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Abstract: The availability of groundwater is of concern. The demand for groundwater in Korea in-
creased by more than 100% during the period 1994–2014. This problem will increase with population
growth. Thus, a reliable groundwater analysis model for regional scale studies is needed. This study
used the geographical information system (GIS) data and machine learning to map groundwater
potential in Gangneung-si, South Korea. A spatial correlation performed using the frequency ratio
was applied to determine the relationships between groundwater productivity (transmissivity data
from 285 wells) and various factors. This study used four topography factors, four hydrological
factors, and three geological factors, along with the normalized difference wetness index and land use
and soil type. Support vector regression (SVR) and metaheuristic optimization algorithms—namely,
grey wolf optimization (GWO), and particle swarm optimization (PSO), were used in the construction
of the groundwater potential map. Model validation based on the area under the receiver operating
curve (AUC) was used to determine model accuracy. The AUC values of groundwater potential maps
made using the SVR, SVR_GWO, and SVR_PSO algorithms were 0.803, 0.878, and 0.814, respectively.
Thus, the application of optimization algorithms increased model accuracy compared to the standard
SVR algorithm. The findings of this study improve our understanding of groundwater potential in a
given area and could be useful for policymakers aiming to manage water resources in the future.

Keywords: Gangneung-si; groundwater potential mapping; SVR; GIS; machine learning; metaheuris-
tic algorithm

1. Introduction

Water resources are an essential aspect for living in this world, including surface water
and groundwater, and are recycled through evaporation, precipitation and surface runoff.
Recent climate change projections point to increased spatial and temporal heterogeneity
in the water cycle, which would lead to water demand outstripping supply [1]. Over the
next several decades, demand for water resources, including groundwater, is expected to
increase significantly [2–4]. Groundwater is defined as water in a saturated area which
fills in the pore spaces between mineral grains or cracks and fractured rocks in a rock
mass [5]. The World Economic Forum has stated that water shortages will be a global
problem in the future. Currently, approximately 20% of water consumed by humans is
derived from groundwater, and this proportion is projected to increase over the next several
decades [6,7]. Climatic conditions also have an important role in groundwater availability,
affecting both spill patterns and runoff time [2]. The widespread use of groundwater in
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industry, agriculture and everyday life presents challenges related to its management. With
the existence of climate anomalies and increasing population development, it will cause a
shortage of water resources in various regions.

In Korea, groundwater demand increased by more than 100% from 1994 to 2014 [8].
The increasing demand for high-quality water, coupled with the anticipated pressure of
global climate change, urgently requires quantitative methods for assessing groundwater
production in aquifers. However, due to this costly and time-consuming method [5], a reli-
able approach for assessing aquifer productivity has not been well established. Therefore,
the development of a reasonable groundwater potential model is essential for future system
development, effective management, and sustainable use of groundwater resources [9].
Also, a reliable groundwater analysis model is needed to facilitate resource management
and identify additional water sources worldwide.

In general, groundwater exploration programs are mainly based on hydrological tests,
field surveys and geophysical methods [4,10]. However, these lines of action are time-
consuming, costly, and demand experienced workers [11]. Meanwhile, field exploration
based on hydrological or geophysical resistivity surveys cannot always represent factors
that influence groundwater conditions and movements [12]. Therefore, it is necessary to
develop groundwater analysis methods that can clarify the hydrological relationship with
groundwater, such as the use of data specific capacity, transmissivity and yield [13].

A careful study of the literature shows that groundwater potential maps have different
meanings to different authors. In general, groundwater potential is defined as optimal
zones for groundwater development or how likely groundwater is to be present [14].
Groundwater potential mapping estimates the probability of groundwater occurrence in
a given area. In general, this mapping involves statistical analysis of various types of
field data. Remote sensing (RS) data collection processes enhance spatial coverage which
increasing the type and availability of data [15–18]. Geographical information system (GIS)
technology can be used to assess large areas in a more cost-efficient manner [12,19]. The
development of GIS technology has increased in recent years as various spatial modeling
techniques having been introduced to evaluate groundwater. Preliminary GIS studies using
machine learning and statistical methods can be useful to analyze groundwater availability
according to topographical and geographical factors, among others [7]. Thus, potential
groundwater wells can be mapped to facilitate groundwater detection more efficiently.

Along with the increasing number and complexity of data in GIS, a reliable model
was required to help solve those problems. Various models have been proposed to as-
sess groundwater potential, including frequency ratio (FR) [20,21], weight of evidence
(WoE) [22,23] and evidential belief function (EBF) [24,25] models, as well as machine learn-
ing models such as artificial neural network (ANN) [26], random forest (RF) [27,28], logistic
regression [29,30], and support vector machine (SVM) [13,31] models. Some of these studies
still have limitations in their predictions which are influenced by the accuracy of the data
set and the internal structure of the model [32]. In addition, the computational process
using large data sets and different ranges of validation and training values is a weakness of
artificial neural networks [33]. In the context of groundwater mapping, several studies still
use indirect indicators such as yield, resistance and spring location compared to hydraulic
constants such as transmissivity and specific capacity.

In this study, the groundwater potential mapping was constructed and analyzed
based machine learning approach using support vector regression (SVR) with training
and datasets was derived from hydraulic dataset of transmissivity. SVR a variant of
SVM models have also been developed and widely used for GIS mapping [34,35]. The
principles of SVR and SVM are similar, although SVR has additional parameter settings [36].
Parameter values of the SVR can influence the learning process and reliability of model
results. Therefore, determining operational parameters becomes a challenge in the process
of getting the expected results.

In order to overcome the determining parameter challenges, meta-heuristic optimiza-
tion algorithms were used in this research, including grey wolf optimization (GWO) [35,37]
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and particle swarm optimization (PSO) [38,39]. GWO is an optimization algorithm that
has been widely used in the process of optimizing models in GIS applications [40]. It has
been widely tailored for a wide variety of optimization problems due to its impressive
characteristics over other swarm intelligence methods: it has very few parameters, and no
derivation information is required in the initial search [41]. Likewise, PSO is considered
reliable in the computational process for model optimization which provides a soft compu-
tational and quick convergence [39]. It is hoped that the process of using the optimization
algorithm can improve the performance of the groundwater model. The meta-heuristic
optimization algorithm can increase the accuracy of model predictions by tuning SVR
machine learning parameters.

