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Abstract: Estuarine freshwater transport has a substantial impact on the near-shore ecosystem and 
coastal ocean environment away from the estuary. This paper introduces two independent methods 
to track the Mekong freshwater-induced mass transport by calculating the time lag (or equivalently, 
the phase) between in situ Mekong basin runoff and the equivalent water height (EWH) time series 
over the western South China Sea from a gravity recovery and climate experiment (GRACE). The 
first method is the harmonic analysis that determines the phase difference between annual compo-
nents of the two time series (called the P-method), and the other is the cross-correlation analysis that 
directly obtains the time lag by shifting the lagged time series forward to attain the highest cross-
correlation between the two time series (called the C-method). Using a three-year rolling window, 
the time lag variations in three versions of GRACE between 2005 and 2012 are computed for demon-
strating the consistency of the results. We found that the time lag derived from the P-method is, on 
average, slightly larger and more variable than that from the C-method. A comparison of our grid-
ded time lag against the age determined via radium isotopes in September, 2007 by Chen et al. 
(2010) revealed that our gridded time lag results were in good agreement with most isotope-derived 
ages, with the largest difference less than 6 days. Among the three versions of the GRACE time 
series, CSR Release 05 performed the best. The lowest standard deviation of time lag was ~1.6 days, 
calculated by the C-method, whereas the mean difference for all the time lags from the isotope-
derived ages is ~1 day by P-method. This study demonstrates the potential of monitoring Mekong 
estuarine freshwater transport over the western South China Sea by GRACE. 

Keywords: estuarine freshwater transport in ocean; GRACE satellite gravimetry; Mekong Basin 
runoff; Isotopic tracer age 
 

1. Introduction 
The Mekong river basin is the largest tropical water resource in Southeast Asia, dom-

inated by the annual flood pulse. Its estuary annually discharges approximately 475 km3 

freshwater and 160 million tons of sediment into the South China Sea (SCS) [1]. Most 
heavy sediment settles down quickly along the coast, while buoyant freshwater dis-
charged from the estuary forms a river plume that can be transported on the ocean surface 
hundreds of kilometers away [2]. The near-field river plume located within 300 km off the 
coast can be modeled under static-state balance via runoff flux, local current, wind, and 
ocean tides [3–5]. Direct field sampling, such as isotope sampling, enables us to derive the 
freshwater ages from the estuaries of the Amazon river [6], the Mississippi river [7], the 
Yangtze river [8] and the Mekong river [9] to their adjacent ocean. Partly due to the costs 
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of field trips and reliability issues [10], it remains a challenge to monitor the continuous 
spatiotemporal variation in Mekong freshwater transport. 

Remotely sensed ocean color yields the spatial extent of the dissolved components in 
surface water [11], and chlorophyll concentration enables us to track the dispersal of the 
Amazon river plume [12]. In the western SCS, chlorophyll data have also been well stud-
ied along with sea surface temperature, wind, height anomalies [13], and eddies [14]. 
However, both suspended particular matter and chlorophyll-a concentrations relevant to 
the Mekong river mostly appeared along the coastlines, using different bio-optical algo-
rithms [15,16]. Though the spatial extent can be mapped, it remains difficult to calculate 
the time spent to get from the estuary to a particular location on the ocean surface, in 
particular an ocean area more than 300 km away from the estuary. 

In essence, freshwater is a mode of mass transfer from the estuary to the ocean. These 
spatiotemporal mass variations have been continuously monitored by the gravity recov-
ery and climate experiment (GRACE) since 2002 [17,18]. With a ~300 km spatial resolution, 
GRACE-derived equivalent water heights (EWHs) are employed to quantify continental 
and oceanic mass fluctuations [19], enabling the study of climate [20], continental hydrol-
ogy and glaciology [21] and oceanography [22]. Recently, studies of coastal regions have 
gradually emerged with post-processing on the ocean/land boundary, including mass-
derived sea surface height and ocean bottom pressure anomalies in open gulfs [23,24], and 
sediment accumulation and discharge for large rivers [25,26]. Note that the land-to-ocean 
spatial leakage error of GRACE data products is unneglectable in the ocean within 250 km 
of the coasts, and additional corrections should be applied [24,27], but the leakage effects 
are numerically shown to be negligible when the data grid points are located more than 
250 km away from the coasts [28,29]. Therefore, so long as the time series of the GRACE 
data points is located more than 250 km away from the coastlines, it can be safely utilized 
for oceanic applications. 

