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Abstract: The extraction of automated plant phenomics from digital images has advanced in recent
years. However, the accuracy of extracted phenomics, especially for individual plants in a field
environment, requires improvement. In this paper, a new and efficient method of extracting individ-
ual plant areas and their mean normalized difference vegetation index from high-resolution digital
images is proposed. The algorithm was applied on perennial ryegrass row field data multispectral
images taken from the top view. First, the center points of individual plants from digital images
were located to exclude plant positions without plants. Second, the accurate area of each plant
was extracted using its center point and radius. Third, the accurate mean normalized difference
vegetation index of each plant was extracted and adjusted for overlapping plants. The correlation
between the extracted individual plant phenomics and fresh weight ranged between 0.63 and 0.75
across four time points. The methods proposed are applicable to other crops where individual plant
phenotypes are of interest.

Keywords: plant phenomics; image processing; plant area; plant center points; normalized difference
vegetation index

1. Introduction

Due to the exponentially increasing consumption of food, fuel, and feed by the
burgeoning population of the world, global agricultural demand is growing. Global cereal
grain production must increase by 70% by 2050 to meet food demands [1,2]. Forages are
also an important feed source for animals that produce dairy, meat, and fiber products, and
they play a crucial role in maintaining a good natural environment. In parallel, growing
climate unpredictability is shifting crop production onto marginal lands, leading to the
intensification of existing agricultural practices, and displacement of natural ecosystems [3].
Conventional methods for plant breeding, such as phenotypic and pedigree selection,
have significantly increased crop yields worldwide [4]. Nevertheless, these methods alone
will not be enough to meet the projected global food demands [5,6]. Moreover, these
traditional methods are costly, require intensive labor resources, have a lower throughput
and are time consuming. Genomic breeding approaches (e.g., genomic selection) will
assist in increasing crop and pasture production [7,8] and a wealth of plant genomic
knowledge has been accumulated over the last decade [9–12]. However, genomic selection
requires large training sets of lines that are well characterized with both genomics and
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phenotypes. Traditional phenotyping methods are often too laborious and costly for
large plant collections, leading to a significant gap between genomic knowledge and its
connection to phenotypes. These problems can be rectified to some extent by the accurate
and precise phenotyping of germplasm with novel technologies.

The phenotyping of organisms [13–16] can be defined as a set of protocols or method-
ologies applied to measure physical characteristics, such as architecture, growth and
composition, with a certain accuracy and precision. For plants, phenotyping is based on
morphological, physiological, biochemical, and molecular structures. Current phenotyping
methods in plants are considered slow, expensive, are sometimes destructive and can cause
variations between observations due to human operator variability. This has led to a growth
in automated phenotyping technologies, which overcome these shortcomings. One such
automated method relies on digital imaging, containing two main steps: image acquisition
and image analysis. Image acquisition is a process where a digital representation (image)
of the crop field is obtained using an imaging sensor. Image acquisition can generally be
classified into seven groups with respect to plant phenotyping [16]: mono-red green blue
(RGB) vision, multi and hyperspectral cameras, stereo vision, Light Detection and Ranging
(LiDAR) technology, fluorescence imaging, tomography imaging and thermography, in ad-
dition to time of flight cameras. Image analysis, on the other hand, deals with the extraction
of useful information—in regard to plants—from digital images, involving pre-processing,
segmentation, and feature extraction [17]. The pre-processing step can include operations
such as image cropping, image rotation, contrast improvement, color mapping, image
smoothing, and edge detection [18]. The application of these methods for phenotyping
depends upon the output requirements and several other factors. The main goal of image
segmentation is to differentiate between the irrelevant or background objects and objects
(segments) of interest by using color, texture and statistical measures. For example, Otsu
binary thresholding [19] is a segmentation algorithm that is used to automatically perform
clustering-based image segmentation, returning a value of threshold. The threshold can
then be used to discriminate between the background and foreground of a digital image us-
ing methods such as watershed transformation [20]. Feature extraction is also an important
factor in automated phenotyping using digital images. The measurements extracted from
the image segments, such as area and normalized difference vegetation index (NDVI), are
placed into feature vectors which summarize the physical characteristics of each identified
plant or plant region. The digital information extracted from the images in the form of
NDVI, surface area, width, height, and circular shape, can be linked to the degree of green-
ness, fresh weight, and biomass of the plant. Phenomic bio-characteristics, such as NDVI
or plant area, can be correlated or used to predict plant biomass yield, which is the main
production phenotype in forage species and is a characteristic that contributes to grain
yield in other crops [21,22]. Bio-characteristics, if sufficiently correlated, can then be used
as proxy phenotypes for biomass in genomic selection to select the best populations and
generate genetic gain over generations. Furthermore, as image derived bio-characteristics
are non-destructive, they can be collected at multiple time-points during the growth cycle
of crops, giving rise to novel phenotypes for genomic selection and breeding purposes (e.g.,
change in biomass over time, growth, or senescence rate).