However, the use of SVR and meta-heuristic algorithms is still rarely used in ground-
water mapping research. Therefore, in this study, the application of the hybrid algorithm
for mapping groundwater potential was carried out. Combined with the use of hydraulic
datasets derived from transmissivity as direct indicators to get better results. In this study
had the advantage of comparing the accuracy and reliability of SVR and SVR optimization
models for groundwater analysis based on the area under the curve (AUC). The AUC
denotes the accuracy probability of groundwater occurrence. The FR describes the spatial
relationships between dependent and independent variables in the context of groundwater
potential; factors are ranked for ease of interpretation. The factors used in this study
were obtained from RS data. The results could serve as a reference for policymakers
aiming to manage water resources, and for future machine learning-based groundwater
potential mapping.

2. Materials and Methods
2.1. Study Area

The study area was the Gangneung-si area of Gangwon-do Province, located on the
east coast of the Korean Peninsula at 37◦45′ N, 128◦54′ E. The total coastline length is
approximately 73.72 km. With a population of 213,199 people and a population density
of 205/km2, Gangneung is one of the three largest cities in Gangwon-do Province [42]. A
Sentinel-2 optical image of the study area is shown in Figure 1. Gangneung has warmer
weather in summer and colder weather in winter than other areas. The months with
the highest and lowest average temperatures are July (36.1 ◦C) and January (−1.8 ◦C),
respectively. The mean annual precipitation in Gangneung is 1320.3 mm/year, with
753.4 mm occurring in summer [43].
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Figure 1. Optical image of the study area in Gangneung-si acquired from the Sentinel-2 satellite.

The geologic distribution in Gangneung-si consists mainly of Jurassic granite, followed
by Precambrian and Triassic age sedimentary rocks around the lower coast [44]. In addition,



Remote Sens. 2021, 13, 1196 4 of 23

alluvial deposits are distributed along rivers and tributary streams. The aquifer of the
study area is dominantly alluvium, with sedimentary rock in the lowlands [43].

In general, the groundwater in Gangneung-si comes from several sources, including
rivers and dams. The available capacity is 1,650,000 m3/year. Groundwater in this area is
mainly used for agriculture (71.6%), followed by domestic use (28.4%) [45]. The land use
distribution of the study area is 80.4% forest, followed by agricultural land and urban areas.
Due to the projected increase in groundwater demand in the area, groundwater potential
assessment is needed.

2.2. Groundwater Datasets

Groundwater productivity data was calculated based on groundwater transmissivity
(T) data obtained from 285 wells in Gangneung-si. T values above the median were
included in the inventory dataset used for groundwater potential analysis. Groundwater
pumping data were obtained from national- and local government-level groundwater
surveys conducted by the Korea Water Resource Corporation (K-Water) [46].

T represents the flow rate under a unit hydraulic gradient through a unit width of a
particular thickness’s aquifer. It is the product of the average hydraulic conductivity and
the thickness of the aquifer formation, and can be calculated as follows:

K′(x, y) =
1
b

∫ b

0
K(x, y, z) dz (1)

T = Kb (2)

where T is transmissivity, K is hydraulic conductivity, and b is aquifer thickness. A decrease
in the drawdown and a thicker aquifer produce higher T values. By combining Equation (2)
and Darcy’s law, we can calculate the amount of water flowing in aquifer units [47].

In this study, the T data were applied to the FR and machine learning models, and used
to examine various aspects of groundwater. Groundwater transmissivity data (T) obtained
from well locations as mentioned above. In order to apply FR and machine learning models,
groundwater productivity data were converted into binary form which is 0 and 1 [48].
The split criteria was the median of groundwater transmissivity, where the value above
the transmissivity is designated as “1”, and the other data is expressed as “0” [12]. The
groundwater productivity data were randomly extracted with their statistical attributes and
divide into a data set with 285 points, where half of the well points meeting the criterion in
each dataset for training and testing. The groundwater productivity data were randomly
separated into training (70%) and testing (30%) datasets, of which proportions used are
typical of machine learning studies [49,50]. T data from 199 and 86 wells were included in
the training and testing datasets, respectively.

2.3. Selection of Groundwater-Related Factors

It is important to select the most relevant conditioning factors for groundwater po-
tential mapping. Topographic, geologic, and hydrologic factors can affect the probability
of groundwater occurrence, while factors such as land use, climate, and vegetation affect
groundwater recharge capacity and demand [51]. Based on a literature review, 13 factors
related to groundwater were selected and classified as topographical factors (slope, slope
height, elevation, topographic wetness index [TWI]), hydrological factors (precipitation,
LS-factor, and water density) [15,31,52]. Moreover, geological factors (lithology, distance to
fault, lineament density), land use, soil type, and the normalized difference wetness index
(NDWI) are considered in this study [53,54]. However, the relations among the factors
with groundwater have not been verified either statistically or quantitatively. In this study,
the 13 groundwater related-factors were reviewed with regard to transmissivity using FR.
Afterward, the 13 factors were selected and applied to the SVR algorithm to generate the
groundwater probability map. The 13 factors were derived from the RS images shown in
Figure 2.
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Thematic maps (elevation, slope, slope height, LS factor, and TWI) were derived
from a digital elevation model (DEM) constructed from digital topographic maps (scale
1:5000) provided by the National Geography Information Institute (NGII) in 2015. We
generated the thematic map by using the GIS application. The topographic maps were
constructed based on ground control points from digital aerial photographs and ground
surveys. Further calibration of the topographic maps was performed based on field surveys.
All data were resampled to a pixel size of 30 × 30 m. Topography is important for runoff
generation and retention, and water concentrations [55].

Elevation in the study area is denoted by contour lines and is associated with climate,
soil and vegetation conditions [56]. In elevated regions, runoff conditions are higher and
infiltration is low, even though precipitation is higher [16]. Bare areas have slower runoff,
and infiltration leads to groundwater recharge. The elevation map used in this research is
shown in Figure 2a.