In contrast to the aforementioned oceanic applications, the usage of GRACE-derived 
estuarine freshwater-induced mass variations on the ocean surface remains unexplored, 
let alone the calculation of spatiotemporal variation of freshwater age 800 km from the 
estuary. This paper aims to introduce a cost-effective method using in situ runoff and sat-
ellite-derived freshwater-induced mass variations to determine the variable time lag (dis-
tinguishable from water age derived by isotope) from the Mekong river estuary to the 
western SCS. Two independent methods were employed to retrieve the regional time lag 
in the western SCS based on a three-year rolling window in order to reduce the uncer-
tainty and ensure sufficient valid periods for data fitting simultaneously. Finally, the 
GRACE-derived time lags generated from the two methods are then compared to the iso-
tope-derived age measured in September 2007 [9]. 

Section 2 presents our study region, three datasets (i.e., three versions of GRACE 
data, in situ runoff and isotope data), and their processing strategies. Two independent 
methods, phase analysis (P-method) and cross-correlation analysis (C-method), are intro-
duced in Section 3. In Section 4, we present the regional averaged time lag results sepa-
rately derived by the two methods in the western SCS with interpretation, followed by 
evaluating the gridded time lag distribution of the two methods during different time 
periods, and finally, we compare our satellite-derived time lag with the isotope-derived 
age in 2007. Section 5 summarizes our conclusion. 

2. Study Area and Data Description 
2.1. Mekong River Estuary and Western SCS 

Originating from the Tibetan Plateau, the Mekong river is the largest river in South-
east Asia. In the southern Indochina Peninsula, the Mekong river flows through Thailand, 
Laos and Cambodia, followed by the Mekong river delta, where it splits into the Bassac 
river and the lower Mekong river, before finally discharging into the SCS (Figure 1). 
Driven by the southwest monsoon, the downstream area of the Mekong basin normally 
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generates a flood pulse in summer, which contributes ~84% of the annual total river dis-
charge [30]. During wet and dry conditions, the Tonle Sap Lake in Cambodia and dam 
operations also help regulate the seasonal river flux along the main stream [31–33]. 

The SCS is a western marginal sea of the Pacific ocean with significant water ex-
change through the Karimata, Malacca and Luzou straits [34]. Between June and Septem-
ber every year, the predominant northwestward along-shore current affects the tropical 
river plume extension [4]. Estuarine mixtures are transported to the western SCS when 
Mekong runoff normally peaks in September. Besides this, the well-known eastward 
South Vietnam upwelling at about 12°N and frequent eddies in summer further compli-
cate the sea surface variability [35,36]. The global El Niño–Southern Oscillation (ENSO) 
events, which are closely associated with the interannual variability of tropical monsoons, 
also cause anomalous changes in both the Mekong basin runoff and oceanic dynamics in 
this geographic region [37,38]. As such, Mekong freshwater transport in the western SCS 
will be affected by the above combined effects. 

 
Figure 1. Lower Mekong basin and southern SCS. Dashed boundary (on the right) is our regional study area with selected 
(red dots) and unselected (grey dots) isotope samplings, along with their sampling codes (above the dots) and age (in 
month) (below the dots) (adapted with permission from ref. [9], Copyright 2010 American Geophysical Union). 

2.2. Oceanic EWH time Series from GRACE 
In this study, three versions of GRACE monthly data from the Center for Space Re-

search at the University of Texas (CSR) were used: Level-2 Release 05 (CSR05), Level-2 
Release 06 (CSR06), and a recent mascon solution based on CSR06 (CSR06-mascon). The 
first two versions of the relative gravity field, in the form of 60 degree and order of spher-
ical harmonic (SH) coefficients (i.e., GSMs), were accessible at http://icgem.gfz-pots-
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dam.de/series. The last one used the recently employed regional mass concentration func-
tions (mascons) to parameterize the Earth’s gravity field [39]. The CSR06-mascon product 
with all relevant corrections in a 0.25° × 0.25°grid format could be directly used and was 
accessible at http://www2.csr.utexas.edu/grace/ [40]. All data products were converted 
into EWH for our investigation. 

Note that GSM represents geopotential coefficients after corrections to errors of com-
mission or omission from the background gravity models [41], in which they were cor-
rected by a priori models of solid and ocean tides, pole tides, non-tidal atmospheric and 
oceanic loadings, etc. Customarily, to study the oceanic mass variation, part of the non-
tidal atmospheric and oceanic loading from the Atmosphere and Ocean De-Aliasing 
Level-1B (AOD1B)-modeled data product (i.e., the GAD component) was re-added back 
to the GSM in order to restore the ocean bottom pressure [42] or mass-induced sea level 
variation [26]. Nonetheless, the AOD1B-modeled data did not account for river flux into 
the ocean [43]. Therefore, to study the freshwater mass variations in the ocean surface 
caused by river flux in our present investigation, we directly used GSM. 

