
remote sensing  

Article

Ship Detection and Feature Visualization Analysis Based on
Lightweight CNN in VH and VV Polarization Images

Xiaomeng Geng 1 , Lei Shi 1 , Jie Yang 1,*, Pingxiang Li 1, Lingli Zhao 2, Weidong Sun 1 and Jinqi Zhao 1

����������
�������

Citation: Geng, X.; Shi, L.; Yang, J.;

Li, P.; Zhao, L.; Sun, W.; Zhao, J. Ship

Detection and Feature Visualization

Analysis Based on Lightweight CNN

in VH and VV Polarization Images.

Remote Sens. 2021, 13, 1184. https://

doi.org/10.3390/rs13061184

Academic Editor: Chung-Ru Ho

Received: 5 February 2021

Accepted: 17 March 2021

Published: 19 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing,
Wuhan University, Wuhan 430079, China; gengxm@whu.edu.cn (X.G.); shi.lei@whu.edu.cn (L.S.);
pxli@whu.edu.cn (P.L.); widensun2012@whu.edu.cn (W.S.); masurq@whu.edu.cn (J.Z.)

2 School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China;
zhaolingli@whu.edu.cn

* Correspondence: yangj@whu.edu.cn

Abstract: Synthetic aperture radar (SAR) is a significant application in maritime monitoring, which
can provide SAR data throughout the day and in all weather conditions. With the development
of artificial intelligence and big data technologies, the data-driven convolutional neural network
(CNN) has become widely used in ship detection. However, the accuracy, feature visualization, and
analysis of ship detection need to be improved further, when the CNN method is used. In this letter,
we propose a two-stage ship detection for land-contained sea area without a traditional sea-land
segmentation process. First, to decrease the possibly existing false alarms from the island, an island
filter is used as the first step, and then threshold segmentation is used to quickly perform candidate
detection. Second, a two-layer lightweight CNN model-based classifier is built to separate false
alarms from the ship object. Finally, we discuss the CNN interpretation and visualize in detail when
the ship is predicted in vertical–horizontal (VH) and vertical–vertical (VV) polarization. Experiments
demonstrate that the proposed method can reach an accuracy of 99.4% and an F1 score of 0.99 based
on the Sentinel-1 images for a ship with a size of less than 32 × 32.

Keywords: SAR; CNN; Sentinel-1; ship detection

1. Introduction

Ship detection plays a crucial role in maritime transportation, maritime surveillance
applications in fishing, and maritime rights maintenance. Synthetic aperture radar (SAR),
as active remote sensing, is most suitable for ship detection because it is sensitive to hard tar-
gets. Furthermore, SAR works throughout the day and in all weather conditions. In recent
years, many SAR satellites, such as Radarsat1/2, TerraSAR-X, Sentinel-1, COSMO-SkyMed,
and GF-3, have been providing a wide variety of SAR images with different resolutions,
modes, and polarizations for maritime application, thereby enabling ship detection.

According to previous research, ship detection usually involves land-ocean segmentation,
preprocessing, prescreening, and discrimination. Constant false alarm rate (CFAR) [1–4],
as a traditional method, is typically used in ship detection. Furthermore, these methods
are dependent on the statistical distribution of sea clutter, which is difficult to accurately
estimate because of sea waves and ocean currents. Besides, the window size of protection
and background influences the detection effectiveness. Land-ocean segmentation is also
unavoidable, thereby causing poor robustness for SAR imagery in those methods. These
traditional ship-detection methods require extensive calculations to address the parameters of
statistical distribution, which is not sufficiently flexible and intelligent, and the detection speed
does not meet actual needs.