Remote Sens. 2021, 13, x FOR PEER REVIEW 5 of 24 
 

 

the criterion in each dataset for training and testing. The groundwater productivity data 
were randomly separated into training (70%) and testing (30%) datasets, of which propor-
tions used are typical of machine learning studies [49,50]. T data from 199 and 86 wells 
were included in the training and testing datasets, respectively. 

2.3. Selection of Groundwater-Related Factors 
It is important to select the most relevant conditioning factors for groundwater po-

tential mapping. Topographic, geologic, and hydrologic factors can affect the probability 
of groundwater occurrence, while factors such as land use, climate, and vegetation affect 
groundwater recharge capacity and demand [51]. Based on a literature review, 13 factors 
related to groundwater were selected and classified as topographical factors (slope, slope 
height, elevation, topographic wetness index [TWI]), hydrological factors (precipitation, 
LS-factor, and water density) [15,31,52]. Moreover, geological factors (lithology, distance 
to fault, lineament density), land use, soil type, and the normalized difference wetness 
index (NDWI) are considered in this study [53,54]. However, the relations among the fac-
tors with groundwater have not been verified either statistically or quantitatively. In this  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2. Cont.



Remote Sens. 2021, 13, 1196 6 of 23Remote Sens. 2021, 13, x FOR PEER REVIEW 6 of 24 
 

 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

 

(j) 

Figure 2. Cont.



Remote Sens. 2021, 13, 1196 7 of 23Remote Sens. 2021, 13, x FOR PEER REVIEW 7 of 24 
 

 

 

(k) 

 

(l) 

 

(m) 

Figure 2. Selected groundwater-related factors: (a) elevation, (b) slope, (c) slope height, (d) TWI, 
(e) LS, (f) precipitation, (g) water density, (h) NDWI, (i) land use, (j) soil type, (k) lithology, (l) 
lineament density, and (m) distance to fault. 

Thematic maps (elevation, slope, slope height, LS factor, and TWI) were derived from 
a digital elevation model (DEM) constructed from digital topographic maps (scale 1:5000) 
provided by the National Geography Information Institute (NGII) in 2015. We generated 
the thematic map by using the GIS application. The topographic maps were constructed 
based on ground control points from digital aerial photographs and ground surveys. Fur-
ther calibration of the topographic maps was performed based on field surveys. All data 
were resampled to a pixel size of 30 × 30 m. Topography is important for runoff generation 
and retention, and water concentrations [55]. 

Elevation in the study area is denoted by contour lines and is associated with climate, 
soil and vegetation conditions [56]. In elevated regions, runoff conditions are higher and 
infiltration is low, even though precipitation is higher [16]. Bare areas have slower runoff, 
and infiltration leads to groundwater recharge. The elevation map used in this research is 
shown in Figure 2a. 
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The infiltration rate is often analyzed when mapping groundwater potential, and is
influenced by slope conditions. On a steep slope, the water flow rate is high, which reduces
the infiltration rate in the recharge zone [57,58]. Slope height is related to flow rate and
can affect slope stability, which lead to the runoff rate. Gentle slope means slower runoff
and therefore more time for infiltration. Conversely, steep slope means more erosion and
shorter residence time. In groundwater potential mapping, this is usually related to the
low probability of unconsolidated sediment accumulation and recharge [55]. GIS data
were analyzed to determine slope variation in the study area and its effect on groundwater
potential, as shown in Figure 2b,c.

The TWI, used widely in groundwater potential mapping studies, is shown in
Figure 2d. The TWI provides information on the spatial distribution of hydrological
variables such as infiltration potential or soil moisture. Also, the TWI can reflect the rela-
tion between water accumulation on any point area and the gravitational force that drives
water down slope [59]. The higher index represents a lower slope and larger area, which
provide a positive correlation between groundwater occurrence and TWI [5].

The relationship of LS with groundwater was determined to know the water behavior
that leads to groundwater potential, as shown in Figure 2e. Precipitation data are crucial for
mapping groundwater potential, and can help reveal the relationship between precipitation
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and groundwater recharge [60]. The precipitation map in this study was based on average
precipitation data obtained from 103 weather stations in South Korea, for the period
2015–2020, by the Korea Meteorological Administration (KMA). We created a spatial
map of precipitation—shown in Figure 2f—by using inverse distance weighting (IDW)
interpolation.

Water density controlled by different litho-unit, structure and morphology of an
area and helps to assess the characteristics of runoff and groundwater infiltration [61].
Water density is related to permeability and surface runoff, which affect groundwater
potential. The high-water density means that the runoff can be emptied quickly and the
possibility of infiltration is less. However, there are some exceptions because groundwater
is expected to accumulate in alluvial sediments in flat areas of the watershed [62]. The
water density map for this study is shown in Figure 2g. The NDWI evaluates wetness
based on green and near-infrared bands. The use of the NDWI factor can describe the
condition of soil moisture related to the humidity by the vegetation cover. This factor can
reflect the evapotransport conditions, as well as the infiltration rate associated with the
water table conditions. Even so, the annual average precipitation accumulation factor is
used to complement the consideration of the potential presence of groundwater [53,63]. In
this research, the NDWI of Gangneung-si (Figure 2h) was process from Landsat-8 OLI data
in 2019.

Groundwater is closely associated with the landscape and land use; the landscape
is affected by anthropogenic activities [64]. Land use affects groundwater resources by
influencing recharge and water demand [51]. Land use is a significant factor affecting the
groundwater recharge process, as it influences evapotranspiration, runoff and recharge of
the groundwater system [65]. Kompsat-2 and 3 satellite images were used to reconstruct
the 1:50,000 scale land use map in 2012 of the Ministry of Environment [66]. We divided
the land use types into seven categories: urbanized area, agricultural area, forest area,
grassland area, marsh area, bare ground area, and water area (Figure 2i). Soil type is
often used in groundwater recharge and evaluation studies. This is mainly because soil
permeability is directly related to effective porosity, particle shape and size, and porosity,
which means that soil type plays an important role in infiltration [67,68]. For this reason,
studies that consider soil-related variables are often carried out in conjunction with rainfall
and/or recharge [69].The soil map used in this study (Figure 2j) was constructed on a
1:25,000 scale map issued by the Rural Development Administration (RDA), the data was
constructed by field research by RDA in 2007.

