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Abstract: Land surface temperature (LST) is a critical parameter of surface energy fluxes and has
become the focus of numerous studies. LST downscaling is an effective technique for supplementing
the limitations of the coarse-resolution LST data. However, the relationship between LST and
other land surface parameters tends to be nonlinear and spatially nonstationary, due to spatial
heterogeneity. Nonlinearity and spatial nonstationarity have not been considered simultaneously
in previous studies. To address this issue, we propose a multi-factor geographically weighted
machine learning (MFGWML) algorithm. MFGWML utilizes three excellent machine learning (ML)
algorithms, namely extreme gradient boosting (XGBoost), multivariate adaptive regression splines
(MARS), and Bayesian ridge regression (BRR), as base learners to capture the nonlinear relationships.
MFGWML uses geographically weighted regression (GWR), which allows for spatial nonstationarity,
to fuse the three base learners’ predictions. This paper downscales the 30 m LST data retrieved
from Landsat 8 images to 10 m LST data mainly based on Sentinel-2A images. The results show
that MFGWML outperforms two classic algorithms, namely thermal image sharpening (TsHARP)
and the high-resolution urban thermal sharpener (HUTS). We conclude that MFGWML combines
the advantages of multiple regression, ML, and GWR, to capture the local heterogeneity and obtain
reliable and robust downscaled LST data.

Keywords: land surface temperature; spatial downscaling; geographically weighted regression;
ensemble learning; extreme gradient boosting; multivariate adaptive regression splines; Bayesian
ridge regression; Sentinel-2A

1. Introduction

Land surface temperature (LST) refers to the radiative temperature of the Earth’s
surface. LST is highly responsive to the interactions between the land surface and the
atmosphere, water circulation, and energy exchange from the local scale to the global
scale [1]. Therefore, LST is an essential parameter in various environmental research fields,
including climate change and urban heat island effect monitoring [2,3]; land-surface carbon,
water, energy, and evapotranspiration mapping [4,5]; soil moisture condition and drought
assessment [6,7]; and forest fire detection [8]. Accurate LST measurements at different
scales can facilitate these environmental monitoring studies.
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Obtaining LST data over extensive areas via ground measurement is impractical,
but the advent of satellite-based thermal infrared (TIR) sensors addresses this issue [1].
However, there is a trade-off between the spatial resolution and temporal resolution of
TIR data [9]. Some sensors, such as the Moderate Resolution Imaging Spectroradiometer
(MODIS), provide TIR images with high temporal resolutions (one day or less) but coarse
spatial resolutions (≥1 km). Conversely, some sensors, such as the Advanced Spaceborne
Thermal Emission Reflection Radiometer (ASTER), provide TIR images with relatively
high spatial resolutions (<300 m) but relatively coarse temporal resolutions (>15 days).
Moreover, thermal pixels inevitably contain multiple anisothermal objects, known as
the thermal mixture effect [9]. These issues seriously impede LST applications. Hence,
enhancing the spatial resolutions of LST products is increasingly urgent [9].

Spatial downscaling of LST is a widely adopted approach to enhance the spatial
resolutions of LST products [9]. Current LST downscaling methods are categorized as
physical mechanism-based models and statistics-based models [10]. Physical mechanism-
based models aim to establish a physically meaningful relationship between thermal
radiance (or LST) and ancillary data (such as land-cover maps) based on the principle of
thermal radiation. Classic physical mechanism-based models include pixel block intensity
modulation (PBIM) [11] and emissivity modulation (EM) models [12]. Guo and Moore
(1998) [11] proposed PBIM to integrate the topographic spatial details recorded in Landsat
TM reflective spectral images (30 m) into each thermal pixel block of the TM thermal image
(120 m). However, PBIM is not applicable to very flat areas and nighttime images [11].
To downscale nighttime thermal images, Nichol (2009) [12] developed the EM algorithm.
In addition to these modulation-based models, Liu and Pu (2008) [13] developed a new
physical model (PM) based on spectral mixture analyses, and then Liu and Zhu (2012) [14]
proposed the enhanced PM (EPM). Physical mechanism-based models are conducive to
the scientific interpretation of the results, but their implementation complexity limits
their applications.

Compared with physical mechanism-based models, statistics-based models are easier
to implement and have become popular. Statistics-based models are established based
on the statistical relationships between LST and other land surface parameters extracted
from ancillary data with relatively high spatial resolutions. Typical ancillary data in-
clude the reflectance data of visible, near-infrared (NIR), and shortwave infrared (SWIR)
bands, digital elevation model (DEM) data, and land-cover maps. Classic statistics-based
downscaling models involve disaggregation procedure for radiometric surface tempera-
ture (DisTrad) [15], thermal image sharpening (TsHARP) [16], and high-resolution urban
thermal sharpener (HUTS) [17]. Kustas et al. (2003) [15] assumed that a unique scale-
independent relationship between the radiometric surface temperature (TR) and the vegeta-
tion index (VI) exists within a sensor scene and proposed the DisTrad algorithm, using the
normalized difference vegetation index (NDVI) as the scale factor. Agam et al. (2007) [16]
modified the DisTrad algorithm by replacing the NDVI with fractional vegetation cover
(FVC) to develop the TsHARP algorithm. However, the “TR − VI” relationship is only
suitable for LST downscaling in homogeneous vegetated areas. It cannot be applied
to explain all the LST variations in urban areas or other non-vegetated regions, such
as arid areas. Moreover, it varies easily with the seasons. Therefore, many other im-
portant determinants of LST have been introduced for LST downscaling. For example,
Essa et al. (2012) [18] adapted the DisTrad algorithm by replacing the NDVI with an imper-
vious percentage index, which is less affected by seasonal changes and more stable than the
NDVI. Pan et al. (2018) [10] proposed the normalized difference sand index (NDSI) for LST
downscaling in arid regions. Single-factor models are simple, but applying one indicator
is inadequate for sufficiently describing LST. Therefore, some researchers employed two
different indicators as scale factors. For instance, Dominguez et al. (2011) [17] integrated
the NDVI and surface albedo to develop the HUTS algorithm. Duan et al. (2016) [19]
and Bartkowiak et al. (2019) [20] adopted the NDVI and DEM data as scale factors to
implement LST downscaling. Zhang et al. (2019) [21] combined the temperature and
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vegetation dryness index (TVDI) with DEM to downscale MODIS LST from 1000 to 90 m.
Previous studies have shown that the two-factor models performed significantly better
than TsHARP [17,19].

However, the two-factor models are still inadequate as LST heterogeneity is related
to several types of environmental factors, such as land cover, topography, soil moisture,
incoming solar radiation, and wind speed [1]. Recent studies have indicated that multiple
indices should be integrated to improve LST downscaling accuracies [22,23]. For exam-
ple, Zakšek and Oštir (2012) [22] selected the NDVI, enhanced vegetation index (EVI),
albedo, emissivity, land-cover data, DEM, slope, aspect, and sky-view factor as the input
parameters of a linear LST downscaling model. Yang et al. (2017) [23] developed a linear
multiscale-factor downscaling approach that is based on an adaptive threshold, which
involved the soil-adjusted vegetation index (SAVI), normalized multiband drought index
(NMDI), modified normalized difference water index (MNDWI), and normalized difference
built-up index (NDBI). However, the relationship between LST and multiple indicators
tends to be nonlinear, and linear models are usually incapable of representing nonlinear
relationships. To address this issue, researchers have introduced many machine learning
(ML) algorithms for LST downscaling, such as random forest (RF) [24–27], extreme learn-
ing machine (ELM) [25], artificial neural networks (ANN) [26], support vector machine
(SVM) [25,26,28], gradient boosting machine (GBM) [28], partial least squares (PLS) [28],
and multivariate adaptive regression spline (MARS) [29]. For example, Hutengs and Voh-
land (2016) [24] applied the RF to LST downscaling for the first time and demonstrated
that it was effective. Yang et al. (2017) [27] utilized the RF to downscale LST in an arid
area with multiple remote sensing indices. Ebrahimy and Azadbakht (2019) [25] compared
the RF, SVM, and ELM for the spatial downscaling of MODIS LST data, and the results
showed that the RF and ELM outperformed the SVM. Li et al. (2019) [26] compared the
RF, ANN, and SVM to downscale MODIS LST data and concluded that the RF and ANN
performed better than the SVM.