Most plant breeding applications focus on plot or row phenotypes consisting of
multiple plants, which is often sufficient. However, individual plant phenotypes are of
interest for investigating family or population uniformity in both in- and outbred species.
Uniformity is important because growers desire high forage biomass with even growth
throughout a paddock, while additionally, it is also a characteristic for determining plant
breeder’s rights. Furthermore, in outbred species, it may be of interest to understand
the effect of individual plants on other plants in close proximity—so called, competition
effects [23]—as each plant is genetically unique. If plants in a forage cultivar are overly
competitive, the overall biomass yield and uniformity is expected be suboptimal in the
paddock. The manual collection of individual plant characteristics is especially laborious
and automated phenomic solutions are required.



Remote Sens. 2021, 13, 1212 3 of 18

We propose a new method for extracting the area of individual plants from digital
field trial images. The method focuses on both the extraction of these regions from a
multispectral image taken by an uncrewed aerial vehicle (UAV) and the linking of these
regions with the biomass of individual plants. The utility of the approach is evaluated by
correlating individual plant phenomic bio-characteristics and plant biomass, as estimated
by fresh weight at harvest. The study is organized as follows: Section 2 provides the work
problem statements, Section 3 describes the proposed algorithm in detail, Section 4 explains
the experimental results and presents a comparative analysis on perennial ryegrass field
data, and Section 5 outlines the conclusions.

2. Problem Statements

The proposed algorithm was applied to perennial ryegrass row field data for which
images were taken from the top view. The field trial contained 50 perennial ryegrass culti-
vars, grown in replicated rows of 32 plants per row. Perennial ryegrass is a diploid outbred
species, where each individual plant is genetically unique and each cultivar has at least
four parental cultivars, making them genetically diverse. Each replication was considered
as a plot and contained three rows of 32 spaced plants each (i.e., 96 plants/plot). The
experimental unit was, therefore, a plot of 8 × 1.8 m. The expected spacing between plants
was 25 cm and 60 cm between rows. The field trial contained a total of 48,000 individual
plants in 10 blocks. The total area of the field experiment was 8100 m2. In part, the aims of
these field trials were to develop phenomics processing pipelines to define novel traits for
the estimation and prediction of plant performance (e.g., biomass yield, flowering time).
Images were taken with a Parrot Sequoia (Parrot Drones S.A.S., Paris, France) multispectral
camera, deployed on a 3DR Solo quadcopter. The camera captures images simultaneously
at four bands, including green (530–570 nm), red (640–680 nm), red edge (730–740 nm),
and near-infrared (770–810 nm). It also has a GPS and sensor and incident light sensors.
The flight mission was planned by Tower Beta software. Aerial images were collected
using the UAV on a weekly basis over the GS trial site, and data from four flight dates
in 2017 were used for this analysis. Imaging dates were synchronized with each harvest.
Flight operations were conducted under bright, sunny weather conditions to minimize
noise from environmental variation. The UAV flight altitude was set at 20 m above ground
level and the flight speed was 6 m/s, with 75% side and forward overlap of images. At
this flight altitude and speed, the spatial resolution of the images was 2 cm/pixel. The
same flight path was followed on each date. Image reflectance was corrected using Airinov
calibration plates with known reflectance values (MicaSense Inc., Seattle, WA, USA). An
example color image of the field trial is shown in Figure 1a and a grey scale image of the
field trial area is shown in Figure 1b. The white pixels (NDVI TIFF image) in Figure 1b
mostly represent greenness in the trial image and black pixels represent the background.
In Figure 1b, there are 10 blocks, and in each block, there are 150 plant rows equaling a
total of 1500 crop rows. Furthermore, in each plant row, there are 32 plants, resulting in
48,000 plants in each field-trial image.