Lithology is an important factor in the occurrence and distribution of groundwater,
and provides information about the water stored in a particular area [64]. Lithology can
affect groundwater recharge via its influence on water percolation [50]. The lithology map
used in this study was created based on the 1:50,000 scale geological maps of the Korea
Institute of Geoscience and Mineral Resources (KIGAM), which was provided in 2015. The
lithology of the study area was divided into granite, gneiss, sedimentary rock, alluvium,
and limestone categories, as shown in Figure 2k. The occurrence and movement of ground-
water are controlled by porosity, permeability, aquifer layout, horizontal distribution, and
recharge area. In the east part of the study area, both the Quaternary and Tertiary aquifers
have major porosity, which is conducive to the formation of potential groundwater in the
coastal aquifers [70].

Lineaments are generally described in studies analyzing fractures, and provide infor-
mation on the linear properties of geological structures [71]. The distribution of lineaments
is related to the location of groundwater, due to its association with the presence of faults,
fractures, and joints, all of which impact porosity and permeability [72]. The relationship
between lineament density and groundwater productivity can be derived for a given area;
the lineament map of our study area is shown in Figure 2l. A fault is a geological structure
that should be considered when mapping groundwater potential. Faults influence ground-
water potential in a given area. The distribution of faults is related to groundwater storage
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potential, which in turn affects the groundwater recharge rate [31]. The fault map of this
study is displayed in Figure 2m.

2.4. Methodology

To map groundwater potential using a machine learning algorithm, several steps must
be performed, as described below:

First, the spatial correlations between the presence of groundwater and related factors
(topographical, geological, and hydrological factors) are calculated using the FR. In this
research, we analyzed the spatial correlation between groundwater well locations (T points)
and 13 factors related to groundwater productivity, based on the FR of each factor. We
obtained the spatial correlations between groundwater and related factors by calculating
the ratio between the groundwater productivity area and the whole study area. The FR for
each factor was calculated by the following Equation (3) [73].

FR =
% o f class o f related f actor

% o f total area
(3)

When the FR is >1, the spatial correlation of a particular class of a given factor with
groundwater is stronger, and vice versa for lower FR values [74]. FR results can be used as
a reference for groundwater potential mapping [75].

To apply the machine learning algorithm, T data are converted to binary form, then
partitioned randomly to training data (70%) and testing data (30%). The groundwater
related factor maps were produced at 30 m resolution. First, the value of T is determined,
and included as an independent variable in the training dataset. Then, all data are classified
as categorical or continuous. Continuous variables include the TWI, LS factor, water density,
lineament density, slope, distance to fault, and elevation. Categorical variables include
lithology, soil type, and land use.

In this study, a metaheuristic optimization algorithm (GWO and PSO) was used to
determine the operational parameters of the SVR based on a prepared dataset (factors).
Then, the SVR machine learning algorithm was used to create a groundwater probability
model in Gangneung. In order to validate the mapping results, 285 T data points were
randomly divided into training and testing datasets, as discussed above. Model validation
was carried out through ROC curve analysis of the testing dataset (30%). Receiver operating
characteristic (ROC) curve analysis, as an index of model performance, is commonly used
to assess predictive accuracy [76]. To quantitatively determine the accuracy of the model
verification, the area under the curve (AUC) of the ROC curve is calculated for the total area
and correct predictive accuracy is obtained. AUC values ranges between 0.5 and 1; higher
values indicate more reliable algorithm performance. The workflow of the groundwater
potential mapping carried out in this study is provided in Figure 3.

2.5. Support Vector Regression

SVR is based on the SVM algorithm rule, as stated previously [77]. SVR is one of the
most widely used supervised classification methods uses for regression and classification
problems because of its ability to universally approximate the multivariate task at any
degree of accuracy [78]. In regression analysis, the correlation, or nonlinear mapping
characteristic f (x), of the input and output of the learner is acquired. The SVR seeks to
generate a “nonlinear mapping characteristic” to map the training data {xi, yi, ; i = 1, . . . , n}
to an excessively high dimensional characteristic space. The nonlinear mapping of the
input and output of the learner can be defined in Equation (4) [79]:

F f (x) = wT ϕ(x) + b, (4)
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where w and b are the coefficients to be adjusted. The empirical risk can be defined as
Equation (5):

Remp( f ) =
1
n

n

∑
i=n

Θε(yi, f (x)), (5)

where Θε is the insensitive loss function, which can be calculated using Equation (6):

Θε(yi, f (x)) =
{
| f (x)− y| − ε, i f Θε(yi, f (x)) ≥ ε

0, O.W
(6)

This equation is used to acquire the best hyperplane for dividing the training data
into subsets with the optimal separation distance. SVR is an optimizing problem with the
following goal function:

Minw,b,ξ∗ ,ξ Rε(w, ξ∗, ξ) =
1
2

wTw + C
n

∑
i=n

(ξi + ξn
i ), (7)

where C is the trade-off between the first and second equation terms. In this equation the
large weights can be adjusted by maximizing the distance between data points. The loss
feature (ε) is used to divide the training errors between f (x) and y. The constraints of this
optimization problem are shown in Equation (8):

yi − wT ϕ(xi)− b ≤ ξ∗i ε, i = 1, . . . n.
−yi − wT ϕ(xi)− b ≤ ξ∗i ε, i = 1, . . . n.

ξi, ξn
i ≥ 0, i = 1, . . . n.