However, these methods are global models, and their predictions may be locally
misleading due to the local heterogeneity of LST and other land surface parameters [30].
A global model assumes that the relationship between the dependent and explanatory
variables is stationary (i.e., does not vary) in space. However, LST and other land surface
parameters are geographical variables; their relationships vary across space. This spatial
characteristic is referred to as spatial nonstationarity (i.e., instability) [30], which contradicts
the assumption of global models. Therefore, many researchers have focused on fitting the
local relationships between LST and auxiliary parameters to improve the LST downscaling
accuracy. Typical local statistical approaches include the moving window method and
the method based on geographically weighted regression (GWR-based). The GWR-based
method in this paper means GWR or a combination of GWR and other methods. For exam-
ple, Zakšek and Oštir (2012) [22] locally adapted the multiple regression equation, using
the moving window technique to downscale LST data. Gao et al. (2017) [31] proposed an
indirect criterion based on aggregation-disaggregation (ICAD) to determine the optimal
regression window for LST downscaling. Xia et al. (2019) [32] introduced the object-based
window (OWS) method to downscale LST. Wu et al. (2019) [33] utilized GWR to build a non-
stationary relationship between LST and the indicators for LST downscaling and concluded
that GWR outperformed TsHARP. Yang et al. (2019) [34] integrated the multiscale GWR
model with area-to-point kriging to downscale MODIS LST data. Peng et al. (2019) [35]
proposed a geographically and temporally weighted regression (GTWR) model for LST
downscaling over heterogeneous urban regions. Wang et al. (2020) [36] proposed a geo-
graphically weighted autoregressive (GWAR) model for spatial downscaling of MODIS
LST. However, the GWR-based methods are also linear models, which are insufficient for
simulating the nonlinear relationships between LST and multi-type indicators. Moreover,
GWR is highly susceptible to the effects of multicollinearity, which leads to unreliable
predictions when the explanatory variables are highly correlated [26].
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Although researchers have made great efforts to improve the LST downscaling accu-
racy, most previous studies still have other limitations. First, multiple regression models
are prone to overfitting, which is a common issue. Therefore, feature selection should be
the first and most crucial step in the model design stage. However, the features selected in
most multi-factor studies are not optimal for LST downscaling models as they disregard
the correlations among features and the feature combination effects. In practice, highly
correlated features are redundant, which will reduce the prediction performance and sta-
bility of models. More importantly, features act on a model in combination rather than
individually [37]. Accordingly, researchers should pay more attention to obtaining the
optimal feature combination for each LST downscaling model. Second, most previous LST
downscaling studies involved MODIS LST, Landsat LST, and ASTER LST data but rarely
employed high-resolution images without TIR bands, such as Sentinel-2A data. Sentinel-2A
data have the advantages of relatively high resolutions (10 m) and open access. Therefore,
LST downscaling based on Sentinel-2A data needs more investigations to obtain LST data
with relatively high resolution. Third, most multi-factor LST downscaling studies utilized
classic single-factor algorithms, such as DisTrad and TsHARP, as benchmarks. However,
as mentioned above, LST heterogeneity is related to multi-type factors, so that a single
factor (such as NDVI) is inadequate for representing LST. In terms of LST downscaling, the
multi-factor models outperform the single-factor models is within expectation. Therefore,
the model comparison between multi-factor models and the single-factor models is not
sufficient. Model comparisons that use the two-factor algorithms or other multi-factor
approaches as benchmarks need further investigation.

In this context, the objectives of this paper involve three aspects: (1) providing an
objective feature selection scheme to select the optimal feature combination for each model;
(2) developing a multi-factor geographically weighted machine learning (MFGWML)
downscaling method, to produce reliable and robust 10 m LST data based on Sentinel-2A
images; (3) assessing the MFGWML model by comparing it with two classic downscaling
algorithms, namely the single-factor model (namely TsHARP) and the two-factor model
(namely HUTS). The remainder of this paper is arranged as follows: Section 2 introduces
the study area, data, and methods. Section 3 evaluates the LST downscaling results.
Furthermore, Section 4 describes the limitations of this paper and future research. Section 5
summarizes the conclusions.

2. Materials and Methods
2.1. Study Area

Beijing (39◦28′N–41◦05′N, 115◦25′E–117◦30′E), the capital of China, is located in
northern China (Figure 1) and covers an area of approximately 16,410.54 km2. The general
topography of Beijing is high in the northwest and low in the southeast, and the average
altitude is 43.5 m. Beijing is located in a warm temperate zone, and its climate type is
a typical semi-humid continental monsoon climate. Beijing is hot and rainy in summer,
dry and cold in winter, and has short spring and autumn seasons. The monthly average
temperatures in January and July are−3.7 and 26.2 ◦C, respectively. The annual average air
temperature is approximately 12.3 ◦C. The annual precipitation in Beijing is 572 mm, and
summer precipitation accounts for approximately 3/4 of the annual precipitation. With the
acceleration of urbanization, the population of Beijing has rapidly increased. By the end of
2018, Beijing had a population of 21.542 million, and its urbanization rate was 86.5%.
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Figure 1. Geographical location map of the study area. Panel (A) presents the location of Beijing in China. Panel (B) shows
the spatial extent, elevation, locations of 20 national meteorological stations, and boundaries and names of the districts
in Beijing.

2.2. Data Description and Image Preprocessing

The Landsat 8 L1TP products, Sentinel-2A Level-1C products, and Shuttle Radar
Topography Mission (SRTM) data were downloaded from the United States Geological
Survey (USGS) website (https://earthexplorer.usgs.gov/ (accessed on 17 March 2021)).
Landsat 8 and Sentinel-2A images are both defined in the Universal Transverse Mercator
(UTM) map projection with the World Geodetic System 84 (WGS84) datum. As shown in
Table 1, their corresponding bands have almost consistent spectral ranges. Three Landsat
8 images and seven Sentinel-2A images are needed to cover the entire study area (Table 2).
SRTM data are a kind of DEM data defined in the geographic projection with the WGS84
datum (horizontal datum) and Earth Gravitational Model 1996 (EGM96, vertical datum).
The spatial resolution of SRTM data is one arc-second (approximately 30 m). We also
obtained meteorological data from the Resource and Environment Science and Data Center
(http://www.resdc.cn/ (accessed on 17 March 2021)). The daily minimum and maximum
air temperatures observed by the 20 meteorological stations in Beijing on July 10, 2017,
were averaged for LST retrieval.

The preprocessing of Landsat 8 and Sentinel-2A images involved radiometric cor-
rections, atmospheric corrections, geometric registration, seamless mosaic, clipping, and
resampling. The atmospheric corrections of the Landsat 8 multispectral bands and Sentinel-
2A images were performed, using the fast line-of-sight atmospheric analysis of spectral
hypercubes (FLAASH) model embedded in ENVI software (version 5.3) and Sen2Cor tool
(version 2.8), respectively. The preprocessing of SRTM data consisted of re-projections,
seamless mosaic, clipping, and resampling.

https://earthexplorer.usgs.gov/
http://www.resdc.cn/
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Table 1. Band parameters of the selected Landsat 8 and Sentinel-2A images.

Satellite Band
No.

Band
Name

Wavelength
(nm)

Central
Wavelength (nm)

Spatial
Resolution (m)

Landsat 8

Band 2 Blue 452–512 483

30

Band 3 Green 533–590 561
Band 4 Red 636–673 655
Band 5 NIR 851–879 865
Band 6 SWIR1 1566–1651 1609
Band 7 SWIR2 2107–2294 2201
Band 10 TIR1 1060–1119 10,900 100

Sentinel-2A

Band 2 Blue 458–523 490

10
Band 3 Green 543–578 560
Band 4 Red 650–680 665
Band 8 NIR 785–899 842
Band 11 SWIR 1565–1655 1610

20Band 12 SWIR 2100–2280 2190
NIR, near-infrared; SWIR, shortwave infrared; TIR, thermal infrared.

Table 2. Information on the selected Landsat 8 and Sentinel-2A images.

Satellite Scene Number Acquisition
Date

Acquisition
Time (UTC)

Sun Azimuth
Angle (◦)

Sun Elevation
Angle (◦)

Cloud Cover
(%)

Landsat 8
123/32 10 July 2017 02:53:19 128.809 64.468 0.010 1
123/33 10 July 2017 02:53:43 125.826 65.120 0.040 1

124/32 2 17 July 2017 02:59:32 130.009 63.551 13.180 1

Sentinel-2A

T50SLJ 27 June 2017 03:13:58 134.493 68.972 0.244 1
T50SMJ 27 June 2017 03:13:58 136.915 69.583 0.000
T50TLK 27 June 2017 03:13:58 135.946 68.288 0.486 1
T50TMK 27 June 2017 03:13:58 138.372 68.882 0.000
T50TML 27 June 2017 03:13:58 139.730 68.168 0.000
T50TNK 27 June 2017 03:13:58 140.896 69.458 0.000
T50TNL 27 June 2017 03:13:58 142.248 68.728 0.000

1 The cloud is not over the study area. 2 The scene with Path/Row 124/32 covers only a small section. UTC, coordinated universal time.

2.3. LST Retrieval from Landsat 8 Data

This paper adopted the improved mono-window (IMW) algorithm (Equations (1)–(3))
to retrieve LST from Landsat 8 data [38]. The IMW algorithm requires four main parame-
ters: the brightness temperature of Landsat 8 Band 10 (T10, Equation (4)), effective mean
atmospheric temperature (Ta), land surface emissivity (ελ, Equation (5)), and atmospheric
transmittance of Landsat 8 Band 10 (τ10).

Ts = [a10(1− C10 − D10) + (b10(1− C10 − D10) + C10 + D10)T10 − D10Ta]/C10 (1)

C10 = τ10ε10 (2)

D10 = (1− τ10)[1 + (1− ε10)τ10] (3)

T10 =
K2

ln(1 + K1R10 )
(4)

ελ =


εsλ, NDVI < NDVIs

εvλPv + εsλ(1− Pv) + Cλ, NDVIs ≤ NDVI ≤ NDVIv
εvλPv + Cλ, NDVI > NDVIv

(5)

Cλ = (1− εsλ) εvλF′(1− Pv) (6)

PV = (
NDVI − NDVIs

NDVIv − NDVIs
)

2
(7)
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where Ts is LST (K); Ta indicates the effective mean atmospheric temperature (K); T10
refers to the brightness temperature (K) of Landsat 8 Band 10; a10 and b10 denote constant
coefficients; C10 and D10 denote internal parameters; R10 represents the thermal spectral
radiance (W·m−2·sr−1·µm−1) of Landsat 8 Band 10; K1 and K2 denote the band-specific
thermal calibration constants; ελ is the land surface emissivity; εvλ and εsλ refer to the
emissivity of vegetation and emissivity of soil, respectively; Cλ represents the surface
roughness (Equation (6)); and F′ indicates a geometrical factor. PV denotes the proportion
of vegetation cover calculated with Equation (7), in which NDVIv denote the NDVI values
of pixels covered purely by vegetation, and NDVIs denote the NDVI values of pixels
covered purely by soil. For more information on the IMW algorithm, please refer to
Reference [38].

2.4. Feature Selection
2.4.1. Candidate Explanatory Variables

The candidate predictors in this paper can be summarized as follows: (1) surface re-
flectance data, including the Blue, Green, Red, NIR, SWIR1, and SWIR2 bands; (2) common
spectral indices (Table 3); (3) terrain factors extracted from SRTM data, including DEM,
slope, aspect, and hillshade; and (4) other variables, including albedo (α, Equation (8)) [39],
emissivity (ελ, Equation (5)), and the first three tasseled cap transformation (TCT) com-
ponents, namely the brightness (TC1), greenness (TC2), and wetness (TC3). The TCT
coefficients for Landsat 8 and Sentinel-2 data refer to References [40,41], respectively.