The goal was to automatically extract phenomic traits, such as area and the NDVI
value of each plant, from each field trial’s TIFF file image. In principle, other vegetation
indexes such as the green normalized difference vegetation index, red edge normalized
difference vegetation index, soil adjusted vegetation index and the enhanced vegetation
index could also be used. The extraction of these traits utilizes the experimental field trial
design, specifying the layout of plant-rows and the plants within each row to help define
the boundary or bounding boxes for plant rows and initial estimates of the individual plant
regions. The row polygons of row plants were identified using projection methods, as
outlined in [22], followed by the identification of center-points of individual plants. These
center-points then assisted in identifying the individual plant polygons. Figure 2a shows
the layout of bounding boxes for several row polygons and Figure 2b shows the bounding
boxes for individual plant polygons. These bounding boxes assist in extracting phenomics
traits of interest. For instance, the bounding box region can be cropped, and the area can
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be calculated by multiplying the number of non-zero pixels with the area of one pixel in
cm2. Furthermore, the mean NDVI value is calculated by taking the mean of NDVI values
of all non-zero pixels within that region.
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Figure 2. Bounding Boxes of (a) 3 plant-row boxes and (b) their individual plant boxes.

In images where there is moderate amount of plant growth (Figure 2), the extraction of
phenomics is relatively simple. The plants are almost entirely confined in their individual
bounding boxes, referred to as plant boxes, and therefore, the area and mean NDVI value
can be calculated easily. However, there are bounding boxes where plants have not grown
at all, but due to encroachment of adjacent plants, their bounding boxes contain some
image pixels that show NDVI signals, as shown in Figure 3.
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Figure 3. A bounding box without a plant, but due to the overlapping of the top plant, the bounding
box contains some image pixels that are erroneously classified as plants.

These NDVI values can be mistaken for a plant in the box which has either died or
not grown at all, when it was in fact the neighboring plant. Additionally, the plants can
overgrow and overlap into adjacent plants (Figure 4a). In such cases, calculating the area
by counting the number of non-zero pixels in that bounding box (Figure 4b) will not be
accurate. Therefore, a potentially more accurate area is hypothesized in Figure 4c of the
same plant, by highlighting a circular plant region. In summary, these problems are the
main objectives of our work, aimed at identifying the accurate area of individual plants,
and includes the following sub-objectives:

1. to identify bounding boxes with no plants;
2. to calculate accurate individual plant areas, despite overlapping adjacent plants;
3. to calculate accurate individual plant NDVI values, despite overlapping adjacent plants;
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(b) Rectangular bounding box of a plant; the area equal to the bounding box is not accurate as plant
is overgrown from the bounding box. (c) A potentially more accurate representation of the area is
illustrated with the circular plant region.
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3. Methods

The use of machine vision in phenotyping started almost three decades ago, for the
extraction of NDVI values [24]. Since then, there has been huge progress in monitoring
large fields using sensor technologies. However, the applications involve simple digital data,
which are usually extracted in controlled environments. In the previous proposals [25–31],
the examined plants were captured in very controlled and simplistic environments; either
there was only one plant per digital image, or the plants did not overlap.