(8)

As noted previously, the SVR parameters affect the accuracy of model predictions.
Hence, it is essential to select suitable parameters. In this study, the metaheuristic optimiz-
ing algorithm was used to determine the SVR parameters.
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2.6. Grey Wolf Optimization

GWO is a metaheuristic algorithm that imitates the hunting behavior and social
hierarchy of grey wolves [80]. Grey wolves live in groups with a social dominance hierarchy.
They engage in various group activities, including hunting prey [81]. Grey wolves are
classified according to social status as (from high to low) alpha, beta, delta, or omega.
Alpha wolves are tasked with making decisions; beta wolves assist and advise them [82].
Delta wolves obey the leaders, as do omega wolves. In the GWO technique, the alpha, beta,
and delta wolves guide the other wolves to the best area for hunting. GWO has several
steps based on the hunting behavior of the grey wolf, namely searching for, tracking,
chasing approaching and attacking prey. The location of other wolves during exploration
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(hunting) can be updated according to the location of the leader wolves (
→
Xα,

→
Xβ,

→
Xδ) using

Equation (9) [40]:

→
X1(t) =

→
Xα(t)−

→
A1.|

→
C1.
→
Xα(t)−

→
X(t)|

→
X2(t) =

→
Xβ(t)−

→
A2.|

→
C2.
→
Xβ(t)−

→
X(t)|

→
X3(t) =

→
Xδ(t)−

→
A3.|

→
C3.
→
Xδ(t)−

→
X(t)|

→
X(t + 1) = {

→
X1(t)+

→
X2(t)+

→
X3(t)}

3

(9)

where X represent the position vector of grey wolf and t shows the number of iterations. A
and C are coefficient vectors given in Equation (10):

→
A = 2

→
a .
→
r 1 −

→
a

→
C = 2

→
r 2

(10)

where
→
a is linearly decreased from 2 to 0 during iteration. Meanwhile, r1 and r2 indicate

random vectors in the range between 0 and 1.

2.7. Particle Swarm Optimization

PSO is an optimization technique that imitates the collective behavior exhibited by
a flock of birds, a school of fish, or a swarm of insects. This method is similar to the GA,
which uses population fitness data to find an optimal solution to a given problem [83].
PSO is advantageous for optimizing nonlinear problems, showing fast convergence and
requiring few computations. These capabilities separate PSO from other evolutionary
algorithms, such as the GA. In PSO, each bird in a flock is considered as a particle, which
are searched for in n-dimensional space to find the optimal solution (where n is the number
of problem parameters) [39]. Particles are scattered randomly within the search space.
After every iteration, according to the equation 11 and equation 12 every particle adjusts
its location by finding the most specific location that it has ever occupied and also the best
one adjacent to its neighbor.

To simulate the behavior of a flock of birds, the location, and rate of change therein, of
the i-th iteration are given by xt

i =
(
xt

i1, xt
i2, . . . , xt

in
)

and vt
i =

(
vt

i1, vt
i2, . . . , vt

in
)
, respectively.

During model training, the location, and rate of change therein, of the i-th iteration are
updated using the following Equations (11) and (12) [84]:

vt+1
i = Wvt

i + Cir1
(

Pt
in − xt

in
)
+ C2r2

(
Pt

gn − xt
in

)
(11)

xt+1
in = xt

i + vt+1
i (12)

where W is the inertia weight, Ci and C2 are the personal and social learning factors,
respectively, r1 and r2 have random values from 0 to 1, and Pt

in and Pt
gn are the best locations

for particle i and the swarm, respectively, at iteration n. The algorithm continues until the
best location for each particle is equal to the best position for all particles. All particles are
focused on one point in space, and the solution to the problem is thus optimized [38].

3. Results
3.1. Relationships between Groundwater and Related Factors

FR values can provide information on the relationship between groundwater potential
and related (topography, hydrology, geology, and land cover) factors. The FR is calculated
for each class of each factor based on the T value. The FR values calculated in this study
are shown in Table 1.
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Table 1. Frequency ratios of groundwater-related factors.

Factor Class Total % Event % Frequency Ratio

Elevation (m)

0–100 9.88 52.72 5.34
100–222 10.47 21.74 2.08
222–356 11.11 8.70 0.78
356–495 9.92 5.98 0.60
495–623 10.00 3.80 0.38
623–735 9.90 1.09 0.11
735–846 9.73 2.17 0.22
846–968 9.83 3.26 0.33

968–1119 9.71 0.00 0.00
>1119 9.54 0.54 0.06

Slope (degrees)

0–3.95 10.66 51.09 4.79
3.95–9.64 10.02 30.43 3.04

9.64–14.84 10.15 11.41 1.12
14.84–19.29 9.94 4.89 0.49
19.29–23.50 9.89 1.09 0.11
23.50–27.46 9.95 0.54 0.05
27.46–31.17 10.02 0.54 0.05
31.17–34.88 9.79 0.00 0.00
34.88–39.34 9.85 0.00 0.00

>39.34 9.74 0.00 0.00

Slope height (m)

0–6.37 9.99 24.46 2.45
6.37–10.61 10.00 15.76 1.58
10.61–12.74 10.00 25.00 2.50
12.74–14.86 10.00 30.43 3.04
14.86–23.36 10.00 3.26 0.33
23.36–33.98 10.00 0.54 0.05
33.98–48.85 10.00 0.00 0.00
48.85–70.09 10.00 0.54 0.05

70.09–108.32 10.00 0.00 0.00
>108.32 10.00 0.00 0.00

TWI

1.65–4.74 10.00 0.00 0.00
4.74–5.14 10.00 0.00 0.00
5.14–5.54 10.00 0.00 0.00
5.54–6.04 10.00 1.09 0.11
6.04–6.74 10.00 2.17 0.22
6.74–7.64 10.00 5.98 0.60
7.64–9.24 10.00 6.52 0.65

9.24–12.53 10.00 12.50 1.25
12.53–13.93 10.00 28.26 2.83
13.93–27.21 10.00 43.48 4.35

LS-factor

0–3.59 10.66 51.09 4.79
3.59–7.18 9.94 25.54 2.57

7.18–10.78 9.93 10.33 1.04
10.78–14.37 9.93 5.98 0.60
14.37–17.97 9.93 3.26 0.33
17.97–21.56 9.93 1.09 0.11
21.56–26.36 9.92 1.63 0.16
26.36–32.25 9.92 0.54 0.05
32.35–38.73 9.92 0.00 0.00

>38.73 9.92 0.54 0.05
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Table 1. Cont.