α = 0.356× Blue + 0.130× Red + 0.373× NIR + 0.085× SWIR1 + 0.072× SWIR2− 0.0018 (8)

Table 3. Information on the common spectral indices.

Full Name Formula Reference

Normalized difference vegetation
index (NDVI) NDVI = NIR−Red

NIR+Red [42]

Soil adjusted vegetation index (SAVI) SAVI = (NIR−Red)×(1+L)
NIR+Red+L , L = 0.5 [43]

Modified soil adjusted vegetation
index (MSAVI)

MSAVI =[
(2× NIR + 1)−

√
(2× NIR + 1)2 − 8× (NIR− Red)

]
/2

[44]

Optimal soil adjusted vegetation
index (OSAVI) OSAVI = NIR−Red

NIR+Red+0.16 [45]

Fractional vegetation cover (FVC) 1 FVC = 1−
(

NDVImax−NDVI
NDVImax−NDVImin

)0.625 [46]

Index-based vegetation index (IVI) IVI = SAVI−(NDBI+MNDWI)/2
SAVI+(NDBI+MNDWI)/2

[33]

Normalized difference water index (NDWI) NDWI = Green−NIR
Green+NIR [47]

Modified normalized difference water
index (MNDWI) MNDWI = Green−SWIR1

Green+SWIR1 [48]

Index-based built-up index (IBI) IBI = NDBI−(SAVI+MNDWI)/2
NDBI+(SAVI+MNDWI)/2

[49]

Normalized difference built-up index (NDBI) NDBI = SWIR1−NIR
SWIR1+NIR [50]

Urban index (UI) UI = SWIR2−NIR
SWIR2+NIR [51]

Bare soil index (BI) BI = (Red+SWIR2)−(NIR+Blue)
(Red+SWIR2)+(NIR+Blue)

[52]

Normalized difference drought index (NDDI) NDDI = NDVI−NDWI
NDVI+NDWI [53]

1 NDVImin and NDVImax were determined by the lower 5% tail and upper 5% tail of the NDVI distribution, respectively [16].

2.4.2. Determination of the Optimal Feature Combination

Feature selection is the first task for a multivariate regression model, aiming to find
the most significant indicators for predicting the response variable. Feature selection is
a hot topic, and numerous techniques for feature selection have been proposed. One of
the most classic and popular methods is the least absolute shrinkage and selection op-
erator (LASSO) [54]. The LASSO imposes an L1 penalty on the regression coefficients
to obtain the optimal subset of covariates automatically. However, the LASSO does not



Remote Sens. 2021, 13, 1186 8 of 33

perform well in the case of highly correlated predictors. Some extensions of the LASSO
have been developed, such as the least angle regression (LARS) [55] and the component
selection and smoothing operator (COSSO) [56]. However, all covariates must be included
in these models at the same time, leading to high complexity and computational cost of
the models. Most feature selection studies focus on selecting variables for linear models
while neglecting variables with multiple types. To address the feature selection prob-
lems for nonlinear models, Yenigün and Rizzo (2015) [57] proposed two different feature
selection criteria based on partial maximal correlation and partial distance correlation,
respectively. In the case of variables with different natures (such as scalar, circular, direc-
tional), Febrero-Bande et al. (2019) [58] introduced distance correlation to perform feature
selection. However, the selected variables are not the optimal variables for a specific model
because they are chosen without considering the model.

The above approaches do not consider the effects of feature combination. As men-
tioned in the introduction, it is crucial to identify the optimal variable combination before
establishing models. This paper objectively determines the optimal feature combination
through three steps. First, we eliminate the irrelevant features based on the correlations
between LST and features. Second, redundant features that are highly correlated are re-
moved. The first two steps are conducive to reducing the number of variables so that the
computational cost of the models is significantly decreased. Third, the optimal feature com-
bination is determined according to the variable importance of each model. The extreme
gradient boosting (XGBoost) and multivariate adaptive regression splines (MARS) models
can provide variable importance, while the Bayesian ridge regression (BRR) model does
not have a built-in feature selection function.

2.5. MFGWML Downscaling Method
2.5.1. Principles of Base Learners

According to ensemble learning theory, base learners with either no correlation or
a weak correlation can be integrated to generate better predictions [59]. Therefore, three
excellent models with different model structures and optimization approaches, namely
XGBoost, MARS, and BRR, were selected as base learners. XGBoost is a tree structure
model that implements gradient boosting to perform optimization. MARS is a model based
on multivariate adaptive regression splines; it utilizes the generalized cross-validation
(GCV) method to determine the optimal basis functions. BRR is a hybrid model that
integrates ridge regression with Bayesian estimators. The regularization parameters of
BRR are optimized based on their distribution. The optimization methods prevent these
three models from overfitting. Thus, they are excellent in practical applications [29,60,61].
The XGBoost, MARS, and BRR algorithms were implemented with the xgboost, earth, and
monomvn packages, respectively, in the R language environment (version 3.6.3).

1. XGBoost

XGBoost is a scalable end-to-end tree boosting system [62]. For a given dataset (D)
with n examples and m features, expressed as D = {(xi, yi)}(|D| = n, xi ∈ Rm, yi ∈ R), a
tree ensemble model uses additive functions (Equation (9)) to make predictions. Assuming
that ŷi

(t) is the predicted result of the ith instance during the tth iteration, ft is added
greedily to minimize the objective function (Equation (10)). XGBoost employs the second-
order gradient derivatives of the loss function to quickly optimize the objective function
(Equation (11)). XGBoost uses an exact greedy algorithm or the approximate algorithm to
propose candidate split points for constructing optimal trees.

ŷi = φ(xi) =
K

∑
i=1

fk(xi) (9)

L(t) =
n

∑
i=1

l
(

yi, ŷi
(t−1) + ft(xi)

)
+ Ω( ft) (10)
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L(t) '
n

∑
i=1

[
l
(

yi, ŷ(t−1)
)
+ gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ Ω( ft) (11)

where K is the number of additive functions that correspond to each tree (K trees in total),
l denotes a differentiable convex loss function, and Ω indicates the regularizer. gi and
hi denote the first-order approximation and second-order approximation of the Taylor
series, respectively.

2. MARS

MARS is a nonlinear and nonparametric regression model [63]. The MARS model
(Equation (12)) is established in two steps. First, all possible basis functions are introduced
into the model in the forward stepwise regression procedure. Second, basis functions
that contribute minimally to the model accuracy are eliminated in the backward stepwise
pruning procedure.

ŷ = f̂M(X) = a0 +
M

∑
m=1

amBm(x) (12)

B(q)
m (x) =

Km

∏
k=1

[skm

(
xv(k,m) − tkm

)
]
q

+
(13)

where ŷ is the output prediction; x is the input variable; a0 denotes a constant; am denotes
a coefficient; m = 0, 1, . . . , M; M is the number of basis functions; Bm(x) refers to an indi-
vidual basis function or a product of several basis functions (Equation (13)); Km represents
the number of splits; and [skm

(
xv(k,m) − tkm

)
]
+

indicates the spline function.

3. BRR

BRR refers to ridge regression implemented based on Bayesian statistical inference [61].
Ridge regression is a technique that imposes L2 regularization on ordinary least squares
regression (Equation (14)) to mitigate the problem of multicollinearity. The regularization
parameters in ridge regression (Equation (15)) are specific fixed values, while Bayesian
regression tunes them to the available data. Bayesian regression assumes the output
prediction (y) to be Gaussian distributed around Xw and establishes a total probability
model (Equation (16)). BRR uses a spherical Gaussian function to estimate the prior values
of coefficients in the probability model (Equation (17)). The relative variable importance for
the BRR model was generated by the recursive feature elimination (RFE) algorithm [64].

ŷ(w, x) = w0 + w1x1 + w2x2 + · · ·+ wp (14)

min
w
||Xw− y||22 + α||w||22 (15)

p(y|X, w, α) = N(y|Xw, α) (16)

p(w|λ) = N
(

w
∣∣∣0, λ−1 Ip

)
(17)

where ŷ(w, x) represents the predicted value; X =
(
x1, x2, . . . , xp

)
denotes the predictors;

w0 refers to the intercept; w =
(
w1, w2, . . . , wp

)
denotes the coefficients, and α (α ≥ 0)

denotes the complexity parameter. The priors of α and λ are gamma distributions. The
values of the regularization parameters α and λ are estimated by maximizing the log
marginal likelihood.

2.5.2. Principle of GWR

GWR is a local regression method that is conducive to investigating spatial nonstation-
arity, which was proposed by applying geographically varied coefficients to the ordinary
linear regression framework (Equation (18)) [30]. GWR estimates its coefficients with the
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weighted least squares method (Equation (19)) [30] and calculates the weight matrix with a
spatial kernel function, such as the Gaussian kernel (Equation (20)).

yi = β0(ui, vi) +
m

∑
k=i

βk(ui, vi)xik + εi (18)

β̂(ui, vi) =
(

XTW(ui, vi)X
)−1

XTW(ui, vi) (19)

wij = exp
[
−1

2
(
dij/b

)2
]

(20)

where β0 is a constant; βk (k = 1, . . . , m) denotes the coefficients; εi is the residual at point
i; m refers to the total number of predictors; (ui, vi) denotes the geographical coordinates of
the ith observation; β0(ui, vi) is the intercept at point i; βk(ui, vi) represents the local coeffi-
cient of xk at point i; β̂(ui, vi) denotes the unbiased estimate of β(ui, vi); X and Y denote
the matrices for the independent variables and dependent variables, respectively; W(ui, vi)
is a spatial weighted square matrix; dij denotes the spatial distance between regression
point i and the neighbouring observation point j, and b indicates the kernel bandwidth.

