=1

∥∥∥∥Log(X−
1
2

i (Bzi)X−
1
2

i )

∥∥∥∥2

F
+ λ3Ω(B) . (14)

According to [22], the Riemannian conjugate gradient (CG) method [23] is adopted
in our implementation since it is empirically more stable and faster than other first-order
methods, such as steepest-descent and trust-region approaches [24]. For the non-linear
function Θ(Bi), Bi ∈ Hd

+, the CG method uses the following recurrence at step k + 1:

B(k+1)
i = B(k)

i + γkξ(k) , (15)
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where γk is the step-size found via an efficient line-search method [25], and the direction of
descent ξ(k) is defined as:

ξ(k) = −gradΘ(B(k)
i ) + µkΦγkξ(k−1)(ξ

(k−1)) , (16)

where

µk =

〈
gradΘ(Bk), gradΘ(Bk)−Φγkξ(k−1)(gradΘ(Bk−1))

〉
〈gradΘ(Bk−1), gradΘ(Bk−1)〉

, (17)

in which the map ΦA(B) defines the vector transport for two points A, B ∈ TPM as:

ΦA(B) =
dExpp(A + tB)

dt

∣∣∣∣
t=0

. (18)

Lemma 2 ([20]). For a dictionary tensor B ∈ Md
n, let Θ(B) be a differentiable function. Then,

the Riemannian gradient gradΘ(B) satisfies:

〈gradΘ(B), δ〉B = 〈∇Θ(B), δ〉I , ∀δ ∈ TPMd
n , (19)

where∇Θ(B) is the Euclidean gradient of Θ(B). The Riemannian gradient for the j−th dictionary
atom is given by:

gradΘ(Bj) = Bj∇Bj Θ(B)Bj . (20)

Let Si = X−
1
2

i , and given the above Lemma.2, the derivative ∇Bj Θ(B) of Equation (20) can be
calculated as:

∇Bj Θ(B) =
N

∑
i=1

zj
i

(
SiLog(Bzi)(Bzi)

−1Si

)
+ λ3 I . (21)

As shown in Figure 2b, Let Z and 〈W, b〉 be all fixed, the eigenvalue of the optimized
equation (Equation (11)) is decreasing with iterations of dictionary updating, and becomes
almost smooth in 10 times.

Optimize W and b: By fixing B and Z, the minimization problem for W and b can be
formulated as a multi-class linear SVM problem, which can be further separated into C
linear one-against-all SVM subproblems. Due to the better smooth property and the compu-
tational simplicity, we adopt the quadratic hinge loss function [26] in our implementation
to replace the traditional hinge loss function; i.e.,

l(zj, yc
j , ωc, bc) =

[
max(0, yc

j

[
ωT

j , 1
][ zj

1

]
− 1)

]2

. (22)

In conclusion, the Riemannian discriminative dictionary learning can be divided into
five steps described as follows: (1) Learning an initial dictionary consisting of HPD matrices
by k-means clustering under the Riemannian metric; (2) transforming each data point to
a nonnegative linear combination of HPD atoms in the initial dictionary; (3) finding out
the best parameters of the multi-class linear SVM model according to the given sparse
coding and category information; (4) updating the dictionary and parameters by mining
the objective function (Equation (12) and (14), respectively) until the optimized dictionary
only changes a little compared to the previous one; (5) Establishing the final model with the
variables obtained, including the optimized dictionary and the best matching hyperplanes.
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4.2.2. Classifier Training

Once the dictionary B and the large margin model 〈W, b〉 are learned, the classification
task can be performed as follows. Given a test sample X̂, its coding vector z with respect to
dictionary B can be achieved by solving the following coding problem via SPG [27] method:

min Θ′(z) ∆
=

1
2

d2
R(X̂, Bz) + λ1‖z‖p

p . (23)

Then, we can apply the C linear classifier 〈ωc, bc〉, in which c ∈ {1, 2, ..., C}, on the
coding vector z to predict the label of the sample X by:

y = arg max
c∈{1,2,...,C}

ωT
c z + bc . (24)

5. Experimental Results and Analysis

In order to evaluate the effectiveness of the proposed classification algorithm, we
applied the proposed method to two real PolSAR images. The proposed algorithm is com-
pared with the classical and the state-of-the-art supervised algorithms herein. Furthermore,
the performance of classification in terms of select parameters is analyzed.