The following steps (Figure 2) were employed to derive the EWH time series for 
GRACE Level-2 CSR05 and CSR06 data products: (1) C20 coefficients were replaced with 
that observed via satellite laser ranging [44]; (2) geocenter motion was added to the de-
gree-1 SH coefficient [45]; (3) the SH coefficients of the GGM05C gravity field [46] was 
subtracted; (4) a de-striping procedure and 350 km Gaussian filtering were applied to re-
duce the combined noises in the high degrees of the SH coefficients [47]. Notice that the 
CSR06-mascon EWH was free from step (4), because the compact geodesic grid and the 
design of the regularization matrix had already taken into consideration the conditions of 
land and ocean separately [39]. 

 
Figure 2. A flow chart of GRACE further processes from GSM to EWH on CSR05, CSR06 and CSR06-mascon. GSM, 
GRACE geopotential coefficients after priori models corrections; GGM05C, a combination global gravity model; EWH, 
equivalent water height. 
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Moreover, a linear model with the offset, trend, and periodic terms was used to fill 
the missing monthly data. To avoid the potential seismic signal contamination before and 
after the nearby Sumatra–Andaman earthquake in December 2004 [48], the data spanning 
from 2005 to 2012 were used with missing data in January 2011, June 2011, August 2012 
and October 2012, interpolated through the fitting equation (2) below. GRACE data after 
2012 were not selected because at least three monthly data sets were missing for each year. 
All the EWHs were resampled into 1° × 1° grids. Following the above procedures, the 
average gridded EWH time series over 9–15°N and 110–114°E in the western SCS (blue 
regions in Figure 1) are presented in Figure 3. Among the three time series, the EWHs 
generated from CSR05 and CSR06 matched each other well, but the EWH generated from 
the CSR06-mascon presented a much lower amplitude (i.e., ~1.5 cm) than those from 
CSR05 and CSR06 (i.e., ~5 cm). This difference depends on the completely different inver-
sion methodology used for inferring EWHs, in addition to the refined geophysical correc-
tions. 

 
Figure 3. The average gridded EWH time series for GRACE CSR05, CSR06 and CSR06-mascon data products over 9–15°N, 
110–114°E in the western SCS during 2005–2012. 

2.3. Mekong Basin Runoff from In Situ Hydrological Stations 
Along the two main tributaries of the Mekong estuary mouth, the Chau Doc and Tan 

Chau hydrological stations are about 200–300 km away from both the inland Tonle Sap 
Lake and the estuary mouth (Figure 1). Therefore, the effects of lake regulation and the 
backwater due to ocean tides on the runoff were minimized [49]. Note that we assumed 
that sub-surface discharge was negligible when compared to the main flow. Then, the 
observed discharge time series of the two stations were summed up in order to represent 
the whole basin runoff and average out the ocean tidal backwater effect due to semidiur-
nal and diurnal ocean tides. Both in situ discharge time series can be requested from the 
Mekong River Commission (MRC) (http://www.mrcmekong.org). 

To be consistent with the GRACE data time span, the daily discharge time series 
spanning between January 2005 and December 2012 were selected. To convert the unit of 
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the daily discharge (in m3/s) into runoff (mm), it was divided by the total Mekong river 
basin drainage area (i.e., 795,000 km2), while adding up daily values of each month. In 
general, the Mekong basin runoff generally reaches its maximum and minimum in Sep-
tember and April, respectively. During the strong La Niña event during 2010–2011, the 
runoff reached the lowest peak value at ~76 mm in 2010 and the highest peak value of 
over 100 mm in 2011 (Figure 4). Besides this, to be consistent with the GRACE EWH anom-
alies, runoff time series were subtracted from the mean of the entire study period. 

 
Figure 4. Monthly Mekong basin runoff measured at the Chau Doc and Tan Chau stations during 
2005–2012. 

2.4. Isotope-Derived Age Based on Radium Isotope Data Measured in 2007 
Ref. [9] investigated the distributions of the 223Ra, 226Ra, and 228Ra isotopes, and salin-

ity variations, on the ocean surface of the western SCS during a one-month field trip be-
tween August and September 2007. Based on an empirical two-end-member mixing 
model [6,50], the apparent age of the Mekong river plume freshwater was determined (at 
dots shown in Figure 1), serving as a ground truth to validate our GRACE-derived time 
lag. Note that the ground truths are located more than 800 km away from estuary mouth. 
Hence, the land-to-ocean leakage effects of the GRACE data should be negligible. The iso-
tope-derived apparent age (t) of each sample can be calculated by: 

= − ln [ × ]
 

(1) 

where  and  represent 223Ra activity (in disintegrations per minute (dpm)/100 
L) and the dimensionless estuarine fraction of each sampling (modeled with an input of 
the 228Ra and 226Ra activities and salinity), respectively;  represents the 223Ra activ-
ity of estuarine end-member sampling (with a default constant of 0.74 dpm/100L), and 

 is the decay constant of 223Ra, which was 0.061 d−1. The age, t, of the Mekong river 
plume samples is depicted in Figure 1. 
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Considering the high uncertainty and sensitivity resulting from the end-member 
coefficients in the model, extremely anomalous samplings were not chosen where (1) 
the contribution of the Mekong river plume to the surface water, , was less than 0.2 
or greater than 1.0, and (2) the calculated age was less than 0.2 months (i.e., 6 days). 
Under these criteria, 17 out of 25 isotope samples remained (at red dots shown in 
Figure 1), whose derived ages would be further compared to GRACE-derived time 
lags. All Mekong river plume sample positions, , and ages are listed in Table A1, 
with unselected sample codes and corresponding extreme values underlined. 