2.5.3. Geographically Weighted Ensemble Learning

MFGWML uses GWR to perform geographically weighted ensemble learning; the
procedure involves three steps. First, we randomly sampled 15,000 points from the study
area. All samples were partitioned into training and testing subsets with the proportion
7:3 [65]. Second, we employed the same training subset to train the three base models;
their hyperparameter optimizations were implemented automatically with a 10-fold cross-
validation approach. Third, the principal component analysis (PCA) technique was utilized
on the three LST predictions to avoid local multicollinearity effects. The PCA components
correlated with LST were integrated into the GWR model to generate ensemble predictions.
In terms of downscaling from 30 to 10 m in this paper, PC1, PC2 and PC3 explained 97.472%
variance, 1.857% variance, and 0.671% variance, respectively, in the 10 m LST predictions
produced by the three base models. The PCA components are highly correlated with
LST (|P| = 0.904), weakly correlated with LST (|P| = 0.122), and uncorrelated with LST
(|P| = 0.042), respectively. The PCA components for the other six downscaling schemes
have similar cases. Accordingly, we excluded PC3 and integrated PC1 and PC2 into the
GWR model for different downscaling schemes.

2.6. Classic LST Downscaling Algorithms
2.6.1. TsHARP Algorithm

TsHARP uses FVC ( fC) instead of the NDVI as the scale factor to simulate TR (Equa-
tion (21)) [16], and the form of fC is simplified to fCs (Equation (22)) to yield an easy-to-
operate function of the NDVI (Equation (23)). The procedure of TsHARP is described as
follows. First, a simple linear regression model is established to fit the relationship between
TR and fCs at coarse thermal resolutions (NDVIlow) (Equation (24)). Second, this regression
relationship is applied to the NDVI data with a relatively high resolution (NDVIhigh) (Equa-
tion (25)). Third, the coarse-resolution residual

(
∆T̂R low

)
is calculated (Equation (26)); it

is resampled as ∆T̂R low(r) to have the same spatial resolution of NDVIhigh with the near-
est neighbour resampling method. The sharpened TR (T̂R high) is derived by adding the

resampled residual (∆T̂R low(r)) to the predicted LST (T̂R

(
NDVIhigh

)
) data (Equation (27)).

It should be noted that water bodies must be excluded before establishing the TsHARP
model [16].

T̂R(NDVI) = f (NDVI) = a0 + a1 fC (21)

fCs = 1− (1− NDVI)0.625 (22)

f (NDVI) = a0 − a1(1− NDVI)0.625 (23)
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T̂R(NDVIlow) = f (NDVIlow) = a0 − a1(1− NDVIlow)
0.625 (24)

T̂R

(
NDVIhigh

)
= f

(
NDVIhigh

)
= a0 − a1

(
1− NDVIhigh

)0.625
(25)

∆T̂R low = TR low − T̂R(NDVIlow) (26)

T̂R high = T̂R

(
NDVIhigh

)
+ ∆T̂R low(r) (27)

where T̂R(NDVI) denotes the predicted LST (K); a0 and a1 denote the regression co-
efficients; fCs is the simplified fC; NDVIlow and NDVIhigh denote NDVI images with
coarse spatial resolution and relatively high spatial resolution, respectively; TR low refers
to the coarse-resolution LST (K) data; ∆T̂R low denotes the coarse-resolution residual
(K); ∆T̂R low(r) represents the resampled ∆T̂R low; and T̂R high indicates the downscaled
LST (K) data.

2.6.2. HUTS Algorithm

The HUTS algorithm was specifically proposed for LST downscaling in urban ar-
eas [17], which fits the 4th-order bivariate polynomial relationship between LST and the
two factors, namely the NDVI and albedo (Equation (28)). The sharpening procedure of
HUTS is similar to that of TsHARP.

Ts = p1NDVI4 + p2NDVI3α + p3NDVI2α2 + p4NDVIα3 + p5α4 + p6NDVI3 + p7NDVI2α
+p8NDVIα2 + p9α3 + p10NDVI2 + p11NDVIα + p12α2 + p13NDVI + p14α + p15

(28)

where Ts denotes the LST data (K), α is albedo, and P = (p1, p2, · · · , p15) denotes coefficients.

2.7. Downscaling Accuracy Validation Strategies

Due to the lack of observed 10 m LST data, this paper utilized the common aggregation–
disaggregation approach [31] to validate the LST downscaling accuracy. The widely utilized
and straightforward average aggregation technique [15–17] was adopted in this paper. As
the spatial resolution ratio of the original retrieved LST data (30 m) to the explanatory
variables (10 m) is 3:1, we maintained this proportion during the aggregation procedure.
We designed six LST downscaling schemes for accuracy validation: (1) downscaling from
90 m to 30 m (marked as “Scheme 1”); (2) downscaling from 180 m to 60 m (marked as
“Scheme 2”); (3) downscaling from 270 m to 90 m (marked as “Scheme 3”); (4) downscaling
from 360 m to 120 m (marked as “Scheme 4”); (5) downscaling from 450 m to 150 m (marked
as “Scheme 5”); and (6) downscaling from 540 m to 180 m (marked as “Scheme 6”). Table 4
summarizes the original and aggregated resolutions of the variables. The original 30 m
LST data and aggregated 60, 90, 120, 150, and 180 m LST data were utilized as the reference
LST data for the accuracy assessment of the six corresponding LST downscaling schemes.

Table 4. Original and aggregated spatial resolutions of the variables.

Resolution
(m)

LST Retrieved from
Landsat 8 Data

Variables Extracted
from Landsat 8 Data

Terrain Factors Extracted
from SRTM Data

Variables Extracted
from Sentinel-2A Data

Original 30 30 30 10

Aggregated 60, 90, 120, 150, 180,
270, 360, 450, and 540

90, 180, 270, 360, 450,
and 540

60, 90, 120, 150, 180, 270, 360,
450, and 540

30, 60, 90, 120, 150,
and 180

LST, land surface temperature; SRTM, Shuttle Radar Topography Mission.

This paper utilized 5 common measurement metrics to evaluate the model accu-
racy: root mean square error (RMSE) (Equation (29)) [66], mean absolute error (MAE)
(Equation (30)) [66], mean bias error (MBE) (Equation (31)) [66], the coefficient of determi-
nation (R2) (Equation (32)) [67], and Nash–Sutcliffe efficiency (NSE) (Equation (33)) [68].

RMSE =

√
1
n

n

∑
i=1

(LSTS − LSTR)
2 (29)
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MAE =
1
n

n

∑
i=1
|LSTS − LSTR| (30)

MBE =
1
n

n

∑
i=1

(LSTS − LSTR) (31)

R2 = 1− ∑n
i=1(LSTS − LSTR)

2

∑n
i=1
(

LSTS − LSTR
)2 (32)

NSE = 1− ∑n
i=1(LSTR − LSTS)

2

∑n
i=1
(

LSTR − LSTR
)2 (33)

where LSTS denotes the downscaled LST (K) data, LSTR indicates the reference LST (K)
data, and n represents the number of pixels in the entire image.

2.8. Overall Methodological Workflow

Figure 2 displays the overall technique flowchart of the LST downscaling procedures
in this study. The LST downscaling from 30 to 10 m and the six downscaling schemes
designed for validation were carried out according to the following workflow.
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3. Results
3.1. Feature Selection Procedure
3.1.1. Correlations between Features and LST

Table 5 summarizes the Pearson correlation coefficient values (abbreviated as P)
between features and LST. Most features are moderately correlated (0.4 < |P| < 0.7)
or highly correlated (0.7 < |P| < 0.9) with LST. Albedo, NIR, and SWIR1 are weakly
correlated with LST (0.2 < |P| < 0.4). Although they might be useless individually, they
can significantly improve the model performance when employed with other features [37].
However, aspect and hillshade were removed, as they are almost irrelevant to LST (|P| ≈ 0).
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Table 5. Pearson correlation coefficients between features and LST.

Feature Albedo Aspect BI Blue DEM FVC Green Hillshade IBI

P 0.236 −0.057 0.733 0.750 −0.726 −0.759 0.726 0.062 0.697
Feature IVI MNDWI MSAVI NDBI NDDI NDVI NDWI NIR OSAVI

P −0.683 0.503 −0.679 0.716 −0.670 −0.700 0.634 −0.379 −0.698
Feature Red SAVI Slope SWIR1 SWIR2 TC1 TC2 TC3 UI

P 0.735 −0.677 −0.575 0.383 0.649 0.409 −0.687 −0.502 0.766

DEM, digital elevation model; TC1, tasseled cap transformation (TCT) brightness; TC2, TCT greenness; TC3, TCT wetness.

3.1.2. Correlations among Features

The Pearson correlation coefficients (P) among features are listed in Table A1 of
Appendix A. Among vegetation indices, FVC, index-based vegetation index (IVI), modi-
fied soil adjusted vegetation index (MSAVI), NDVI, optimal soil adjusted vegetation index
(OSAVI), SAVI, and TC2 have extremely high correlations (0.9 ≤ |P| ≤ 1). FVC was
retained, and other vegetation indices were eliminated, given that FVC is the most rele-
vant to LST among these features. Subsequently, other features with Pearson correlation
coefficients less than 0.85 were selected based on the coefficient matrix. There were seven
features selected in this stage: DEM, FVC, MNDWI, NIR, slope, SWIR2, and TC1.

3.1.3. Variable Importance Assessment

To identify the optimal feature combination for each model, we separately added the
previously selected features to the three base models according to the variable importance
rankings provided by each model, in descending order (Figure 3a–c). The RMSE values of
the models with different numbers of variables were calculated (Figure 3c–e). The lowest
RMSE value of each model indicates the optimal variable number. Therefore, the optimal
feature combination for the XGBoost model is the combination of the top three variables,
namely DEM, SWIR2, and FVC. The optimal feature combination for the MARS model is
the combination of the top four variables, namely DEM, MNDWI, SWIR2, and TC1. The
optimal feature combination for the BRR model is the combination of the top five variables,
namely SWIR2, FVC, MNDWI, DEM, and TC1.