5.1. Description of Datasets

Flevoland-1989 was obtained from a subset of an L-band, and a multi-look PolSAR
image, acquired by the AIRSAR airborne platform in 1989. It is an agricultural area from
Flevoland in the Netherlands consisting of 750× 1024 pixels. In total, 11 types of land cover
are labeled in pixels, including bean, forest, potato, alfalfa, wheat, bare land, beet, rape, pea,
grass and water. The ground truth map is shown in Figure 3b. The other pixels without
ground truth are filled with black. We visualize it as a composite RGB image on a Pauli
basis shown in Figure 3a, where |SHH − SVV | is normalized as red, |SHV | is normalized as
green and |SHH + SVV | is normalized as blue.

(a) (b)

Figure 3. The Flevoland-1989 dataset. (a) Pauli RGB composite image. (b) Ground truth map.

San Francisco consists of four-look NASA/JPL AIRSAR L-band data of the San Francisco
area in 1992. These PolSAR data with dimensions of 900× 1024 pixels cover San Francisco
Bay and California, as shown in Figure 4. However, this dataset was one of the most widely
used datasets in PolSAR image classification experiments in the past few years and had
different ground-truth maps referring to the previous research. We used the ground truth
given in [28], where four terrain classes are considered, consisting of the sea, mountains, grass,
and buildings.
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(a) (b)

Figure 4. The San Francisco dataset. (a) Pauli RGB composite image. (b) Ground truth map.

Flevoland-1991 was obtained from the Flevoland test site in 1991 and contains a
variety of crops and artificial targets, and the pseudo-RGB image synthesized by its L,P,C-
band SPANs is shown in Figure 5a. The ground truth was inherited from Hoekman [29]
and CRPM-Net [30] shown in Figure 5b. In the ground truth map, the black pixels are
those that were not involved in the experiment.

(a) (b)

Figure 5. The Flevoland-1991 dataset. (a) The pseudo RGB image. (b) Ground truth map.

For the three PolSAR datasets, each class indicates a type of land cover and is identified
by one color. It is noted that the unlabeled pixels were categorized as void and removed
from our experiments. Many approaches have shown the harm of speckle and proposed
lots of useful filters; we first applied a Boxcar [31] filter with the window size of 7× 7.
In order to clean the original data further, we replaced some outliers whose traces are
smaller to 10−5 with the average of rounding pixels. Considering the discrepancy of
the number, for each class, we choose five percent of the total randomly as the training
data and treat the rest as testing data. Given the random selection of training data, we
independently conducted each experiment 10 times. The overall accuracy (OA), mean
of the 10 total classification accuracies (average accuracy—AA), and kappa are used to
evaluate the performance of each method.

5.2. Experimental Results
5.2.1. Evaluation on Flevoland-1989

To demonstrate the superiority of the proposed method, we compare it here with other
classical and state-of-art methods, including the classical maximum likelihood classifier
based on Wishart distance [32] (denoted as Wishart-ML), the Laplacian Eigenmaps and
nonlinear dimensionality for representation [33] (denoted as LE-NDR), the D-KSVD model
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based on an NSCT-domain [16] (denoted as ND-KSVD) and the SVM model based on
Riemannian sparse coding [18] (denoted as RSC-SVM).

Figure 6d–h shows the visual classification results from all the algorithms on the
Flevoland image. It can be seen that Wishart-ML and K-SVD both made some obvious
classification errors. For example, in Figure 6d classified by Wishart-ML, the wheat growing
at the middle and bottom was mistaken as rape, and the bare patch on the left was classified
as water. As for Figure 6f classified by ND-KSVD, the Khaki grass in the image was hardly
found. The LE-NDR also mistook peas growing along the bottom as alfalfa, as did the
Wishart-ML method, which ND-KSVD mistook as wheat. RSC-SVM and the proposed
method were roughly correct for most parts, and the proposed method achieved higher
accuracy in almost all types of land cover. However, there were many wrong classification
points distributed among the correct blocks randomly, which can be simply amended by
morphological open and close operations.

(a)

water pea bean grass

beet rape forest alfalfa

bare wheat potato unlabel

(b)

(c) (d) (e)

(f) (g) (h)

Figure 6. AIRSAR L-band PolSAR image of Flevoland-1989. (a) Pauli RGB composite image for the original data. (b) Color
code. (c) Ground truth map. (d) Result of the Wishart-ML method. (e) Result of the LE-NDR method. (f) Result of the
ND-KSVD method. (g) Result of the RSC-SVM method. (h) Result of our method.