To detect circles in images, Circular Hough Transform (CHT) [32] and its variants [33]
have become common methods in numerous image processing applications. CHT is very
effective in detecting circles in digital images, even with somewhat irregular circular shapes.
However, it performs poorly when circles are merged and overlap with each other, just as
in the case of our research problem.

These existing studies do not provide solutions that are relevant to our mentioned
problems; therefore, we have developed a new and effective image-based phenotyping
method. The proposed algorithm was developed and implemented on a field trial im-
age dataset, in which images were taken from the top view. A sample of a single crop
row image from the field trial, taken at four time points, is shown in Figure 5a–d. We
employed MATLAB version R2019a for the simulations and analyses of our work. In the
next subsections, the proposed algorithm is explained, and images are shown to aid the
reader’s understanding.
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Figure 5. (a–d) A small set of different crop rows extracted from four field trial images taken on (a)
9 May 2017, (b) 5 July 2017, (c) 11 September 2017 and (d) 20 November 2017. Note: that the rows at
different time points are not exactly the same length as pixel size varied slightly from expected 2 cm.
Values were converted to metric units to standardize between capture dates.
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3.1. Background Correction

Let I be the two-dimensional matrix for a single plant box image with size r, c, where
r is the total number of image rows and c is the total number of image columns. It should
be noted that the plants are at a specific angle, but we did not rotate them for the analysis.
As the plant’s geometry is somewhat circular, the rotation will not affect the extraction
of the center point and radius, as explained below. I is considered for one individual
plant and there are 32 such plants in one crop row, as shown in Figure 5a. Moreover,
let I(i, j) represent the NDVI value of the image pixel at the ith row and jth column of I,
and I(i, j) ∈ [−1, 1]. The first step was to remove any background values, which did not
contain plant pixels. To remove the unnecessary background, Otsu binary thresholding [19]
was employed to automatically perform clustering-based image thresholding, returning a
threshold value of thOtsu. The background corrected image of a single plant, Ib is obtained
using the following:

Ib(i, j) =
{

I(i, j) i f I(i, j) > thOtsu,
0 otherwise.

(1)

The Otsu image thresholding for background correction was applied in Figure 5a–d
and the results are shown in Figure 6a–d.
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3.2. Center Point Calculation

Whether a rectangular plant bounding box contained a plant or not was determined
by identifying the center point of the plant. If there was a center point in a bounding
box, then it was determined as containing a plant and vice-versa. As mentioned in the
problem statement, bounding boxes were defined based on row layouts and the expected
plant number and spacing per row, following [22]. The distribution of greenness or NDVI
values in an individual plant, assists in finding the plant centers (Figure 7). The greenness
is likely to be at a maximum in the center of plant and gradually decreases towards the
plant’s edges. Therefore, the center point should correspond to, or near, a location of
an image pixel with the maximum NDVI value. However, there can be more than one
pixel whose values correspond to the maximum NDVI and they can be in different places.
Another solution could consider the middle point of the bounding box as the plant centers.
However, this assumption is not always justified, as plant locations could deviate from
bounding box centers. Our approach combines these two methods. This allows for the
correction of NDVI maxima that are at bounding box edges but have false values due to
encroaching neighboring plants. The centered positions of a plant image are determined
as follows: {

(i, j)
∣∣∣ Ib(i, j) ≥ 0.6 ∗ Imax; ∀ i ε [0.2r, 0.8r]; ∀ j ε [1, c]

}
(2)

where Imax is the maximum value of Ib. Without loss of generality, the above equation
specifies a set of image positions within a given plant-box, as shown in Figure 4b, with
its origin specified at (1,1) and with r rows and c columns that have intensity values that
satisfy Ib(i, j) ≥ 0.6 ∗ Imax. The optimization value of 0.6 is based on trial and error and
was chosen based on visual inspection. Increasing the value beyond 0.6 will result in more
centered image pixels and vice-versa. We recommend investigating this threshold when
applying the algorithm to new datasets. This set will be empty if there is no center point,
otherwise the average i, Θr and average j, Θc, location (Θr, Θc) is used to define a plant’s
center point within its corresponding plant-box. The goal is to locate a center point of the
plant which cannot be at the top or bottom of the image. Therefore, the search row domain
in each plant-box is constrained to not include the top and bottom 20% of the rows. In our
study, plants were generally planted at equal distances, justifying this assumption. In field
data where this is not the case, further development of the algorithm may be needed. This
process was then applied to all plant-boxes within each field image.
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Figure 7. Distribution of image pixels in terms of greenness or NDVI values in an individual plant.