3.2. MFGWML Model Analysis
3.2.1. Base Model Correlations

Figure 4 displays the correlation coefficients among the XGBoost, MARS, and BRR
models. All the correlation coefficient values are less than 0.75, which indicates that the
three base models have weak relationships; thus, they can be fused to improve predictions.

3.2.2. MFGWML Model Parameters

As shown in Figure 5, the regression coefficients (namely the slope of PC1 and the
slope of PC2), intercept, and residual for the MFGWML model with a spatial resolution of
30 m represent evident spatial heterogeneity. Therefore, it is essential to utilize the local
model, namely GWR, to characterize the spatially nonstationary relationships between LST
and explanatory variables (PC1 and PC2). Moreover, these parameters were resampled
from 30 to 10 m with the nearest neighbor resampling method for predicting the 10 m LST.
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3.3. Accuracy Validation and Comparison
3.3.1. Comparing MFGWML with TsHARP

The downscaling results of MFGWML and TsHARP are compared after excluding
water regions. Water regions were identified, using the water mask built by setting the
threshold “MNDWI > 0.2” to the MNDWI image. As shown in Figure 6, the MFGWML
downscaled result has a more similar spatial pattern distribution to that of the original
30 m LST data than the TsHARP downscaled result. There are many overestimations in
the TsHARP downscaled result. These results illustrate that MFGWML can recognize and
retain LST heterogeneity much better than TsHARP.
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A total of 50,000 points were randomly selected from the entire city of Beijing (ex-
cluding water regions), to assess the model performances of MFGWML and TsHARP.
The pixel-based scatterplots of the downscaled LST data produced by MFGWML and
TsHARP against the corresponding reference LST data for the six downscaling schemes
are presented in Figure 7. The fitting line of scatters in the MFGWML model is closer to
the reference line than that of scatters in the TsHARP model for each downscaling scheme.
Table 6 lists the statistical parameters of the fitting lines. The slope values for the fitting
line of MFGWML and TsHARP are very close. However, the RMSE and MAE values for
the fitting equation of MFGWML are lower than those of TsHARP for each downscaling
scheme. The R2 value for the fitting equation of MFGWML is higher than that of TsHARP
for each downscaling scheme. Most scatter points in the MFGWML model are generally
distributed on the reference line, which represents a 1:1 relationship. However, most scatter
points in the TsHARP model tend to be located above the reference line, which indicates
that TsHARP overestimates the downscaled LST data for the six downscaling schemes.
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The results confirm that the single explanatory variable, namely the NDVI, in the TsHARP
model is incapable of capturing the complicated spatial heterogeneity characteristics of
LST data. MFGWML outperforms TsHARP and is robust at different scales.
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Figure 6. Spatial distribution of the water-masked LST (K) data. (a1) Retrieved 30 m LST (K) data, (a2) MFGWML
downscaled 10 m LST (K) data, and (a3) thermal image sharpening (TsHARP) downscaled 10 m LST (K) data. Plots (b1–b3)
are the corresponding subsets of plots (a1–a3), respectively. The black rectangle is the minimum bounding rectangle of the
central urban area; it represents the spatial extent of the subset. The blanks in these plots denote no-data areas due to the
exclusion of water regions.

Table 6. Statistical parameters of the fitting lines for scatters in MFGWML and TsHARP for the six downscaling schemes
performed in the entire Beijing (excluding water regions).

Downscaling
Schemes

Fitting Equation RMSE (K) MAE (K) R2

M 1 T 1 M 1 T 1 M 1 T 1 M 1 T 1

Scheme 1 y = 1.030∗x − 9.098 y = 1.029∗x − 6.381 1.304 1.833 0.942 1.420 0.928 0.868
Scheme 2 y = 1.040∗x − 12.140 y = 1.032∗x − 7.072 1.404 1.839 1.028 1.422 0.919 0.867
Scheme 3 y = 1.027∗x − 8.373 y = 1.033∗x − 7.250 1.447 1.739 1.059 1.345 0.912 0.879
Scheme 4 y = 1.041∗x − 12.686 y = 1.035∗x − 7.944 1.411 1.697 1.046 1.307 0.918 0.884
Scheme 5 y = 1.025∗x − 7.721 y = 1.033∗x − 7.344 1.483 1.716 1.088 1.322 0.906 0.880
Scheme 6 y = 1.070∗x − 21.590 y = 1.039∗x − 9.028 1.444 1.657 1.087 1.274 0.917 0.888

1 M stands for MFGWML, and T stands for TsHARP. MAE, mean absolute error.
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indicates that TsHARP performs worse than MFGWML at different scales. 

Figure 7. Pixel-based density scatterplots of the downscaled LST (K) data (Y-axis) and reference LST (K) data (X-axis) for
the six downscaling schemes: (a1,a2,b1,b2,c1,c2,d1,d2,e1,e2,f1,f2). Plots (a1,a2) are the density scatterplots for Scheme 1,
which corresponds to the MFGWML model and TsHARP model, respectively. The remainder of the plots are named in the
same manner. The dotted black line is the 1:1 reference line, and the solid red line is the fitting line.

Figure 8 shows the LST error distribution histograms of the MFGWML and TsHARP
models for the six downscaling schemes. Intuitively, the LST errors of the MFGWML model
for the six downscaling schemes are concentrated near 0 K. However, the LST errors of the
TsHARP model for the six downscaling schemes tend to be less than 0 K, which indicates
that TsHARP performs worse than MFGWML at different scales.
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Figure 9 shows the LST error distribution boxplots of the MFGWML and TsHARP
models for the six downscaling schemes. It is intuitively displayed that the median of LST
errors in MFGWML for each scheme is almost 0 K, indicating that MFGWML is unbiased.
The median of LST errors in TsHARP for each scheme is greater than -5 K and less than
0 K, indicating that TsHARP is biased. The interquartile range (IQR) is compared, which
means the difference between the upper and lower quartiles of boxplots. The IQR for
LST errors of MFGWML for each scheme is obviously narrower than that of TsHARP,
indicating that the LST error distribution of MFGWML is more concentrated than that
of TsHARP. Table 7 lists the exact values of the statistical indicators for evaluating LST
error distributions. The means, medians, the 25th percentiles (marked as Q1), and the 75th
percentiles (marked as Q3) for LST errors of MFGWML are closer to 0 K than those of
TsHARP for the six downscaling schemes. Besides, the IQR values of MFGWML are less
than those of TsHARP for the six downscaling schemes. These statistical results indicate
that LST errors of MFGWML are more concentrated to 0 K than those of TsHARP. In other
words, MFGWML performs better than TsHARP at different scales.
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− 1.5*IQR) or greater than (Q3 + 1.5*IQR) are identified as outliers. Figure 10 displays the 
spatial distribution of LST errors and their outliers in the MFGWML and TsHARP models 
for Scheme 1, namely downscaling from 90 to 30 m. Most LST errors in the MFGWML 
model range from −1.5 to 1.5 K (Figure 10a1), while most LST errors in the TsHARP model 
are less than -3 K (Figure 10a2). Table 8 shows that pixels with LST errors of <−3 K, −3 K 
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Figure 9. LST error distribution boxplots of the MFGWML and TsHARP models for the six downscaling schemes: (a)
Scheme 1, (b) Scheme 2, (c) Scheme 3, (d) Scheme 4, (e) Scheme 5, and (f) Scheme 6. The black line indicates the median
value. The blue and purple boxes indicate the percentiles for the MFGWML and TsHARP models, respectively. The solid
red dots indicate outliers.

Table 7. Statistical indicators of LST error distribution in MFGWML and TsHARP for the six downscaling schemes
performed in the entire city of Beijing (excluding water regions).

Downscaling
Schemes

Mean
(K)

Median
(K)

The 25th
Percentile (K)

The 75th
Percentile (K) IQR

M 1 T 1 M 1 T 1 M 1 T 1 M 1 T 1 M 1 T 1

Scheme 1 0.008 −2.612 0.233 −2.426 −0.585 −3.686 0.770 −1.376 1.355 2.310
Scheme 2 0.021 −2.747 0.211 −2.597 −0.670 −3.842 0.882 −1.511 1.552 2.331
Scheme 3 0.008 −2.808 0.259 −2.675 −0.697 −3.844 0.884 −1.646 1.581 2.198
Scheme 4 −0.007 −2.839 0.276 −2.729 −0.737 −3.845 0.889 −1.713 1.626 2.131
Scheme 5 0.001 −2.860 0.256 −2.758 −0.767 −3.880 0.894 −1.764 1.662 2.116
Scheme 6 −0.017 −2.883 0.270 −2.792 −0.899 −3.895 0.990 −1.797 1.889 2.098

1 M stands for MFGWML, and T stands for TsHARP. IQR, interquartile range.

According to the above boxplots, there are outliers of LST errors in the MFGWML
and TsHARP models for the six downscaling schemes. Pixels with LST error less than
(Q1 − 1.5*IQR) or greater than (Q3 + 1.5*IQR) are identified as outliers. Figure 10 displays
the spatial distribution of LST errors and their outliers in the MFGWML and TsHARP
models for Scheme 1, namely downscaling from 90 to 30 m. Most LST errors in the
MFGWML model range from −1.5 to 1.5 K (Figure 10a1), while most LST errors in the
TsHARP model are less than −3 K (Figure 10a2). Table 8 shows that pixels with LST
errors of <−3 K, −3 K to −1.5 K, −1.5 K to 1.5 K, 1.5 K to 3 K, and >3 K, account for
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2.929%, 9.344%, 80.735%, 6.118%, and 0.874% of all the samples in the MFGWML model
for Scheme 1, respectively. Pixels with LST errors of < −3 K, −3 K to −1.5 K, −1.5 K to
1.5 K, 1.5 K to 3 K, and >3 K, account for 37.389%, 34.695%, 26.939%, 0.703%, and 0.274%
of all the samples in the TsHARP model for Scheme 1, respectively. Most outliers in the
MFGWML model for Scheme 1 occurred in the northern and eastern parts of the urban
area, ranging from −5 to −2.616 K. Most outliers in the TsHARP model for Scheme 1 also
occurred in the northern and eastern parts of the urban area, but they range from −10 to
−7.152 K. The outliers in the MFGWML model and TsHARP model for Scheme 1 account
for 5.433% and 1.991%, respectively. The other five downscaling schemes have similar
statistical results. These results indicate that the downscaled LSTs have few outliers, and
the MFGWML downscaled LST is more reliable than the TsHARP downscaled LST.
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Figure 10. Spatial distribution of LST errors (K) in the MFGWML and TsHARP models for Scheme 1. Plots (a1,b1) represent
the spatial distribution of LST errors for MFGWML and TsHARP, respectively. Plots (a2,b2) indicate LST error outliers for
MFGWML and TsHARP, respectively. In the plots (a2,b2), different colors except the light yellow color indicate outliers
with different error ranges.
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Table 8. Proportional values of LST errors in MFGWML and TsHARP for the six downscaling schemes performed in the
entire city of Beijing (excluding water regions).