Given the accuracy shown in Table 1, the proposed method achieved the highest
values of AC and kappa among all five methods. RSC-SVM, which also used Riemannian
sparse coding, was exceeded by the proposed method by 3.0 in AC and 4.1 in kappa. As for
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ND-KSVD, which used sparse coding in Euclidean space, the AC and kappa were 13.5 and
16.0 better for our method, respectively.

Table 1. The overall accuracy (OA), average accuracy (AA) and kappa coefficient values of different
methods on Flevoland-1989 dataset. # Num. denotes the number of samples in each category.

Class # Num. Wishart-ML LE-NDR ND-KSVD RSC-SVM GADDL

Water 867 1 1 1 1 0.9655
Pea 14798 0.6958 0.6856 0.2532 0.6629 0.7331

Bean 8098 0.9389 0.7820 0.8859 0.9554 0.9481
Grass 9706 0.6937 0.3091 0.2843 0.8307 0.8144
Beet 9895 0.9178 0.8479 0.6571 0.8773 0.8152
Rape 21967 0.9482 0.8320 0.5634 0.7427 0.8230
Forest 22639 0.8855 0.9451 0.9418 0.9124 0.9616
Alfalfa 13655 0.7216 0.69381 0.8799 0.9353 0.9129
Bare 5888 0.5985 0.8492 0.9562 0.9801 0.9423

Wheat 40030 0.5104 0.7549 0.8989 0.8686 0.9241
Potato 16434 0.9171 0.8356 0.8556 0.8311 0.9069

OA 0.7583 0.7735 0.7490 0.8483 0.8848
AA 0.8025 0.7759 0.7433 0.8724 0.8861

Kappa 0.7263 0.7388 0.7064 0.8258 0.8669

5.2.2. Evaluation on SanFransco

For the SanFransco image, the visual classification results of each algorithm are shown
in Figure 7c–h and the classification accuracies are in Table 2. It can be seen clearly that
all the methods worked better than on the Flevoland-1989 data due to the SanFransco
image having fewer classes. Significantly, our method was also better than the others both
regarding AC and kappa, except for LE-NDR.

Table 2. The overall accuracy (OA), average accuracy (AA) and kappa coefficient values of different
methods on the SanFransco image. # Num. denotes the number of samples of each category.

Class # Num. Wishart-ML LE-NDR ND-KSVD RSC-SVM GADDL

Sea 352577 0.9814 0.9817 0.9887 0.9839 0.9871
Mountain 63419 0.4929 0.8247 0.7052 0.6821 0.8231
Grass 133164 0.8214 0.6578 0.7441 0.5862 0.6689

Building 372440 0.7518 0.9315 0.8193 0.9385 0.9145

OA 0.8319 0.9038 0.8654 0.8873 0.9005
AA 0.7619 0.8489 0.8143 0.7977 0.8484

Kappa 0.7531 0.8544 0.8012 0.8448 0.8491

As shown in Figure 7d–h, the sea which occupies half of the image was classified well
with all methods, but the isle was classified wrong by all. From Figure 7d,f, the Wishart-ML
method clearly mistakenly classified most of the land as mountains and the ND-KSVD
method classified the Golden Gate Bridge badly. In Figure 7e, some line targets which are a
boulevard in truth were wrongly labeled as urban buildings by RSC-SVM.

From Table 2, our GADDL achieved the second highest performance on the whole.
Almost all algorithms could not distinguish the grass well, which can be seen on the right
of the Figure 7d–h. Our GADDL got low accuracy for grass, which was probably due to the
classification ability mainly relying only on target decomposition. LE-NDR is a method based
on polarization target decomposition which relies on the prior knowledge of the designer.
For the SanFransco dataset with a small number of categories, this method can easily obtain
more discriminative features and achieve the best classification results. Compared with
RSC-SVM, our GADDL is more robust to category imbalances. The category of “Mountain”
(Table 2) only made up 6% of samples, which is a small sample category. Our method still
achieved a higher classification accuracy than RSC-SVM by 14.1% in terms of OA.
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(a)

Sea Mountain

Grass Building

(b)

(c) (d) (e)

(f) (g) (h)

Figure 7. AIRSAR L-band PolSAR image of SanFransco. (a) Pauli RGB composite image for the original data. (b) Color
code. (c) Ground truth map. (d) Result of Wishart-ML method. (e) Result of LE-NDR method. (f) Result of ND-KSVD
method. (g) Result of RSC-SVM method. (h) result of ours.