The results of this step, applied to the images shown in Figure 6a–d, are shown in
Figure 8a–d. The center points are represented by a red plus symbol. The algorithm
correctly identified the number of plants in a crop row. For instance, Figure 8a has only
31 plants with center points labelled and Figure 8b only has 30 plants. The identification of
center points indicates that the first research problem has been solved, that is, the bounding
boxes with no plants have been identified.
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3.3. Extraction of Plant Areas

The next goal is to extract the individual plant areas. The distribution of plant pixels is
somewhat circular and symmetrical (Figure 7). To define the circular plant region associated
with each plant-box containing a plant requires only a center point and a corresponding
radius. The center points were calculated in the previous step and the radius was calculated
by measuring the distance in terms of number of non-zero image pixels from the center
point to the horizontal extreme. Figure 9 shows the same plant illustrated in Figure 7, with
labelling of the center point, center row and horizontal distances from the center point to
the horizontal extremes. These horizontal distances give the possible radius of the plant.
The vertical distances are not taken into consideration, as the adjacent plants may overlap
at the vertical (at both top and bottom; except the 1st and 32nd plant of the row) positions.
For each center pixel defined above (Θr, Θc), let its corresponding radius be defined by:

radius = max
{

abs(Θc − j)
∣∣∣ Ib(Θr, j) ≥ 0.6 ∗ Imax

}
(3)

Using the radii and center points, the circular plant regions of each plant were extracted
(Figure 10a–d). The extraction of radii and the circular plant regions resulted in the second
research problem being solved, that is, the accurate area of the individual plants has been
calculated, despite the overlapping of adjacent plants. Furthermore, the area is calculated
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by taking the product of the number of non-zero pixels with the area of one pixel in cm2

within that region.
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3.4. Extraction of NDVI Values

As mentioned earlier, due to the overlapping of the adjacent plants, the NDVI values
can be inflated at the top and bottom positions, as depicted in Figure 10c,d. Therefore, the
overlapping pixels rows at top and bottom positions must be identified and adjusted.

3.4.1. Finding the Overlapping Pixel Rows

Considering a single crop row (32 plants), the overlapping pixels rows for each plant
can be extracted using the center points and radii calculated earlier. Let Px, x ε [1, 2, . . . , 32]
be a plant whose overlapping rows are to be extracted. The center point and radius for Px
are calculated earlier and let be denoted as (Θx

r , Θx
c ) and Rx, respectively. The number of

overlapping rows at the bottom position ρx
bottom of the plant Px are extracted as:

ρx
bottom = (Θx

r + Rx)−
(

Θx+1
r − Rx+1

)
− 1 (4)

Similarly, the number of overlapping rows at the top position ρx
top of the plant Px is

extracted as:
ρx

top =
(

Θx−1
r + Rx−1

)
− (Θx

r − Rx)− 1 (5)

It should be noted that ρx
bottom for Px at the bottom position is the same as ρx

top for Px+1
at the top position.