Factor Class Total % Event % Frequency Ratio

Precipitation
(mm/year)

1198–1245 4.30 0.00 0.00
1245–1275 6.96 2.72 0.39
1275–1294 6.23 7.61 1.22
1294–1309 9.37 6.52 0.70
1309–1322 12.12 4.89 0.40
1322–1335 14.84 5.98 0.40
1335–1350 13.31 6.52 0.49
1350–1367 12.30 14.67 1.19
1367–1383 13.47 30.43 2.26
1383–1410 7.10 20.65 2.91

Water density
(km/km2)

0 14.10 8.15 0.58
0–1.58 9.54 5.98 0.63

1.58–2.77 9.54 4.89 0.51
2.77–3.96 9.54 5.43 0.57
3.96–5.15 9.54 6.52 0.68
5.15–6.34 9.55 11.41 1.20
6.34–7.52 9.55 8.70 0.91
7.52–9.11 9.55 8.70 0.91

9.11–11.49 9.55 13.59 1.42
>11.49 9.54 26.63 2.79

NDWI

−0.57–−0.04 10.00 37.50 3.75
−0.04–0.02 10.00 29.89 2.99
0.02–0.08 10.00 13.04 1.30
0.08–0.15 10.00 8.15 0.82
0.15–0.23 10.00 4.89 0.49
0.23–0.32 10.00 3.26 0.33
0.32–0.41 10.00 1.09 0.11
0.41–0.5 10.00 1.09 0.11
0.5–0.61 10.01 0.54 0.05

>0.61 10.01 0.54 0.05

Land use

Urban 3.61 21.58 5.98
Agricultural 11.95 57.55 4.82

Forest 78.19 11.87 0.15
Grassland 3.28 4.68 1.42

Marsh 0.29 0.72 2.51
Water body 1.52 2.52 1.65
Bare ground 1.16 1.08 0.93

Soil type

Common paddy 0.60 6.52 10.81
Immature paddy 0.35 4.89 13.91

Sandy paddy 3.85 26.09 6.78
Wet paddy 2.48 11.41 4.60

Common field 5.24 23.37 4.46
Immature field 1.80 3.80 2.11

Sandy field 1.25 2.72 2.17
Red/yellow forest

soil 1.04 2.17 2.10

Volcanic ash soil 2.22 3.26 1.47
Rock/soil 78.97 13.59 0.17

Other 2.20 2.17 0.99

Lithology

Alluvium 5.82 28.06 4.82
Biotite granite 0.10 0.00 0.00

Dyke 0.01 0.00 0.00
Gneiss 4.35 0.00 0.00
Granite 54.83 43.88 0.80

Limestone 17.89 3.60 0.20
Sedimentary rock 16.34 24.46 1.50

Water 0.66 0.00 0.00
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Table 1. Cont.

Factor Class Total % Event % Frequency Ratio

Lineament
density

(km/km2)

0.10–0.17 99.62 242.11 2.43
0.17–0.19 100.57 173.68 1.73
0.19–0.22 100.64 100.00 0.99
0.22–0.24 100.66 89.47 0.89
0.24–0.26 100.66 68.42 0.68
0.26–0.27 100.65 42.11 0.42
0.27–0.29 100.66 36.84 0.37
0.29–0.31 100.63 60.82 0.60
0.31–0.34 100.67 81.29 0.81

>0.34 100.67 73.68 0.73

Distance to fault
(m)

0 10.05 6.52 0.65
0–1052 10.02 8.15 0.81

1052–2104 10.00 7.07 0.71
2104–3156 10.00 5.43 0.54
3156–4208 10.00 9.24 0.92
4208–5260 9.99 12.50 1.25
5260–6838 10.00 6.52 0.65
6838–8942 9.99 11.41 1.14

8942–12,624 10.00 14.67 1.47
>12,624 9.96 18.48 1.86

According to the FR value of 5.34, there was abundant groundwater in areas with
low elevation (0–100 m) and its show a strong spatial correlation with groundwater. Slope
showed an inverse relationship with groundwater availability. Groundwater probability
was highest for the (low) slope class of 0–3.96 (FR = 4.79), where it is more difficult for
groundwater to accumulate on steep slopes due to the water flow and velocity condi-
tions [55]. Slope height and LS-factor also showed an inversely proportional relationship
with groundwater potential. The FR values were highest for the slope height class of
12.74–14.86 (FR = 3.04) and LS-factor class of 0–5.8 (FR = 4.79).

The presence of groundwater was more likely with a higher TWI. Water-retaining
ability and water density are promoted by a high TWI (>13.93). The highest FR value for
water density factor was seen in the >11.49 class (FR = 2.79). This spatial correlation of water
density is an example of one exception given the geological and lowland characteristics
of this area. The highest FR value for NDWI was in the 0.57 to −0.04 class (3.75). Taken
together, the results show that the probability of groundwater is higher in areas with bodies
of water.

The relationships between the presence of groundwater and geological factors were
also analyzed. Regarding the distance from a fault factor, the highest FR value occurred in
the class of >12,624 m (FR = 1.86). Lineament density showed an inversely proportional
relationship with the presence of groundwater, and the highest FR value occurred in the
class of 0.1–0.77 (FR = 2.43). An area with lower lineament density has better recharge
potential and is more likely to hold groundwater [71]. And for FR calculation of lithology
factor shown the high spatial correlation with Alluvium (FR = 4.802). Alluvium as the
dominant aquifer structure in this area has a relation with groundwater presence.

Regarding soil types, the FR value was highest for immature paddy, at 13.1. Among
the land use types, the FR value was highest for urban areas, at 5.98. The urban area has a
relation with the groundwater condition which indicates by groundwater consumption
and the rate of groundwater recharge by anthropogenic activity.