Downscaling
Schemes

<−3 K (%) −3 K~−1.5 K (%) −1.5 K~1.5 K (%) 1.5 K~3 K (%) >3 K (%) Outliers (%)

M 1 T 1 M 1 T 1 M 1 T 1 M 1 T 1 M 1 T 1 M 1 T 1

Scheme 1 2.929 37.389 9.344 34.695 80.735 26.939 6.118 0.703 0.874 0.274 5.433 1.991
Scheme 2 3.467 40.900 9.875 34.337 76.548 23.896 8.953 0.656 1.157 0.211 4.392 1.983
Scheme 3 3.841 42.199 10.434 35.790 76.443 21.421 8.063 0.417 1.219 0.173 4.517 1.768
Scheme 4 3.671 43.212 11.153 36.377 76.294 19.821 8.009 0.395 0.873 0.195 3.710 1.835
Scheme 5 3.931 43.861 11.145 36.735 75.574 18.880 7.858 0.321 1.492 0.203 3.995 1.570
Scheme 6 3.712 44.663 12.232 36.677 73.452 18.108 9.722 0.357 0.882 0.195 1.932 1.672

1 M stands for MFGWML, and T stands for TsHARP.

Table 9 lists the accuracy evaluation indicators of MFGWML and TsHARP for the
six downscaling schemes. In terms of Scheme 1, namely downscaling from 90 to 30 m,
the Pearson coefficients for MFGWML and TsHARP are 0.964 and 0.932, respectively,
which indicates that the downscaled LSTs generated by MFGWML and TsHARP are highly
correlated with the reference LST. The RMSE values for TsHARP and MFGWML are 3.196
and 1.312 K, respectively. The MAE values for TsHARP and MFGWML are 2.707 and
0.961 K, respectively. These values demonstrate that MFGWML improves the results with a
58.949% decrease and a 64.499% decrease in the RMSE value and MAE value, respectively.
The MBE values for TsHARP and MFGWML are−2.614 and 0.006 K, respectively, indicating
that MFGWML is more reliable than TsHARP. The NSE values for TsHARP and MFGWML
are 0.510 and 0.917, respectively. The R2 values for TsHARP and MFGWML are 0.631 and
0.917, respectively. These statistical results show that MFGWML outperforms TsHARP. The
other five downscaling schemes have similar results, which indicates that MFGWML is
robust at different scales.

Table 9. Accuracy evaluation indicators of MFGWML and TsHARP for the six downscaling schemes performed in the entire
city of Beijing (excluding water regions).

Downscaling
Schemes

RMSE (K) MAE (K) MBE (K) NSE Pearson a R2

M b T b M b T b M b T b M b T b M b T b M b T b

Scheme 1 1.312 3.196 0.961 2.707 0.006 −2.614 0.917 0.510 0.964 0.932 0.917 0.631
Scheme 2 1.416 3.309 1.057 2.830 0.020 −2.747 0.903 0.471 0.959 0.931 0.903 0.613
Scheme 3 1.453 3.303 1.081 2.870 0.010 −2.804 0.898 0.471 0.955 0.938 0.898 0.617
Scheme 4 1.423 3.313 1.078 2.902 −0.008 −2.841 0.901 0.463 0.958 0.940 0.901 0.615
Scheme 5 1.487 3.338 1.109 2.927 0.001 −2.859 0.891 0.451 0.952 0.938 0.891 0.609
Scheme 6 1.478 3.328 1.155 2.940 −0.017 −2.881 0.891 0.449 0.958 0.942 0.891 0.610

a Pearson stands for the Pearson coefficients between the downscaled LST and the reference LST. b M stands for MFGWML, and T stands
for TsHARP. MBE, mean bias error; NSE, Nash–Sutcliffe efficiency.

3.3.2. Comparing MFGWML with HUTS

As mentioned in Section 2.6.2, the HUTS algorithm was specifically proposed for LST
downscaling in urban areas, where the spatial heterogeneity of land covers and LST is
relatively considerable. Therefore, we performed the HUTS model for LST downscaling
around the central urban area in Beijing. As shown in Figure 11, the MFGWML downscaled
result has a more similar spatial pattern distribution to that of the original 30 m LST
data than the HUTS downscaled result. There are many overestimations in the HUTS
downscaled result. These results illustrate that MFGWML can recognize and retain LST
heterogeneity much better than HUTS.
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Figure 11. Spatial distribution of LST (K) data around the central urban area. (a1) Retrieved 30 m LST (K) data, (a2)
MFGWML downscaled 10 m LST (K) data, and (a3) the high-resolution urban thermal sharpener (HUTS) downscaled 10 m
LST (K) data.

A total of 50,000 points were randomly selected around the central urban area to
assess the model performances of MFGWML and HUTS. The pixel-based scatterplots of
the downscaled LST data produced by MFGWML and HUTS against the corresponding
reference LST data for the six downscaling schemes are presented in Figure 12. The fitting
line of scatters in the MFGWML model is a little closer to the reference line than that of
scatters in the HUTS model for each downscaling scheme. Table 10 lists the statistical
parameters of the fitting lines. The slope values, RMSE values, MAE values, and R2 values
for the fitting lines of MFGWML and HUTS are very close in each downscaling scheme.
Most scatter points in the MFGWML model generally distribute on the reference line,
which represents a 1:1 relationship. However, most scatter points in the HUTS model tend
to be located above the reference line, thus indicating that the HUTS model overestimates
the downscaled LST data for the six downscaling schemes. The results demonstrate that
the two factors (namely NDVI and albedo) in the HUTS model are incapable of capturing
the LST heterogeneity. MFGWML outperforms HUTS and is robust at different scales.

Figure 13 displays the LST error distribution histograms of the MFGWML and HUTS
models for the six downscaling schemes. Intuitively, the LST errors of the MFGWML model
for the six downscaling schemes are concentrated near 0 K. However, the LST errors of the
HUTS model for the six downscaling schemes tend to be less than 0 K, which indicates that
HUTS performs worse than MFGWML at different scales.

Table 10. Statistical parameters for the fitting lines of scatters in MFGWML and HUTS for the six downscaling schemes
performed around the central urban area.

Downscaling
Schemes

Fitting Equation RMSE (K) MAE (K) R2

M 1 H 1 M 1 H 1 M 1 H 1 M 1 H 1

Scheme 1 y = 0.836∗x + 51.721 y = 0.754∗x + 79.651 1.636 1.784 1.283 1.359 0.818 0.754
Scheme 2 y = 0.800∗x + 62.735 y = 0.752∗x + 80.494 1.766 1.808 1.372 1.370 0.778 0.747
Scheme 3 y = 0.750∗x + 78.661 y = 0.750∗x + 81.057 1.727 1.776 1.335 1.345 0.760 0.750
Scheme 4 y = 0.786∗x + 67.558 y = 0.755∗x + 79.735 1.627 1.754 1.277 1.324 0.795 0.755
Scheme 5 y = 0.739∗x + 82.234 y = 0.786∗x + 70.213 1.749 1.638 1.344 1.255 0.744 0.789
Scheme 6 y = 0.808∗x + 60.561 y = 0.770∗x + 75.074 1.687 1.689 1.336 1.288 0.784 0.768

1 M stands for MFGWML, and H stands for HUTS.
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Scheme 3 y = 0.750*x + 78.661 y = 0.750*x + 81.057 1.727 1.776 1.335 1.345 0.760 0.750 
Scheme 4 y = 0.786*x + 67.558 y = 0.755*x + 79.735 1.627 1.754 1.277 1.324 0.795 0.755 
Scheme 5 y = 0.739*x + 82.234 y = 0.786*x + 70.213 1.749 1.638 1.344 1.255 0.744 0.789 
Scheme 6 y = 0.808*x + 60.561 y = 0.770*x + 75.074 1.687 1.689 1.336 1.288 0.784 0.768 

1 M stands for MFGWML, and H stands for HUTS. 
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Figure 12. Density scatterplots of per-pixel comparison between the downscaled LST (K) data (Y-axis) and the reference
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Scheme 1, which corresponds to the MFGWML and HUTS models, respectively. The remainder of the plots are named in
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Figure 14 shows the LST error distribution boxplots of the MFGWML and HUTS
models for the six downscaling schemes. It is intuitively displayed that the median of LST
errors in MFGWML for each scheme is almost 0 K, indicating that MFGWML is unbiased.
The median of LST errors in HUTS for each scheme is greater than −5 K and less than
0 K, indicating that HUTS is biased. The IQRs of LST errors in MFGWML and HUTS are
almost the same, indicating that the LST errors in MFGWML and HUTS have the same
dispersion. Table 11 lists the exact values of the statistical indicators for evaluating LST
errors. It is evident that the means, medians, the 25th percentiles, and the 75th percentiles
for LST errors of MFGWML are closer to 0 K than those of HUTS for the six downscaling
schemes. The IQR values of MFGWML are a little less than those of HUTS for Scheme 1
and Scheme 2, while the IQR values of MFGWML are a little greater than those of HUTS
for Scheme 3, Scheme 4, Scheme 5, and Scheme 6. In general, The IQR values of MFGWML
and HUTS are very close for the six downscaling schemes, indicating that the degrees of
LST error dispersion in MFGWML and HUTS are almost the same. The above statistical
results indicate that LST errors in MFGWML are concentrated to 0 K while those in HUTS
are concentrated to a value less than 0 K. In other words, MFGWML performs better than
HUTS at different scales.
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Table 11. Statistical indicators of LST error distribution in MFGWML and HUTS for six downscaling schemes performed
around the central urban area.