This is illustrated in Figure 11, with three plants and their center points and radii.
Moreover, the first plant is overlapping with the second plant at the bottom position and the
reverse is true for the second plant. Similarly, the second plant overlaps with the third plant
at the bottom position and vice-versa. Using Equations (4) and (5), it can be calculated
that ρ1

bottom = ρ2
top = 2 and ρ2

bottom = ρ3
top = 3. These are the number of pixel rows

where the NDVI values are likely inflated and should be adjusted before consideration.
Note: that ρx > 0, if there is overlap, otherwise there is no overlap and, therefore, no
adjustment needed.
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Figure 11. Three plants in a crop row overlapping at top and bottom positions. The center points
and radii are also mentioned, which assist in extracting overlapping rows.
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3.4.2. Adjusting NDVI Values at Overlapping Pixel Rows

The symmetrical distribution of plant NDVI values with center maxima and a gradual
decrease towards the boundary of plant informs the adjustment procedure for overlapping
pixel rows (Figure 7).

Care must be taken to exclude overlapping areas from the determination of maximum
and minimum NDVI values. The use of the center row avoids overlapping areas and
increases the accuracy of maxima and minima. There are three steps described as follows:

1. the maximum and minimum NDVI values of the plant are first calculated, labelled as
Ib
max and Ib

min; respectively;
2. the whole center row is updated and will be used as a reference for the adjustment

of plant pixels at overlapping rows. The step size, which is the difference of NDVI
values between two adjacent pixels, is calculated as:

Istep =
Ib
max − Ib

min
R− 1

(6)

The center row is then updated with the following values:

Ib(Θr, :) = [Ib
min, Ib

min + Istep, Ib
min + 2 ∗ Istep, . . . . . . , Ib

max, . . . . . . , Ib
min

+2 ∗ Istep, Ib
min + Istep, Ib

min]1×(2R−1).
(7)

1. Let us take a symmetric reference vector, Vsym, such that
Vsym = [1, 2, 3, . . . , R− 2, R− 1, R, R− 2, R− 1, . . . , 3, 2, 1]. The NDVI values are
adjusted as following:

Ib(i, j) =


Ib(Θr , i + j− R) if

[(
Vsym(i) + Vsym(j)

)
> R + 1

]
& [i is an overlapping row],

Ib(Θr , 1) if
[(

Vsym(i) + Vsym(j)
)
≤ R + 1

]
& [i is an overlapping row],

Ib(i, j) otherwise, ∀ i ε [1, r], ∀ j ε [1, c].

(8)

As an example, after adjustment, the plant matrix Ib will look similar to the following
two-dimensional matrix if each pixel of Ib is adjusted, considering the plant has seven rows
and seven columns.

Ib =



Ib
min Ib

min Ib
min Ib

min Ib
min Ib

min Ib
min

Ib
min Ib

min Ib
min Ib

min + Istep Ib
min Ib

min Ib
min

Ib
min Ib

min Ib
min + Istep Ib

min + 2 ∗ Istep Ib
min + Istep Ib

min Ib
min

Ib
min Ib

min + Istep Ib
min + 2 ∗ Istep Ib

max Ib
min + 2 ∗ Istep Ib

min + Istep Ib
min

Ib
min Ib

min Ib
min + Istep Ib

min + 2 ∗ Istep Ib
min + Istep Ib

min Ib
min

Ib
min Ib

min Ib
min Ib

min + Istep Ib
min Ib

min Ib
min

Ib
min Ib

min Ib
min Ib

min Ib
min Ib

min Ib
min


7×7

To validate the results obtained from the digital adjusted plants, the phenomics of
these plants were correlated with the manually harvested fresh weights. The higher value
of correlation confirms the accuracy of extracted phenomics of the adjusted plants. The
results were obtained by considering two phenomic bio-characteristics: (1) area and (2)
mean NDVI values of adjusted plants.