3.2. Construction of Groundwater Potential Maps

Groundwater potential mapping of the Gangneung-si area was performed by applying
a machine learning algorithm, as discussed above. A combination of 13 groundwater-
related factors served as the dependent variables, and can be mainly classified as topogra-
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phy, hydrology, geology, and land use factors. Optimization algorithms (GWO and PSO)
were applied to the SVR machine learning method to produce the groundwater potential
maps. In the maps, blue color indicates a very high probability of groundwater, and brown
color indicates a very low probability. The mapping result of each algorithm can be seen in
Figure 4.
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Figure 4. Groundwater potential maps generated using three algorithms: (a) SVR algorithm, (b) SVR_GWO algorithm, and
(c) SVR_PSO algorithm.

In general, high probability class of groundwater; blue areas were similar among the
three algorithms (SVR, SVR_GWO and SVR_PSO). These high probability class are located
in the eastern part which is associated with areas composed of alluvium and low elevation.
Based on the existing spatial thematic data, accumulated water on flowing to lower areas
can increase the infiltration rate in the lowlands. Lowland conditions which are dominated
by alluvium and sedimentary rocks that have pores allow the infiltration process that
leads to groundwater recharging. However, the infiltration rate is highly dependent on the
type of land cover, soil properties and saturation level in absorption. On the other hand,
the distribution of moderate class of SVR_GWO and SVR_PSO was found in coastal area.
This finding could be related to coastal aquifer conditions which could be influenced by
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other factors such as sea water intrusion. Besides, low probability (brown) areas are in the
western part of the study area, which is characterized by rock and forest cover. Also, the
characterized of western part has a weak spatial relationship with groundwater presence
than its affect to the mapping result.

A validation step was conducted to assess the reliability of the groundwater potential
map from each algorithm. The accuracy of the groundwater potential maps generated
using the three algorithms was then evaluated based on ROC curve analysis of the testing
dataset (30% of all data). The AUC values were 0.803, 0.878, and 0.814 for SVR, SVR_GWO
and SVR_PSO, respectively (Figure 5). The results imply that the algorithms are useful for
distinguishing high groundwater potential areas.
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algorithms.

Groundwater mapping accuracy was increased by applying the optimization algo-
rithm to the SVR machine learning method. SVR_GWO and SVR_PSO increased mapping
accuracy by 8.81% and 1.64%, respectively, and model performance was generally good
based on the AUC values of >0.8 [46]. The increased accuracy was achieved by tuning the
parameter of SVR algorithm based on optimization results calculation.

3.3. Sensitivity Analysis

Sensitivity analysis was conducted to assess the relative influence of each factor on
groundwater potential, and to validate the above-described results. The 13 groundwater-
related factors were removed one by one from the dataset, for all three algorithms. The
resulting mapping accuracy results allowed us to determine each factor’s influence, as
shown in Table 2. The SVR model showed accuracy increases of 0.4% and 0.3% on removal
of the precipitation and distance to fault factors, respectively. Mapping accuracy decreased
by 5.1%, 2.6% and 2.3% on inclusion of the land-use, soil type, and lithology factors, re-
spectively. Thus, these factors had a considerable influence on the groundwater probability
mapping performance of the SVR model.
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Table 2. Sensitivity results for each algorithm (SVR, SVR_GWO, and SVR_PSO).

Factors
Mapping Accuracy Values (%)

SVR Variation SVR_GWO Variation SVR_PSO Variation

All factors 0.803 0.878 0.814
Elevation 0.8 –0.3 0.866 –1.2 0.803 –1.1

Slope 0.783 –2 0.872 –0.6 0.805 –0.9
Slope height 0.788 –0.5 0.872 –0.6 0.807 –0.7

TWI 0.788 –0.5 0.878 0 0.81 –0.4
LS 0.782 –2.1 0.877 –0.2 0.808 –0.6

Precipitation 0.807 0.4 0.882 0.3 0.82 0.6
Water density 0.788 –0.5 0.879 0.1 0.808 –0.6

NDWI 0.792 –1.1 0.866 –1.3 0.797 –1.7
Land use 0.752 –5.1 0.87 –0.9 0.811 –0.3
Soil type 0.777 –2.6 0.865 –1.3 0.804 –1
Lithology 0.78 –2.3 0.871 –0.7 0.8 –1.4
Lineament

Density 0.782 –2.1 0.874 –0.4 0.807 –0.7

Distance to fault 0.806 0.3 0.878 0 0.815 0.1

For the SVR_GWO model, when the soil type, NDWI, and elevation factors were
removed, mapping accuracy decreased by 1.3%, 1.3%, and 1.2%, respectively. On the other
hand, removal of the TWI, distance to fault, and water density factors had no effect on
accuracy, while removal of the precipitation factor increased accuracy by 0.3%. Besides, for
the SVR_PSO model, the accuracy decreased when the NDWI and lithology factors were
removed, by 1.7% and 1.4%, respectively. These relationships can be explained that NDWI
represents the index of wetness in certain area and lithology describe the characteristic
of the geological structure which is important in groundwater presence. Overall, the
results were acceptable and indicate that the algorithms can be usefully applied to this
research area.

Apart from the influence of these factors, sensitivity analysis can evaluate the consis-
tency of the map. This study shows that there are factors that have a dominant contribute
on the results of mapping accuracy, namely, land use and lithology conditions of the area.
Land use can affect the rate recharge of groundwater, which influences evapotranspiration,
runoff and recharge system [54]. Lithology conditions can indicate the potential for storage
and aquifer conditions in the area leading to water sources. Also, lithology can influence
the infiltration and percolation of waterflow [69]. However, further hydrogeological analy-
sis can be used as a comparison in the context of understanding the factors that influence
groundwater recharge conditions.

4. Discussion

Groundwater is essential for human life and livelihoods. Groundwater mapping
can be improved, and rendered more cost-effective, by identifying geophysical and hy-
drological factors associated with subsurface storage. This study developed a machine
learning approach for analyzing RS and GIS data to map groundwater potential; combining
statistical models and machine learning algorithms (FR and SVR) can facilitate scientific
decision-making as it pertains to a variety of problems [85]. FR values are an efficient
way to simplify equations and aid interpretation of results [86]. Integration of RS and
GIS data can improve time and cost efficiency in the context of groundwater probability
mapping [17,57]. Machine learning algorithms can be used to model natural phenomena
involving factors with nonlinear relationships, and so were applied to map groundwa-
ter potential in this study. These models can handle and analyze the complex nonlinear
relationships between groundwater potential and various factors.