Downscaling
Schemes

Mean (K) Median (K) The 25th Percentile (K) The 75th Percentile (K) IQR

M 1 H 1 M 1 H 1 M 1 H 1 M 1 H1 M 1 H 1

Scheme 1 −0.471 −2.667 −0.282 −2.483 −1.581 −3.885 0.710 −1.272 2.291 2.613
Scheme 2 −0.345 −2.903 −0.239 −2.734 −1.547 −4.147 0.860 −1.522 2.407 2.626
Scheme 3 −0.482 −3.044 −0.380 −2.923 −1.767 −4.231 0.762 −1.786 2.528 2.445
Scheme 4 −0.577 −3.155 −0.477 −3.055 −1.801 −4.344 0.652 −1.921 2.453 2.423
Scheme 5 −0.565 −3.302 −0.585 −3.219 −1.892 −4.434 0.643 −2.106 2.535 2.329
Scheme 6 −0.475 −3.342 −0.451 −3.281 −1.692 −4.478 0.743 −2.153 2.436 2.325

1 M stands for MFGWML, and H stands for HUTS.
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Figure 15 displays the spatial distribution of LST errors and their outliers in the 
MFGWML and HUTS models for Scheme 1, namely downscaling from 90 to 30 m. Most 
LST errors in the MFGWML model range from −1.5 to 1.5 K (Figure 15a1), while most LST 
errors in the HUTS model are less than −3 K (Figure 15a2). Table 12 shows that the pixels 
with LST errors of <−3 K, −3 K to −1.5 K, −1.5 K to 1.5 K, 1.5 K to 3 K, and >3 K, account for 
8.790%, 17.512%, 62.838%, 9.259%, and 1.601% of all the samples in the MFGWML model 
for Scheme 1, respectively. Pixels with LST errors of < −3 K, −3 K to −1.5 K, −1.5 K to 1.5 K, 
1.5 K to 3 K, and > 3 K, account for 39.714%, 30.830%, 28.643%, 0.673%, and 0.140% of all 
the samples in the HUTS model for Scheme 1, respectively. Most outliers in the MFGWML 
model for Scheme 1 occurred in the northern part of the urban area, ranging from -10 to -
5.018 K. Most outliers in the HUTS model for Scheme 1 occurred in the northern and 

Figure 14. LST error distribution boxplots of the MFGWML and HUTS models for the six downscaling schemes:
(a) Scheme 1, (b) Scheme 2, (c) Scheme 3, (d) Scheme 4, (e) Scheme 5, and (f) Scheme 6. The black line indicates the
median value. The blue and purple boxes indicate the percentiles for the MFGWML and HUTS models, respectively. The
solid red dots indicate outliers.

Figure 15 displays the spatial distribution of LST errors and their outliers in the
MFGWML and HUTS models for Scheme 1, namely downscaling from 90 to 30 m. Most
LST errors in the MFGWML model range from −1.5 to 1.5 K (Figure 15a1), while most LST
errors in the HUTS model are less than −3 K (Figure 15a2). Table 12 shows that the pixels
with LST errors of <−3 K, −3 K to −1.5 K, −1.5 K to 1.5 K, 1.5 K to 3 K, and >3 K, account
for 8.790%, 17.512%, 62.838%, 9.259%, and 1.601% of all the samples in the MFGWML
model for Scheme 1, respectively. Pixels with LST errors of < −3 K, −3 K to −1.5 K, −1.5 K
to 1.5 K, 1.5 K to 3 K, and > 3 K, account for 39.714%, 30.830%, 28.643%, 0.673%, and
0.140% of all the samples in the HUTS model for Scheme 1, respectively. Most outliers
in the MFGWML model for Scheme 1 occurred in the northern part of the urban area,
ranging from −10 to −5.018 K. Most outliers in the HUTS model for Scheme 1 occurred in
the northern and southwestern parts of the urban area, ranging from −15 to −10 K. The
outliers in the MFGWML and HUTS models for Scheme 1 are few, accounting for 1.359%
and 1.332%, respectively. The other five downscaling schemes have similar statistical
results. These results indicate that the MFGWML downscaled LST is more reliable than the
HUTS downscaled LST.
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Figure 15. Spatial distribution of LST errors (K) in the MFGWML and HUTS models for Scheme 1. Plots (a1,b1) represent
the spatial distribution of LST errors in the MFGWML and HUTS models, respectively. Plots (a2,b2) indicate LST error
outliers for MFGWML and HUTS, respectively. In the plots (a2,b2), different colors, except for the light yellow color, indicate
outliers with different ranges of LST errors.

Table 12. Proportional values of LST errors in MFGWML and HUTS for the six downscaling schemes performed around the
central urban area.

Downscaling
Schemes

<−3 K (%) −3 K~−1.5 K (%) −1.5 K~1.5 K (%) 1.5 K~3 K (%) >3 K (%) Outliers (%)

M 1 H 1 M 1 H 1 M 1 H 1 M 1 H 1 M 1 H 1 M 1 H 1

Scheme 1 8.790 39.714 17.512 30.830 62.838 28.643 9.259 0.673 1.601 0.140 1.359 1.332
Scheme 2 9.030 44.557 16.672 30.794 59.442 23.735 11.224 0.687 3.632 0.227 1.975 1.526
Scheme 3 10.630 48.267 18.621 31.982 57.892 18.739 9.214 0.691 3.643 0.321 1.739 1.817
Scheme 4 9.933 51.177 20.155 31.106 58.955 16.745 8.639 0.677 2.318 0.295 1.058 1.835
Scheme 5 10.585 55.280 21.100 29.794 55.761 14.357 8.458 0.414 4.096 0.155 2.057 1.755
Scheme 6 8.531 56.624 19.706 28.793 58.766 13.940 10.198 0.500 2.799 0.143 1.137 1.854

1 M stands for MFGWML, and H stands for HUTS.

Table 13 lists the accuracy evaluation indicators of MFGWML and HUTS for the six
downscaling schemes. In terms of Scheme 1, namely downscaling from 90 to 30 m, the
Pearson coefficients for MFGWML and HUTS are 0.904 and 0.869, respectively, which
indicates that the downscaled LSTs generated by MFGWML and HUTS are highly corre-
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lated with the reference LST. The RMSE values for HUTS and MFGWML are 3.366 and
1.834 K, respectively. The MAE values for HUTS and MFGWML are 2.779 K and 1.407 K,
respectively. These values demonstrate that MFGWML improves the results with a 45.514%
decrease and a 49.370% decrease in the RMSE value and MAE value, respectively. The
MBE values for HUTS and MFGWML are −2.665 and −0.471K, respectively, indicating
that MFGWML is more reliable than HUTS. The NSE values for HUTS and MFGWML are
0.342 and 0.805, respectively. The R2 values for HUTS and MFGWML are 0.534 and 0.807,
respectively. These statistical results show that MFGWML outperforms HUTS. The other
five downscaling schemes have similar results, which indicates that the MFGWML model
is robust at different scales.

Table 13. Accuracy evaluation indicators of MFGWML and HUTS for the six downscaling schemes implemented around
the central urban area.

Downscaling
Schemes

RMSE (K) MAE (K) MBE (K) NSE Pearson a R2

M b H b M b H b M b H b M b H b M b H b M b H b

Scheme 1 1.834 3.366 1.407 2.779 −0.471 −2.665 0.805 0.342 0.904 0.869 0.807 0.534
Scheme 2 1.980 3.571 1.514 3.007 −0.345 −2.903 0.771 0.253 0.882 0.864 0.772 0.500
Scheme 3 2.066 3.675 1.584 3.163 −0.483 −3.049 0.746 0.198 0.872 0.866 0.75 0.483
Scheme 4 1.936 3.745 1.508 3.261 −0.579 −3.155 0.774 0.156 0.891 0.869 0.779 0.472
Scheme 5 2.119 3.786 1.635 3.358 −0.565 −3.302 0.724 0.118 0.862 0.888 0.729 0.472
Scheme 6 1.913 3.856 1.501 3.413 −0.477 −3.344 0.769 0.063 0.886 0.876 0.773 0.450

a Pearson stands for the Pearson coefficients between the downscaled LST and the reference LST. b M stands for MFGWML, and H stands
for HUTS.

4. Discussion
4.1. Sources of LST Errors

The sources of LST errors in this paper mainly include three aspects. First, LST
errors may come from the spectral differences due to the different acquisition dates of
Landsat 8 and Sentinel-2A images. Second, there are inevitable errors generated in the
LST retrieval procedures and the aggregation processing of the original retrieved LST
data and the explanatory variables. Third, residual calibration is an important means to
eliminate the uncertainty of model outputs. However, the nearest neighbor resampling
method performed on the coarse-resolution residual is incapable of eliminating the uncer-
tainty of model outputs. Therefore, there are some LST errors generated in the residual
calibration procedures.