3. Methodology 
Time lag analysis was conducted to determine the time lag between in situ runoff 

near the estuary mouth and the freshwater component of the GRACE EWH time series on 
the ocean surface in our study region. Two methods were employed. One is a harmonic 
analysis to determine the annual phase of in situ runoff and GRACE EWH time series, 
followed by taking the phase difference between them (hereinafter called the P-method); 
the other is performing the cross-correlation analysis via an empirical shift in GRACE 
EWH time series against the in situ runoff in our study region until reaching maximum 
cross-correlation (hereinafter called the C-method). Each method is independent of the 
other, except that the latter one used the detrended time series generated from the former 
one for calculating cross-correlation. 

3.1. Phase Analysis (P-Method) 
To obtain the phase of semi-annual and annual signals of EWH, a conventional har-

monic analysis is employed, which is expressed as: ( ) = + + cos (2 ( − )), (2) 

where  and  are the offset and the linear trend;  and  represent the correspond-
ing amplitude and phase with predefined period  for annual ( =1) and semiannual ( =2) 
signals, respectively. Six parameters (i.e., a, b, , , , and ) are to be determined 
via least-squares estimation. The same model has also been used for monthly in situ runoff 
and filling the missing data of monthly EWH. 

According to the regional averaged result from the western SCS from 2005 to 2012 
(Table A2), the annual amplitude is several times larger than the semiannual one, in terms 
of both runoff and EWHs. Ignoring the semi-annual one, the freshwater time lag from the 
Mekong estuary (specifically at two hydrological stations) to our study region could be 
calculated as the annual phase ( ) difference between EWH and runoff. 

Considering the variance calculated for the lower frequency, at least three complete 
cycles of data should be used in order to be more representative in terms of statistics [51]. 
We also evaluated the subsequent difference in our results by sequentially adding one 
more year of data span for data fitting in our study area starting from 2005 [52] (See Ap-
pendix B). We found that the difference (in terms of root-mean-square error (RMSE)) was 
stabilized when a three-year data time span was employed for all three GRACE time se-
ries. The RMSE converges to less than 10 mm/year (Figure A1). Therefore, a three-year 
data time span was adopted as a data window rolling month-by-month during 2005–2012. 

3.2. Cross-Correlation Analysis (C-Method) 
The cross-correlation between EWH and runoff time series allows us to empirically 

determine the spatial distribution of time lag, representing freshwater transport on the 
ocean surface. The cross-correlation is, in fact, a Pearson correlation coefficient (PCC) in-
troduced with a time shift, , expressed as: 
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( ) = ∑ ( − )( − )∑ ( − ) ∑ ( − )  (3) 

where and  are the runoff and EWHs at month  and month +  , respec-
tively, and  and  are their mean values. Finally, when the ( ) reaches the max-
imum, the corresponding  is considered as the optimal freshwater time lag. 

In this method, the monthly detrended runoff and EWHs time series were interpo-
lated to a daily interval based on a bi-cubic interpolation algorithm in MATLAB. Note that 
interpolation is necessary for daily  despite the fact that this process would introduce 
unavoidable uncertainty into our results. In addition, the cross-correlation is less depend-
ent on the length of time series. Note that whenever time shift  is applied, the number 
of valid fitting months in the formula, N, is slightly less than the given time period. There-
fore, the three-year rolling window method was still applied in order to be consistent with 
the P-method. 

4. Results 
4.1. Regional Study Results by Phase Analysis (P-Method) 

Employing the three-year rolling window, the three-year trend, annual amplitude 
and annual phase variation in runoff and EWHs are calculated for each three-year period 
during 2005–2012 (Figure 5). The time lag is derived by the annual phase difference be-
tween EWHs and in situ runoff. It should be noted that the values of CSR06-mascon an-
nual amplitude are multiplied by two for a better visual expression of the annual ampli-
tude in Figure 5b. Table 1 displays the PCC between runoff and EWH time series in terms 
of three-year trend, annual amplitude and annual phase variation, along with the calcu-
lated mean lag and corresponding standard deviation (STD). 

Table 1. The cross-correlation (PCC) between runoff and EWHs and their standard deviation 
(STD) from 2005 to 2012 in terms of three-year trend, annual amplitude and annual phase, in addi-
tion to the mean and STD of the time lag calculated by the annual phase difference between runoff 
and EWHs. 