The groundwater potential mapping results that we obtained using the SVR machine
learning algorithm showed that the study area could be classified based on groundwater
probability. Areas with high groundwater potential were associated with alluvium, which
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was distributed around rivers and tributaries that flow into the sea. Alluvium is a type of
aquifer with sufficient porosity and permeability to allow water to accumulate [58,87]. In
addition, land use also influences groundwater potential; the high probability areas were
detected near agricultural and urban [51], which are also the land use types that use the
most groundwater. Groundwater resource availability affected by human activities such
as urbanization and changing land cover, it will affect changing recharge rates. Besides,
precipitation can affect the potential for groundwater, which is related to groundwater
recharging conditions. Furthermore, high precipitation does not always increase ground-
water recharge. The higher the precipitation can increase surface water overflow and
hinder the process of groundwater recharge [70]. In addition, the infiltration rate which is
indirectly influenced by soil conditions and the saturation level of water absorption are
other factors that are considered. Meanwhile, for the forest land use areas, it is possible that
many wells may contain groundwater, considering that 70% of the study area is forest area.
The influence of the groundwater related factor was examined by the sensitivity analysis,
in which mapping accuracy decreased by 5.1%, 2.3%, and 2.6% when land use, lithology,
and soil type, respectively, were not included in the SVR process. Thus, three related factors
commonly used in groundwater study as important role in term of infiltration rate which
lead to groundwater presence. On the other hand, the potential for high groundwater
potential found on the coastal area requires further observation regarding the effect of sea
water intrusion on the presence of groundwater. As we know, sea water can fill pores in the
soil structure in coastal areas and this has the potential to occur in Gangneung and affect
groundwater conditions [88]. Several studies also argue for the potential for sea water
intrusion in coastal areas [89,90]. For that, it is necessary to field investigation regarding
groundwater conditions, especially around the coast [70]. As well as evaluation related
to other spatial factors that can affect groundwater for further research. However, this
is a preliminary study that can provide an overview of the potential for groundwater in
Gangneung.

ROC curve analysis was performed to assess the performance of the three algorithms.
The AUC values of the SVR, SVR_GWO and SVR_PSO models were 0.803, 0.878 and 0.814,
respectively. Thus, SVR_GWO was reach the highest AUC value than another machine
algorithm in this research. The accuracy values of all algorithms were good, so these
models should be useful for this area of research. Application of the GWO and PSO op-
timization algorithms increased the SVR model accuracy by 8.6% and 1.6%, respectively.
The optimization process tuned the gamma, epsilon, and C parameters in the SVR al-
gorithm [36]. The optimization aimed to minimize the root mean square error (RMSE),
which indicates the discrepancy between observation and predictions; lower RMSE values
indicate higher model quality [80]. The SVR algorithm was used for groundwater potential
mapping because it has several advantages: a good solution is not required at the start of
the iterative process, it can be used in conjunction with other optimization methods, and
multi-input, nonlinear optimization problems can be solved efficiently [40]. The increased
accuracy of SVR achieved by applying the optimization algorithms is consistent with the
results of Al-Fugara et al. (2019), who reported that spatial mapping of groundwater was
improved by using “SVR-RBF-GA” and “SVR-RBF-GS” methods [34]. Furthermore, Panahi
et al. (2020), reported better landslide mapping performance using a hybrid SVR method
compared with the adaptive neuro-fuzzy inference system (ANFIS) [40]. However, there
are also some disadvantages of SVR; for example, the absence of data mining features
means that data are classified immediately, although labeled data can be extracted, which
increases classification accuracy [35].

This study focuses on the application of machine learning methods and integration
with remote sensing for groundwater potential mapping. However, there are still limita-
tions in this study, especially related to the explanation of the physical water balance and
groundwater refill mechanism. Furthermore, hydrological and phreatic surface analysis is
still needed to carry out as a crosscheck-validation of the groundwater potential map [91].
This is necessary to obtain an overview of the groundwater recharge and can provide
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further information to improve understanding of physical water balance. In terms of
methodology, the use of an optimization algorithm promises alternative approach in the
future in groundwater mapping. In particular, there are still potential advantages in a
combination of expert experience and deep learning applications that have data mining
features [14,92]. Therefore, this result is a preliminary study initiated in groundwater map-
ping by combining a hybrid algorithm with groundwater capacity data. Further studies
can be initiated by constructing a phreatic surface of aquifer to get a more detailed picture
of the relationship between factors and groundwater potential.

5. Summary and Conclusions

A groundwater potential map was constructed for the Gangneung-si area using the
machine learning method, based on 13 groundwater-related factors (mainly categorized as
topography, hydrology, geology, and land use factors). FR values were used to assess the
correlations of the factors with groundwater occurrence. Groundwater data from 285 wells
in Gangneung-si were analyzed; these data were divided randomly into training (70%)
and testing (30%) datasets. The GWO and PSO optimization algorithms were applied to
the SVR. ROC curve analysis was used to assess the accuracy of each model. A sensitivity
test was also performed for linkage the related factors with groundwater probability. The
land use and lithology factors were the major factors used to construct the groundwater
potential maps in this research.

In summary, three new models were developed for reasonable groundwater potential
mapping: SVR, SVR_GWO, and SVR_PSO. The AUC values were 0.803, 0.878, and 0.814,
respectively. Thus, the SVR_GWO model was more efficient for evaluating groundwater
potential than the SVR and SVR_PSO models. Furthermore, the variance in accuracy of
each factor could be small because the selected variable is important in the analysis. Never-
theless, this approach using a hybrid algorithm could be useful for groundwater mapping
and exploration development. Due to some uncertainties associated with the methods,
sample size, and raster spatial resolution, further studies aimed at developing accurate
and reliable regional-scale groundwater potential maps are needed. Other related factor
analysis methods and further hydrology analysis could be used to improve groundwater
potential mapping results.
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