After the adjustment of NDVI values and the extraction of circular plant regions, the
next aim was to extract the area and mean NDVI value of each plant for each field trial
image. The individual plant area was calculated as the product of number of non-zero
pixels with the area of one pixel in cm2 within the circular plant region. Mean NDVI was
tabulated by calculating the mean NDVI values of non-zero pixels with the bounding
box. The area provides information about the size of the plant and the mean NDVI value
indicates how dense the plant canopy is. Note that the area and mean NDVI values may
not be correlated, e.g., a plant with small area can have a similar mean NDVI value as a
plant occupying a large area.
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3.5. Testing of the Algorithm

Fresh biomass weights were collected for a subset of 480 perennial ryegrass plants
to measure their individual biomass yield. The field trial was located and operated by
Agriculture Victoria Research, Hamilton, Victoria, Australia (37.8464◦S, 142.0737◦E). The
Hamilton region is in the Victorian high rainfall zone, generally receiving >600 mm per
year of rain. Fresh weights were available for four harvesting dates (9 May 2017, 5 July
2017, 11 September 2017 and 20 November 2017) in different seasons of 2017 [34]. Harvest
dates were determined by the growth stage of the individual plants, in which the two to
three leaf stage was considered as a standard simulated grazing stage. The above-ground
biomass was harvested manually at 5 cm height.

The following phenomics metrics were compared via Pearson correlations (r) [35]:
mean NDVI of rectangular bounding boxes, area of rectangular bounding boxes, unadjusted
mean NDVI of circular plant regions, adjusted mean NDVI of circular plant regions and
area of circular plant regions.

4. Results and Discussions

The robustness of the proposed algorithm was tested by correlating extracted phe-
nomics metrics with harvest fresh weights. Metrics included the area calculated from
rectangular bounding boxes and their mean unadjusted and adjusted NDVI. The fresh
biomass weight value per individually harvested plant (82.48–127.18 g) varied across sea-
sons in 2017. Moreover, measured seasonal fresh biomass weight in 2017 indicated a wide
variability of biomass values (~1.41–428 g) for each measurement season for the individual
plants [34]. This suggests that biomass yield had sufficient variation to use to correlate the
NDVI and plant phenomics.

The Pearson correlation coefficients (r) between the area of circular plant regions
and fresh weights for four field trial images from four timepoints are shown in Table 1
and Figure 12a–d. The values of r for these four images demonstrate a good relationship
between fresh weight and circular area (0.63–0.75). The correlation could likely be further
improved by including height measures [22]. Areas extracted from the circular plant
regions were more closely correlated with fresh weights than those from rectangular boxes
(Table 1). The advantage of the circular areas was less pronounced at the May 2017 time
point, which also had the lowest number of plants overlapping across boxes. However, for
the other timepoints with higher degrees of plant overlap, the correlation for circular plant
regions was substantially higher than the rectangular boxes. There are two main reasons
for this: (1) most plants in these three field trial images had overgrown across bounding
boxes and merged with adjacent plants, thus, rectangular bounding boxes will not provide
an accurate measure of the area; (2) rectangular boxes may show an area that is entirely due
to the overlapping of neighboring plants, leading to an area or NDVI being attributed to
missing plants. These factors erode the accuracy of rectangular bounding boxes, especially
when there is substantial biomass.

Table 1. Values of ř calculated for the area extracted from rectangular and circular plant regions with
the fresh weights of subset of 480 perennial ryegrass plants.

Image Time Point
Correlation

Area of Rectangular Bounding Boxes Area of Circular Plant Regions

9 May 2017 0.74 0.75
5 July 2017 0.30 0.74

11 September 2017 0.28 0.63
20 November 2017 0.30 0.66
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To see the trends of individual plant’s values of fresh weight and extracted phenomics,
the ranges of fresh weight and area were normalized to a single range of [0, 100] and
plotted as a comparison, shown in Figure 13, which shows that plant fresh weight and area
follow a very similar pattern on 9 May 2017. This pattern is consistent with the other time
points (Supplementary Material, Figure S1–S3).

We further compared the mean adjusted and unadjusted plant NDVI of circular plant
regions and unadjusted NDVI of rectangular boxes to fresh weights (Table 2). The corre-
lations were moderate for rectangular boxes and ranged between 0.51 and 0.56. Circular
plant regions slightly improved in terms of correlations to 0.53 and 0.58. The relatively
low level of improvement is due to NDVI values being similar for both types of bounding
boxes, despite large differences in area. Further small correlation improvements (range
0.55–0.59) were achieved by adjusting NDVI values for circular plant regions by accounting
for plant overlap. While the improvement observed from adjusting NDVI, here, was minor,
the adjustment methods applied could be useful for other trials, crops or even data types
(e.g., point clouds).
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Table 2. Correlations of mean NDVI and fresh weights of subset of 480 perennial ryegrass plants for
rectangular boxes and proposed circular plant regions: with unadjusted and adjusted NDVI values.