 Three-Year Trend 
(mm/month) 

Annual Amplitude 
(mm) 

Annual Phase 
(day) 

Lag 
(day) 

 PCC STD PCC STD PCC STD Mean STD 
runoff -- 0.25 -- 1.23 -- 1.33 -- -- 
CSR05 0.83 0.73 0.78 3.43 0.70 3.89 20 3.1 
CSR06 0.92 0.79 0.64 2.83 0.48 5.21 17 4.8 
CSR06-
mascon 0.71 0.34 0.66 1.36 0.35 6.23 15 5.9 

During 2005–2008, the runoff and the CSR05 and CSR06 EWH trends increase slowly. 
However, no apparent change manifests for the CSR06-mascon EWH (Figure 5a). The 
three-year trend in EWHs and runoff rapidly decline when the rolling window starts to 
cover the time series of 2008 and 2009, reaching a minimum of ~–0.5 to –0.8 mm/month in 
2009. This abrupt downward trend is speculated to be attributable to the moderate El Niño 
event during 2009–2010, which reduced seasonal rainfall, storage and runoff in the Me-
kong basin, as concluded from [37,53], thus weakening the Mekong river plume and its 
transport on the ocean surface. After this anomaly, the three-year trend in runoff and 
EWHs gradually increases and reaches the highest values, 0.5 mm/month and 1 
mm/month, respectively. Among the three decomposed components of the EWH com-
pared to those of the runoff, the highest PCC of 0.92 is attained for the CSR06 EWH in 
terms of three-year trend. 
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Figure 5. Time series of three versions of GRACE EWHs against runoff employing three-year rolling windows during 
2005–2012 in terms of (a) three-year trend, (b) annual amplitude and (c) annual phase. Note that the annual amplitude of 
CSR06-mascon was doubled in (b). The x-axis labels each complete three-year period. For example, “2005-2007” represents 
the time period between January 2005 and December 2007. 

Within the time span shown in Figure 5b, the annual amplitude of runoff ranges from 
36.15 to 42.28 mm, with the mean annual amplitude of ~49.9 mm and ~61.0 mm for CSR05 
and CSR06, respectively, which values are approximately four times larger than that of 
CSR06-mascon (i.e., ~12.7 mm). These numerical differences in GRACE are mostly due to 
the different versions of the non-tidal oceanic and atmospheric model (i.e., AOD1B), cor-
rected for CSR05 and CSR06, and the design of the regularization matrices for continental 
and oceanic areas for CSR06-mascon. The peaks and troughs of three EWHs are about 1~2 
months later than the runoff time series. The PCCs between EWH and runoff in terms of 
annual amplitude are all higher than 0.60 (Table 1), and CSR05 EWH attains the highest 
PCC of 0.78. 

On the contrary, the annual phase variations for the three EWHs are shown to be 
inconsistent with that of runoff, particularly in the ENSO event in 2010. During the El 
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Niño event, the annual phase variation of the runoff was relatively small (Figure 5c), in-
dicating the time lag determination by the annual phase difference would depend more 
on the EWH time series themselves, rather than on the in situ runoff. In general, the PCCs 
between all the three EWHs and the in situ runoff in terms of the annual phase were rela-
tively lower than that of the three-year trend variation and annual amplitude (Table 1), 
showing the instability of the annual phase variation in freshwater mass as derived from 
GRACE in the open ocean. This inconsistency potentially reflects the time-varying influ-
ence of the ocean on Mekong freshwater transport. The mean and STD of the regional time 
lag are calculated in the last column of Table 1. Overall, the time lag estimated from CSR05 
had the longest mean value (20 days) and the lowest STD (3.1 days). 

4.2. Regional Study Results by Cross-Correlation Analysis (C-Method) 
Using the C-method, the freshwater transport from estuary to our study region in the 

ocean has been determined by a proper δτ while maximizing the PCC(δτ) value. Again, 
employing the three-year rolling window, the original PCC with no lag (hereafter called 
oPCC), and the improved PCC (hereinafter called iPCC) with the proper time lag, δτ, are 
shown in the three EWH time series for each three-year period (Figure 6). Their corre-
sponding mean values and STD are listed in Table 2. 

The oPCC values for three EWHs are all above 0.75 during the time span in our study, 
indicating their high relationship despite the time lag existing between EWHs and runoff. 
The mean improvement from oPCC to iPCC is ~0.05 in terms of three EWHs (Table 2), 
among which CSR06 yields the best correlation with runoff, with its iPCC reaching 0.96. 
The mean values of time lag are slightly smaller than that from the P-method, along with 
a smaller STD (i.e., ~2 days). Besides this, the time lag differences among the three EWHs 
are not apparent, with the highest time lag of 16 days for CSR05 and the lowest one of 14 
days for CSR06-mascon. During the entire period, the mean and STD of the lag (Table 2) 
are all lower than those retrieved by the P-method (Table 1), which implies that the esti-
mation by C-method was temporally smoother. 