5.2.3. Evaluation on Flevoland-1991

To further verify the performance of our method, experiments on another fully PolSAR
image with a far more unbalanced number of categories were implemented. Given Table 3,
our GADDL achieved the best performance. In our chosen region, the number of pixels for
the two categories (i.e., Maize and Buildings) were only 378 and 961, accounting for only
0.48% and 1.21% of the image, respectively. The accuracy of the comparison method in
these categories was significantly lower than that for other categories, especially ND-KSVD.
However, our method can still achieve high accuracy. This also further shows that our
method is robust to class imbalance.
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Table 3. The overall accuracy (OA), average accuracy (AA) and kappa coefficient values of different
methods on Flevoland-1991 dataset. # Num. denotes the number of samples of each category.

Class # Num. Wishart-ML LE-NDR ND-KSVD RSC-SVM GADDL

Grass 11890 0.6006 0.7828 0.5855 0.9443 0.9597
Onion 1144 1 0.8840 0.5376 0.9963 0.9963

Potatoes 14126 0.6998 0.9713 0.8973 0.9495 0.9864
Wheat 15050 0.6093 0.9458 0.8546 0.9687 0.9764
Rapeseed 11345 1 0.9916 0.9169 0.9621 0.9912

Beet 7239 0.2124 0.8033 0.6407 0.9763 0.9794
Barley 1681 0.9864 0.9565 0.8995 0.9880 0.9948
Lucerne 2129 0.9560 0.9125 0.8314 0.9822 0.9965
Maize 961 0.5482 0.5362 0.5390 0.8509 0.9156

Buildings 378 0.4429 0.0 0.0027 0.4652 0.5850
Roads 2532 0.5110 0.4345 0.0786 0.5410 0.7048

OA 0.7276 0.8968 0.7866 0.9498 0.9718
AA 0.6879 0.7471 0.6167 0.8750 0.9078

Kappa 0.7263 0.6864 0.7487 0.9410 0.9668

The confusion matrices of the compared methods and GADDL are shown in
Figure 8a–e. From the comparison of these confusion matrices, it can be seen that our
GADDL can distinguish categories well, even the categories with small numbers of samples.
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Figure 8. Confusion matrixes of classification under different methods.

5.3. Computational Cost

We tested the performance and efficiency of GADDL and the compared methods on
three datasets. The results of the test time and OA are summarized in Table 4. All the
experiments were implemented using Matlab 2014b on a standard computer with I7 8700k
CPU and 64 GB RAM. According to the comparison results, the performance and efficiency of
each method had the same trends on the three datasets. For example, on the Flevoland-1991
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dataset, Wishart-ML, LE-NDR and ND-KSVD were faster than ours, but the accuracy was
lower. GADDL achieved 24.5%, 7.5% and 18.5% better speed, respectively. In the testing
phase, GADDL was the same as RSC-SVM, but we still gained a 2.3% improvement. It can be
concluded that our method achieved a good trade-off in terms of accuracy and efficiency.

Table 4. The test time (minutes) of different methods on three datasets.

Datasets Wishart-ML LE-NDR ND-KSVD RSC-SVM GADDL

Test-time 9.1 335.5 26.0 883.4 898.1Flevoland-1989 OA 0.7583 0.7735 0.749 0.8483 0.8848

Test-time 20.7 1475.9 44.3 986.0 1001.8SanFransco OA 0.8319 0.9038 0.8654 0.8873 0.9005

Test-time 7.1 147.5 12.3 428.4 428.6Flevoland-1991 OA 0.7276 0.8968 0.7866 0.9498 0.9718

5.4. Convergence Analysis

The proposed GADDL is based on a sparse dictionary, which is used to illustrate the
convergence by calculating the eigenvalue. We randomly selected 5% points for each type
of Flevoland image; in all, 8203 matrices were used as experimental samples, and λ1, λ2, λ3
and θ, represent 0.4, 10−3, 0.1, 10−7 and 50 atoms respectively. We calculated the sum value
of the reconstructed term, sparse regular term and discriminant term after each iteration.
As can be seen from Figure 9, as the number of iterations increased, the curve decreased
continuously and finally stayed nearly level.
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Figure 9. The total eigenvalue of objective function with the iteration goes.