Image Time Point

Correlation

Unadjusted NDVI from
Rectangular Boxes

Unadjusted NDVI from
Circular Plant Regions

Adjusted NDVI from
Circular Plant Regions

9 May 2017 0.56 0.56 0.57
5 July 2017 0.55 0.58 0.59

11 September 2017 0.52 0.54 0.55
20 November 2017 0.51 0.53 0.56

The multi-spectral images used in this study had a pixel size of approximately 2cm.
This was sufficient to distinguish single perennial ryegrass plants. The successful applica-
tion of our algorithm to other image datasets depends on their relative pixel and plant size.
Furthermore, we set a numerical threshold for NDVI intensity and the search space within
the bounding box to detect plant centers. In part, these values are expected to be dataset
specific and could depend on achieving relatively uniform plant spacing, and, therefore,
should be revisited during application. Finally, further improvements may be needed
to the determination of radii, especially when plants are large and overlap substantially
(Table 1, timepoints three and four), which adds noise and causes some overestimation.

The correlation of our phenomic bio-characteristics (plant areas and adjusted NDVI)
found in our study is at a level that is useful to provide proxy phenotypes of individual
biomass in the field. Plant breeding, with or without genomics, requires the phenotypic
screening of many breeding lines to select the best for commercialization or as parents
for the next breeding cycle. Furthermore, methods such as genomic selection require
a large training population of phenotype lines with genome-wide DNA markers [36].
The advantage of sensor-based methods is that they are non-destructive and take less
time to be conducted, which makes them suitable to be used at multiple time points
during the growing season. In pasture grasses, growth rate and recovery after harvest
are key properties that only non-destructive sensor-based methods can investigate at a
sufficient scale to be useful for plant breeding. Further, as pasture grasses are generally
outbreeding (i.e., they cannot self-pollinate making each plant genetically unique), it can be
of importance to measure single plants for research and selection purposes. Of particular
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interest, is the genetic predisposition of individual plants to compete with plants in close
proximity in the field because highly competitive plants will lead to non-uniform growth
patterns in the paddock, which is undesirable. The bio-characteristics defined in our
study provide crucial information at the individual plant level to better understand the
phenome-to-genome relationships of biomass production and other important traits.

5. Conclusions

Here, we present an efficient and effective solution to develop a machine-vision math-
ematical model that can extract plant phenomic bio-characteristics with sufficient accuracy,
despite the overlapping of adjacent plants. The estimation of plant areas when plants
are very large and overlap substantially could potentially be improved in future studies.
The mathematical model consisted of three parts: locating center points, extracting the
area by means of radius and center point, and extracting of mean NDVI via adjustment of
overlapping plant regions. Overall, correlations of phenomic metrics with fresh weights
were moderate, with plant areas derived from circular plant regions being more strongly
correlated than the NDVI derived measures. The proposed NDVI adjustment for overlap-
ping plant portions increased correlations with fresh weights slightly. As is the case with
all new proposals, we strongly encourage the evaluation of the algorithm performance
before deployment. The algorithms presented in this study can be applied to a wide variety
of crops and to other field trial designs.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-429
2/13/6/1212/s1, Figure S1: Comparisons between the individual plant values of normalized values
of fresh weights and areas for first 100 plants in a same range of [0, 100] for the field trial image taken
on 9 May 2017, Figure S2: Comparisons between the individual plant values of normalized values of
fresh weights and areas for first 100 plants in a same range of [0, 100] for the field trial image taken
on 11 September 2017,Figure S3: Comparisons between the individual plant values of normalized
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