 
Figure 6. The original Pearson correlation coefficient (PCC) (solid line) and improved PCC (dotted line) between the runoff 
and (a) CSR05, (b) CSR06, and (c) CSR06-mascon EWHs via the three-year rolling window using the C-method. The gray 
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bar represents the corresponding time lag. The x-axis labels complete three-year periods. For example, “2005–2007” rep-
resents the time period between January 2005 and December 2007. 

Table 2. The mean values and STDs of the original PCC (oPCC), the improved PCC (iPCC), and 
the lag between runoff and the three EWHs. 

 oPCC iPCC Lag (in days) 
 Mean STD Mean STD Mean STD 

CSR05 0.89 0.01 0.95 0.02 16 1.6 
CSR06 0.91 0.03 0.96 0.01 15 2.1 

CSR06-mascon 0.83 0.03 0.88 0.03 14 2.2 

5. Discussion 
Former isotope-derived ages in the western SCS measured between August and Sep-

tember 2007 [9] were employed to evaluate our time lag results for the two presented 
methods in the same region. 

5.1. Gridded GRACE-Derived Time Lag Estimation by Two Methods 
For evaluation, the time lags were determined using the P-method and the C-method 

in a three-year rolling window, with the median time epoch at September 1st, 2007. Figure 
7 presents the time lag results (in month) of each individual grid in the western SCS for 
the three EWHs derived by the P-method (Figure 7a–c) and the C-method (Figure 7d–f). 

 
Figure 7. Spatial distribution of time lag for CSR05, CSR06 and CSR06-mascon using the P-method (a–c) and C-method 
(d–f), respectively, between March 2006 and February 2009, such that the median time epoch is 1 September 2007. 
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Among the six results, the gridded time lag from CSR06 using the P-method (Figure 
7b) shows a clear eastward freshwater flowing path from the Mekong estuary along the 
Vietnam coastline to the ocean. The propagation was the integrated results of the seasonal 
offshore upper current [54,55], the monsoon [56], and ENSO events [57]. For the GRACE 
products, the gridded time lag results from CSR05 and CSR06 (Figure 7a,b,d,e) display 
several longitudinal panels parallel with the coastline, which were not evident from 
CSR06-mascon (Figure 7c,f). The existence of filtering for the Level-2 GRACE data might 
contribute to these differences. In terms of methodology, the spatial distribution of time 
lag using the C-method was smoother than that using the P-method, in addition to there 
being a narrower range of determined time lag. This indicates that the spatial distribution 
of the time lag retrieved from the EWHs and runoff time series depends not only on the 
GRACE data, but also on the methodologies themselves. 

5.2. Comparison between GRACE-Derived time Lag and Isotope-Derived Age 
Figure 8 illustrates the difference between the isotope-derived age in September 2007 

and the GRACE-derived time lag in the corresponding time span by the two presented 
methods. The time lag at the boundary of the GRACE grids is interpolated. Based on the 
scatter plots of time lag versus age, the time lag determined using the C-method fits the 
isotope-derived age better than that derived using the P-method, partially because the 
former method yields a narrower range of time lag. This result is particularly evident for 
the results from CSR06-mascon (Figure 8f), in which the lag clusters were approximately 
0.5 months. However, in this case, the higher the age, the larger the discrepancy between 
the GRACE-derived time lag and the CSR06-mascon. 

The differences between the GRACE-derived time lag and the isotope-derived age 
are displayed in colored dots at 17 selected stations (Figure 8). When the residual is larger 
than 0.2 months (i.e., 6 days) or smaller than –0.2 months, we consider the error was pos-
itively or negatively large, respectively. Based on this criterion, samplings with negatively 
large errors were observed mostly at locations away from the estuary (e.g., Y05, Y06, Y35), 
and so too were those with rather positively large errors (e.g., 2Y94, Y26, Y98). The high 
uncertainty of the end-member model used for calculating age by radium isotope partially 
contributes to these extremes. Besides this, a uniform time lag estimation by long-term 
time series analysis (i.e., three-year rolling window) is unable to detect short-term anom-
alies in the ocean. One example is the sampling station Y12, which displays an extremely 
old age because an eddy occurred nearby when the radium isotope was measured [9]. 