5.5. Parameter Analysis

In our method, there are several parameters closely related to the final results which
need to be set, including the trade-off coefficients λ1, λ2 and λ3 related to the vector regular
term, the discriminant term and the sparsity of dictionary, respectively. Moreover, the
learning rate θ of the linear multi-svm classifier and the number of atoms for each type
in dictionary are two key parameters. We conducted experiments in turn to prove the
superiority of the selected parameters. The impacts assessed by comparing the total
classification of the proposed method with different parameters are drawn out as curves
for visualization.

According to the optimization strategy, the parameter θ, which stands for the learning
rate of the classifier, is only used in the step optimizing W, b and has no effect on other
parts of the experiment. From [34] we can find that with a decrease of the learning rate,
the hyperplane obtained can be more suitable but more time consuming. We simply let
θ be equal to a small value, 10−7, which will be refined later. Then, the number of atoms
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for the dictionary for each type was first set as 30, which we decided by referring to other
articles [18].

In general, due to the reconstructed terms and the regularized terms being the main
parts of the dictionary learning, we first set λ2 and λ3 to relatively small values, such as
10−7 and 0.1, respectively, to quantify the influences of different λ1. As shown in Figure 10,
the weight coefficient of the vector of sparse constraint has a great influence on the final
result. When λ1 is set to between 0.1 and 1, we obtained better precision than for any other
range. Furthermore, we changed the value of λ1 from 0.1 to 1 with an interval of 0.1 to
explore the influence on classification accuracy; the fluctuation of the resulting curve was
less than 0.02. Then we set λ1 to 0.4 in the experiments later.

Similarly, we performed experiments on the same data to investigate the impact of the
parameter λ2, which is the weight coefficient of the discriminant term in the optimization
target. It also is an important component of the Equation (20) optimizing z. As shown in
Figure 11a, the value of λ2 has a greater impact on the final accuracy. A value bigger than
10−5 makes the total classification accuracy lower; this may be caused due to an unbalanced
contribution to the objective function. Additionally, a small value of λ2 seems to lower the
final result as well. To further verify the improvement of taking the discriminant term into
consideration, we tried to set λ2 to 0 fixing other parameters: the final precision was only
0.84; meanwhile, the highest precision was 0.86 as the value of λ2 was set to 10−7.
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Figure 10. Eigenvalue versus varying scale parameter λ1. (a) λ1 varies from 0.01 to 100. (b) λ1 varies from 0.1 to 1.

Furthermore, we implemented the same experiment to confirm the best value of
parameter λ3. λ3 is a parameter used to weigh the regularizer term of the dictionary
tensor and constrain the sparsity of the dictionary, which can contribute to the gradient of
dictionary in optimizing dictionary B. From Figure 11b, we can observe that the curve has
a little fluctuation of within 0.01. In other words, the accuracy seems to make no difference
with variable values of λ3. This may be because the initial dictionary obtained by clustering
is better. It may also be attributed to the Riemann conjugate gradient method for direction
and the line-search method for step-size. Therefore, the parameter λ3 can be taken to be
any integer from 1 to 0.001. We set it as 0.01 in the later experiments.

After that, we analyzed the influences of different numbers of dictionary atoms on the
results. As we know, too small a size of the dictionary makes the model underfit, while a
redundancy of dictionary atoms increases the computational burden. Thus, we need to set
the size of the dictionary to as small as possible while the total classification accuracy is
acceptable. In our experiment, the number of atoms for each class was set as the same value
from 10 to 100 with an interval of 20 to observe a better balance between the dictionary
size and the final accuracy. According to the experimental results shown in Figure 12, we
found that when the number of dictionaries was set as about 50, the curve reached its peak
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value. However, considering the uneven distribution of the number of sample categories,
the number of atoms in the dictionary for each class do not have to be the same. In this
case, we assume that the number of atoms in the dictionary for a larger number of samples
should be high, and vice versa. Therefore, we used the number of atoms of each type as
1
5 , 1

10 , 1
20 or 1

30 of the training data in each experiment, which showed higher accuracy in
the same dataset in contrast to a similar dictionary size with an equal number of atoms for
each class. We implemented the following experiment while setting the number of atoms
to 1

10 of the training data to trade-off efficiency and precision.
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Figure 11. Eigenvalue versus varying scale parameter λ2, λ3. (a) λ2 varies from 1 to 10−12. (b) λ3 varies from 10 to 10−5.
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Figure 12. Eigenvalue versus varying scale parameter atom number. (a) with the same atom number for each class. (b) with
atom number in proportion for each class.