4.2. Limitations

This study has two shortcomings. First, the selected Landsat 8 and Sentinel-2A images
have different acquisition dates due to the lack of appropriate images. Nevertheless, given
that their dates are very similar, the spectral differences within several days in summer
are expected to be very small. Second, the input PCA components (PC1 and PC2) make
the model interpretability of MFGWML relatively weak. However, the MFGWML model
requires PCA due to the effects of local multicollinearity.

4.3. Future Research

Further studies involve the following three aspects. First, the multicollinearity issue in
GWR needs further investigation to improve the interpretability of the MFGWML model.
Recently, Fotheringham, one of the GWR algorithm developers, demonstrated that GWR
is very robust to multicollinearity influences and appealed to reconsider the previous
contention [69]. Second, more validation strategies for downscaled LST data need more
explorations, due to the lack of corresponding ground measurements at the satellite transit
time. Third, the applicability, sensitivity, and uncertainty of the MFGWML model should
be investigated for LST downscaling in areas with different climatic, environmental, and
economic characteristics.
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5. Conclusions

This study proposed the MFGWML downscaling method, to generate reliable and
robust high-resolution LST data based on Sentinel-2A images. The MFGWML model
introduced GWR to obtain geographically weighted ensemble predictions based on three
different types of excellent machine learners (namely XGBoost, MARS, and BRR). By
comparing the performances of different LST downscaling models, the main conclusions
are summarized as follows:

(1) The multi-factor downscaling model performs better than the classic single-factor
algorithm, namely TsHARP. This conclusion is consistent with those of many previous
studies. The multi-factor downscaling model outperforms the classic two-factor method,
namely HUTS. This paper demonstrates that both the single indicator (namely NDVI)
in TsHARP and the two factors (namely NDVI and albedo) in HUTS are insufficient for
capturing the LST heterogeneity.

(2) The experimental results for the six LST downscaling schemes also indicate that
MFGWML is robust at different scales.

(3) The MFGWML model integrates the advantages of multi-factor regressions, non-
parametric ML algorithms, and the GWR method, to recognize the local heterogeneity and
generate reliable and robust LST data.

MFGWML is a practical downscaling approach for obtaining LST data with relatively
high spatial resolution, reliability, and robustness. The detailed spatial heterogeneity
information of high-resolution LST data produced by MFGWML can promote LST appli-
cations in urban climate and other environmental research. The MFGWML method can
also be applied for high-spatial-resolution predictions of other land surface variables and
meteorological parameters (such as wind speed), which involve multiple influential factors.
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Appendix A

Table A1. Pearson correlation coefficient matrix among the candidate features.

Features Albedo BI Blue DEM FVC Green IBI IVI MNDWI MSAVI NDBI NDDI NDVI NDWI NIR OSAVI Red SAVI Slope SWIR1 SWIR2 TC1 TC2 TC3 UI

Albedo 1.000 0.196 0.456 −0.029 −0.040 0.549 0.149 0.092 −0.239 0.187 0.242 0.043 −0.003 −0.088 0.671 0.082 0.465 0.161 −0.081 0.870 0.627 0.958 0.137 −0.416 0.220
BI 0.196 1.000 0.797 −0.499 −0.913 0.813 0.968 −0.843 0.532 −0.854 0.978 −0.815 −0.862 0.771 −0.529 −0.868 0.875 −0.851 −0.463 0.543 0.824 0.460 −0.852 −0.796 0.972

Blue 0.456 0.797 1.000 −0.505 −0.828 0.960 0.776 −0.788 0.575 −0.750 0.805 −0.787 −0.814 0.749 −0.335 −0.800 0.950 −0.767 −0.491 0.575 0.858 0.642 −0.795 −0.623 0.864
DEM −0.029 −0.499 −0.505 1.000 0.611 −0.486 −0.435 0.534 −0.513 0.555 −0.454 0.529 0.534 −0.520 0.381 0.540 −0.482 0.533 0.679 −0.139 −0.375 −0.161 0.536 0.276 −0.507
FVC −0.040 −0.913 −0.828 0.611 1.000 −0.808 −0.845 0.963 −0.807 0.951 −0.858 0.953 0.974 −0.932 0.674 0.973 −0.858 0.955 0.595 −0.302 −0.693 −0.294 0.937 0.580 −0.922

Green 0.549 0.813 0.960 −0.486 −0.808 1.000 0.755 −0.746 0.540 −0.695 0.798 −0.754 −0.783 0.713 −0.225 −0.755 0.974 −0.712 −0.477 0.660 0.871 0.733 −0.730 −0.623 0.840
IBI 0.149 0.968 0.776 −0.435 −0.845 0.755 1.000 −0.796 0.415 −0.836 0.984 −0.744 −0.798 0.694 −0.561 −0.828 0.835 −0.830 −0.383 0.514 0.809 0.411 −0.850 −0.812 0.961
IVI 0.092 −0.843 −0.788 0.534 0.963 −0.746 −0.796 1.000 −0.872 0.966 −0.799 0.990 0.989 −0.979 0.766 0.994 −0.798 0.983 0.515 −0.162 −0.598 −0.160 0.961 0.489 −0.874

MNDWI −0.239 0.532 0.575 −0.513 −0.807 0.540 0.415 −0.872 1.000 −0.798 0.443 −0.904 −0.860 0.932 −0.698 −0.839 0.543 −0.819 −0.510 −0.129 0.276 −0.063 −0.770 −0.124 0.568
MSAVI 0.187 −0.854 −0.750 0.555 0.951 −0.695 −0.836 0.966 −0.798 1.000 −0.804 0.929 0.943 −0.912 0.845 0.982 −0.772 0.995 0.515 −0.108 −0.570 −0.080 0.993 0.501 −0.867
NDBI 0.242 0.978 0.805 −0.454 −0.858 0.798 0.984 −0.799 0.443 −0.804 1.000 −0.768 −0.813 0.721 −0.485 −0.820 0.853 −0.805 −0.406 0.597 0.857 0.497 −0.818 −0.851 0.976
NDDI 0.043 −0.815 −0.787 0.529 0.953 −0.754 −0.744 0.990 −0.904 0.929 −0.768 1.000 0.991 −0.996 0.707 0.976 −0.789 0.953 0.524 −0.184 −0.595 −0.195 0.921 0.469 −0.850
NDVI −0.003 −0.862 −0.814 0.534 0.974 −0.783 −0.798 0.989 −0.860 0.943 −0.813 0.991 1.000 −0.977 0.692 0.987 −0.836 0.964 0.542 −0.242 −0.650 −0.249 0.935 0.522 −0.891
NDWI −0.088 0.771 0.749 −0.520 −0.932 0.713 0.694 −0.979 0.932 −0.912 0.721 −0.996 −0.977 1.000 −0.718 −0.959 0.740 −0.936 −0.513 0.131 0.543 0.142 −0.901 −0.425 0.808

NIR 0.671 −0.529 −0.335 0.381 0.674 −0.225 −0.561 0.766 −0.698 0.845 −0.485 0.707 0.692 −0.718 1.000 0.771 −0.326 0.828 0.316 0.370 −0.111 0.449 0.824 0.184 −0.540
OSAVI 0.082 −0.868 −0.800 0.540 0.973 −0.755 −0.828 0.994 −0.839 0.982 −0.820 0.976 0.987 −0.959 0.771 1.000 −0.821 0.993 0.527 −0.183 −0.623 −0.177 0.976 0.516 −0.893

Red 0.465 0.875 0.950 −0.482 −0.858 0.974 0.835 −0.798 0.543 −0.772 0.853 −0.789 −0.836 0.740 −0.326 −0.821 1.000 −0.786 −0.491 0.630 0.886 0.677 −0.800 −0.671 0.895
SAVI 0.161 −0.851 −0.767 0.533 0.955 −0.712 −0.830 0.983 −0.819 0.995 −0.805 0.953 0.964 −0.936 0.828 0.993 −0.786 1.000 0.506 −0.120 −0.580 −0.102 0.991 0.495 −0.873
Slope −0.081 −0.463 −0.491 0.679 0.595 −0.477 −0.383 0.515 −0.510 0.515 −0.406 0.524 0.542 −0.513 0.316 0.527 −0.491 0.506 1.000 −0.144 −0.382 −0.197 0.496 0.241 −0.490

SWIR1 0.870 0.543 0.575 −0.139 −0.302 0.660 0.514 −0.162 −0.129 −0.108 0.597 −0.184 −0.242 0.131 0.370 −0.183 0.630 −0.120 −0.144 1.000 0.852 0.949 −0.148 −0.795 0.531
SWIR2 0.627 0.824 0.858 −0.375 −0.693 0.871 0.809 −0.598 0.276 −0.570 0.857 −0.595 −0.650 0.543 −0.111 −0.623 0.886 −0.580 −0.382 0.852 1.000 0.812 −0.610 −0.896 0.860

TC1 0.958 0.460 0.642 −0.161 −0.294 0.733 0.411 −0.160 −0.063 −0.080 0.497 −0.195 −0.249 0.142 0.449 −0.177 0.677 −0.102 −0.197 0.949 0.812 1.000 −0.127 −0.619 0.474
TC2 0.137 −0.852 −0.795 0.536 0.937 −0.730 −0.850 0.961 −0.770 0.993 −0.818 0.921 0.935 −0.901 0.824 0.976 −0.800 0.991 0.496 −0.148 −0.610 −0.127 1.000 0.526 −0.880
TC3 −0.416 −0.796 −0.623 0.276 0.580 −0.623 −0.812 0.489 −0.124 0.501 −0.851 0.469 0.522 −0.425 0.184 0.516 −0.671 0.495 0.241 −0.795 −0.896 −0.619 0.526 1.000 −0.793
UI 0.220 0.972 0.864 −0.507 −0.922 0.840 0.961 −0.874 0.568 −0.867 0.976 −0.850 −0.891 0.808 −0.540 −0.893 0.895 −0.873 −0.490 0.531 0.860 0.474 −0.880 −0.793 1.000
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