The mean and STD of age and time lag corresponding to all isotope samplings are 
listed in Table 3, in terms of GRACE data products and methods. Among the three GRACE 
data products, the mean of time lag derived from CSR05 approximates the mean of the 
isotope-derived age the most, with the differences of 0.03 months (i.e., 1 day) and –0.10 
months (i.e., –3 days) for the P-method and C-method, respectively. In terms of the meth-
odology, the mean of time lag given by the P-method was slightly larger than that given 
by the C-method, which is consistent with our regional study results in section 4.1. Addi-
tionally, the STD of the time lag minus age is ~0.3 months (i.e., 9 days), indicating that the 
quantitative comparison between time lag and age is greatly influenced by extreme val-
ues, partly because of the high uncertainty in the end-member model. Despite all these 
differences, the GRACE-derived time lag still fits properly with most isotope-derived 
ages, where the absolute errors are less than 0.2 months (i.e., 6 days). The paired t-test 
(Table A3) does not reject the null hypothesis of their difference equaling zero at the 1% 
significance level (except results given by the C-method for CSR06-mascon). 
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Figure 8. Difference between GRACE-derived time lag and isotope-derived age for 17 selected isotope samplings. Note 
that the GRACE-derived time lag was calculated from CSR05, CSR06 and CSR06-mascon using the P-method (a–c) and 
the C-method (d–f), respectively. The subgraphs (bottom left) plot the scatterings of the corresponding time lag and age 
from the different versions of GRACE data, derived using the P-method and the C-method. 

Table 3. The mean and standard deviation of the isotope-derived age, the GRACE-derived lag, and their difference using 
the P-method and the C-method. 

Estimation 
Values Lag Minus Age 

Mean STD Mean STD 
Isotope-derived age 0.68 0.29 -- -- 

GRACE-derived 
lag 

(P-method) 

CSR05 0.71 0.19 0.03 0.32 
CSR06 0.58 0.15 –0.11 0.31 

CSR06-mascon 0.56 0.09 –0.13 0.33 
GRACE-derived 

lag 
(C-method) 

CSR05 0.59 0.09 –0.10 0.30 
CSR06 0.50 0.07 –0.18 0.29 

CSR06-mascon 0.46 0.02 –0.22 0.30 

According to measurements from Argo profiling floats during 2007, the mean surface 
velocity of the along-shore current was about 49 cm/s [58]. This means estuarine freshwa-
ter following this path would take about half a month to reach the center of our study area 
(i.e., ~700 km away from the estuary). This estimation was largely shown to be in agree-
ment with our results and isotope-derived ages. 

Overall, the GRACE-derived time lags are slightly smaller than the isotopic tracer 
ages. This could be partially caused by the deficiencies of our methods. For instance, the 
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P-method depends on the length of data time span used for phase determination, whereas 
the C-method requires interpolation to the daily interval for the time shift in the cross-
correlation analysis. The ages inferred from the isotope tracer analysis also suffer from the 
in situ measurement uncertainties, which are related to nearby ocean eddies and the 
highly sensitive end-member value determination process in the mixing model derived 
from [6]. Nonetheless, the results of both the methods presented in this study are more 
stable than those from the isotopic tracer analysis. 

6. Conclusions 
In this paper, the in situ runoff and GRACE product-derived freshwater mass in the 

ocean (EWHs) were used to determine the freshwater transport, in terms of time lag, from 
the Mekong river estuary to the western SCS via two independent methods: phase analy-
sis (i.e., P-method) and cross-correlation analysis (i.e., C-method). A rolling data window 
was further applied to determine the time lag variation every three years during the pe-
riod 2005–2012. 

Among the three components (i.e., three-year trend, annual amplitude and phase) 
modeled in the P-method, EWHs correlated with runoff well in terms of trend and annual 
amplitude, with the minimum Pearson correlation coefficient (PCC) averaged for all 
three-year windows reaching 0.71 and 0.64, respectively. Inconsistency in the annual 
phase between runoff and EWHs potentially reflects the ocean’s influence on freshwater 
transport. Besides this, the differences resulting from three GRACE data products are ap-
parent when climate extremes are encountered, for instance, a moderately strong El Niño 
event during the period 2009–2010. For the P-method, the average determined time lag of 
our study region was about 20, 17 and 15 days for CSR05, CSR06 and CSR06-mascon, 
respectively. In terms of the C-method, the mean PCC improvement was ~0.05 for three 
EWHs, and the determined time lag and its STD were relatively smaller compared with 
that derived from the P-method. The EWH value that correlated the best with runoff was 
given by CSR06, in which the mean PCC was improved from 0.91 to 0.96. Compared to 
the P-method, the fluctuation in time lag retrieved from the C-method was slightly lower 
in terms of both mean values and STD, thus weakening the difference caused by GRACE 
products. 