Finally, we verified the optimal range of θ. θ is the learning rate when solving the optimal
linear multi-SVM classification problem, which affects the balance between accuracy and
time consumption. In our experiments, we had the parameter θ vary from 103 to 108 with
average precision and time cost consumption. In Figure 13, we can see that the accuracy
was almost the same when θ was bigger than 106, and the time consumption increased in a
geometrical progression. Meanwhile, when we set θ to 108, the final results decreased a little.
This may be explained that in this dataset, some classes such as water may have so few points
that the classifier would overfit with a small θ. In conclusion, we can set θ = 10−7 for better
performance and simplicity.
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Figure 13. Accuracy and time-consuming versus varying scale parameter θ. (a) precision. (b) time costing.

5.6. Robustness Analysis

For the optimization problem, the l0 norm is impossible to calculate, and the l1 norm,
l2 norm may have some different influences on the final result. We statistically analyze the
effects of different norms in Figure 14a.

The objective function’s value with l2 norm is generally half a point higher than the one
with l1 norm with the same parameters on the same datasets. The results using quadratic
hinge loss were much better than those using squared loss, which further emphasizes the
importance of the sparse weight matrix. Thus, we chose the l2 norm regularizer in the later
discussion due to its computational efficiency.

As a discriminant dictionary learning model, the initial dictionary is a vital subprob-
lem. Although some effective but complex algorithms have been proposed to obtain an
initial dictionary, we just applied the k-means algorithm and extended it to the Rieman-
nian manifold to obtain cluster centers as dictionary atoms. However, the traditional
k-means cluster method implemented on Euclidean space works badly on the HPD matrix
dataset. Therefore, different distance metrics for the Riemannian manifold were pro-
posed. Assume two SPD matrices, X, Y ∈ Sd

+; for statistical measures, the log-determinant
divergence has the following form: dB(X, Y) = Tr(XY−1)− log|XY−1| − d. As for differ-
ential geometric schemes, one of the most popular is the log-Euclidean metric defined as
dle = ‖Log(X)− Log(Y)‖F. As for kernelized schemes, the Stein divergence is defined
as dS(X, Y) = log| 12 (X + Y)| − 1

2 log(XY). We simply replaced the distance metric in the
k-means algorithm with the Riemannian metric to cluster center points for each class as
the atoms of sub-dictionary, and then combined them to create our initial discriminant
dictionary. In all, eight different distance calculation methods were used to prove the
robustness of the proposed method. As shown in Figure 14b, the Riemannian metric
achieved high values of classification accuracy. The range of difference in the classification
accuracy with different initial dictionaries was less than 0.5%, which is very small. There-
fore, the proposed algorithm is robust for the different Riemannian metrics. Then, we used
log-Euclidean in the following experiments.
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Figure 14. Classification accuracy versus varying norms and distance metrics. (a) accuracy under different norm regulariza-
tion. (b) total classification accuracy under different distance metrics.

6. Conclusions

In this paper, we propose a novel, geometry-aware discriminative dictionary learning
framework for classifying land covers in PolSAR data. For each pixel in the PolSAR image
being described as an HPD matrix, in contrast to traditional sparse coding approaches,
which use extracted features from HPD matrices as atoms of a dictionary, we directly
create the dictionary with an HPD matrix. The initial dictionaries are obtained utilizing
k-means algorithm under the Riemannian metric, so that we obtain a list of nonnegative
linear combinations of dictionaries for each point, which is named sparse coding. We first
attempted to optimize the dictionary and match the large hyperplanes respectively, and
then to obtain more suitable sparse coding. We repeat this step so that a more consummate
model is generated. Experimental results on the real PolSAR datasets demonstrate that
the proposed method outperforms many state-of-the-art methods in terms of accuracy
and kappa.

The proposed algorithm also has limitations. As shown in the SanFransico dataset, the
boundary between two labeled classes is not accurate. Additionally, for the correct division,
some outliers need post-processing. Our randomly selected training data also contains
some outliers, which damage the final average accuracy. In this case, we can improve the
initial clustering method to reduce the impact.
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