To evaluate these two methods, the age results derived from radium isotope sam-
plings in the western SCS by Chen et al. [9] in September 2007 were compared with our 
gridded time lag estimates whose median epoch in the rolling window was in the same 
month. Among the two methods, the time lag derived from the P-method showed a more 
distinguishable spatiotemporal pattern of freshwater propagation from the Mekong estu-
ary toward the east, in particular CSR06. For the quantitative comparison against the 
GRACE-derived time lag, the isotope-derived age ranges were wider, showing a rela-
tively high STD. This is partly due to high-frequency events (e.g., eddies) influencing iso-
tope measurements, which cannot be recorded by GRACE. However, the isotope-derived 
age and GRACE-derived time lag still present a considerable agreement with each other, 
with over half the samplings showing small differences (i.e., ~6 days), regardless of the 
method. Overall, time lag determination by GRACE demonstrates a good potential for 
monitoring estuarine freshwater transport in the ocean. However, more experiments in 
different estuaries are required to further validate the universal feasibility of our pre-
sented analysis. 

Author Contributions: conceptualization, H.S.F.; methodology, H.S.F., Z.M.; software, Z.M.; vali-
dation, Z.M., H.S.F. and L.Z.; formal analysis, Z.M, H.S.F.; investigation, Z.M, H.S.F.; resources, 
H.S.F.; data curation, Z.M.; writing—original draft preparation, Z.M.; writing—review and editing, 
Z.M., H.S.F.; visualization, Z.M, L.Z.; supervision, H.S.F.; project administration, H.S.F.; funding 
acquisition, H.S.F. All authors have read and agreed to the published version of the manuscript. 

Funding: This study was financially supported by the National Natural Science Foundation of 
China (NSFC) (Grant No.: 41974003, 41674007, 41374010). 



Remote Sens. 2021, 13, 1193 15 of 18 
 

 

Acknowledgments: We acknowledge the river discharge data supplied by the Mekong River Com-
mission (http://www.mrcmekong.org, accessed on 19 March 2021) under agreement and purchased 
using NSFC Grant No.: 41374010. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

Table A1. The information of radium isotope sampling for the Mekong river plume group 
adapted with permission from ref. [9], Copyright 2010 American Geophysical Union. 

Sample Code 
Longitude 

(ºE) 
Latitude 

(ºN) fes 
Age 

(month) 
3YS4 111.8 14.3 0.83 0.61 
YS16 111.7 13.2 1.47 1.08 
2Y91 110.5 13.0 0.90 0.51 
2Y92 111.0 13.0 0.46 0.53 
2Y93 111.5 13.0 1.29 0.60 
2Y94 112.0 13.0 0.46 0.29 
2Y95 112.5 13.0 0.33 0.86 
2Y96 113.0 13.0 0.29 0.69 
Y06 113.0 12.5 0.60 1.09 
Y05 112.5 12.5 0.60 1.10 
Y04 112.0 12.5 1.30 0.86 
Y01 110.5 12.5 0.41 0.39 
Y12 111.0 12.0 0.77 1.14 
Y14 112.0 12.0 0.96 0.51 
Y15 112.5 12.0 0.40 0.07 
Y16 113.0 12.0 0.89 0.85 
Y26 113.0 11.5 0.36 0.35 
Y25 112.5 11.5 0.50 0.03 
Y24 112.0 11.5 0.60 0.46 
Y23 111.5 11.5 0.65 0.16 
Y34 112.0 11.0 0.65 0.57 
Y35 112.5 11.0 0.50 1.21 
Y36 113.0 11.0 0.40 −0.07 
U1 115.0 11.3 0.18 0.34 
Y98 114.0 13.0 0.90 0.46 

Table A2. Annual and semiannual amplitude and phase, long-term trend of runoff and three 
EWHs, from 2005 to 2012. 

 runoff CSR05 CSR06 
CSR06- 
mascon 

Annual amplitude 
(mm) 39.60 50.42 60.41 12.62 

Semiannual amplitude 
(mm) 7.15 9.56 7.48 2.00 

Annual phase 
(day) –77.23 –55.31 –55.64 –58.26 

Semiannual phase 
(day) 8.34 23.09 16.75 –19.29 

Long-term trend 
(mm/year) 0.15 0.15 0.24 1.59 
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Table A3. The paired t-test results for GRACE-derived time lag and isotope-derived age based on 
the 17 selected isotope samples. 

 
P-Method C-Method 

CSR05 CSR06 CSR06-Mascon CSR05 CSR06 CSR06-mascon 
p 0.72 0.19 0.14 0.21 0.02 0.01 

Appendix B 
The root-mean-square error (RMSE) for monthly EWH time series from 2005 to Y is 

calculated by [52]: 

= 1 ( − )  

where N is the number of grids in the study area, and  is the fitted long-term trend of 
EWHs from 2005 to Y for each grid. Note that Y is up to 2011 because the valid GRACE 
time series in this study span from 2005 to 2012. Figure A1 shows the RMSE against the 
increasing data fitting period. 

 
Figure A1. The variance in RMSE when the fitting period ranges from 1 year to 7 years. 
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