At present, with the development of big data and deep learning technologies, convolu-
tional neural networks (CNN) are widely used in mapping ice-wedge polygon (IWP) [5,6],
identifying damaged buildings [7], classifying sea ice cover and land type [8–10], and so on.
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Those CNN models successfully developed an automatic extraction framework for high
spatial resolution remote sensing applications in a large-scale application. However, those
CNN models need the input data and ground truth annotation one-to-one correspondence.
In some research fields, the ground truth data are not easy to obtain due to lack of expert
knowledge and time consumption. Besides, a growing number of researchers are beginning
to study object detection based on convolutional neural network (CNN) methods. Single-
stage methods, such as a proposed region-based convolutional network (R-CNN) [11],
Fast R-CNN [12], and Faster R-CNN [13], and two-stage methods such as SSD [14], YOLO
V1/V2/V3/V4 [14–18], and RetinaNet [19], have exhibited impressive results on various
object detection benchmarks based on PASCAL VOC [20] and MS COCO [21] datasets.
However, the natural images differ from the SAR images, which are produced through a
coherent imaging process that leads to foreshortening, layover, and shadowing. Apart from
the image mechanisms, targets in SAR images vary, such as ghosts, islands, artificial objects,
island, or a harbor that displays similar backscattering mechanisms to ships, which lead
to a high rate of false alarms. Therefore, to apply the deep learning algorithm to the SAR
data, researchers have constructed SAR Ship Detection Dataset [22], SAR-Ship-Dataset [23],
OpenSAR [24], and high-resolution SAR image dataset [25] containing Sentinel-1, Radarsat-
2, TerraSAR-X, COSMO-SkyMe, and GaoFen-3 images. These datasets vary in polarization
(HH, HV, VH, and VV), resolution (0.5, 1, 3, 5, 8, and 10 m), incidence angle, imaging mode,
and background.

Compared with the PASCAL and COCO datasets, the SAR datasets have a low volume.
When training the object detectors for ship detection in SAR images, finetuning or transfer
learning is widely used. These CNN methods have been used for target detection in SAR
images, ship detection [26], and land target detection [27], and have performed better than
the traditional methods.

The deficiency of the method is that average precision is low because the models fail
to consider the SAR image mechanisms [22]. However, the pretraining time and detection
speed of classical object detectors usually do not meet the requirements of real-time ship
detection, maritime rescue, and emergency military decision-making. In recent years,
many researchers have paid attention to ship detection using CNN objectors. A grid
CNN was proposed and proved to improve the accuracy and speed of ship detection [28].
Receptive pyramid network extraction strategies and attention mechanism technology
are proved to improve the accuracy of ship detection [29]. These methods have relatively
deep convolutional layers, hundreds of millions of parameters, and involve a long training
time. Besides, in the data-driven CNN model, it is not easy and time-consuming to obtain
the true value of the target bounding box corresponding to the input image. Therefore,
these methods do not meet the requirements of fast processing, real-time response, and
large-scale detection.

To achieve low complexity and high reliability through a CNN, some researchers have
begun to split the images into small patches in the pre-screening stage and then use a rela-
tively lightweight CNN model to classify the patches. Thereafter, the classification results
are mapped onto the original images. A two-stage framework involves pre-screening and
a relatively simple CNN architecture have been proposed [30,31], but in the pre-screening
stage where a simple constant false alarm rate detector is used. As mentioned, the CFAR
detector falls into a large number of calculations to solve the parameters of the statistical
distribution and ignores small targets. Six convolutional layers, three max-pooling layers,
and two full-connection layers are proposed to ship classification based on GF3-SAR im-
ages [26]. In these methods, CFAR and Ostu are typically used to obtain candidate targets
in the pre-screening stage, and then a simple CNN model is used to reduce false alarms
and recognize the ship. Unfortunately, time consumption is increased when sea-land
segmentation and CFAR detector are applied in the pre-screening stage. Although the
Ostu improves the speed of the pre-screening stage, the threshold may not work effectively
and may cause an excessive number of false alarms. After the SAR image preprocessing,
the CNN model can perform ship detection from all patches, but the accuracy of ship
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detection needs to be improved for the small-level ship. Besides, scholars had analyzed and
discussed the ship detection in the CNN method, but the feature visualization and analysis
of ship detection in both VH and VV polarization were less discussed, which is important
in understanding ship detection through the CNN method. Thus, in this letter, we are
mainly concerned with ship detection accuracy and feature visualization and analysis by
using the VH and VV polarization.

Considering these difficulties, we propose a two-stage ship-detection method. In the
first stage, Lee and island filters are used to reduce the noise and false alarms. Then, an
exponential inverse cumulative distribution function (EICDF) [32,33] is applied to quickly
estimate the segmentation threshold and obtain candidate detection results with relatively
few false alarms. Then, all candidates are put in a lightweight CNN to accurately recognize
the ships. Finally, the feature visualization and analysis of ship detection are carried out by
the Grad-class activation mapping (Grad-CAM). The main contributions of the work are
as follows:

1. The first ship detection method for SAR images is proposed. To quickly obtain candi-
date detection results, this study presents a fast threshold segmentation for candidate
detection, which has been proved to reduce false alarms, obtain all candidate ships
with different scales, and save time in the offshore area.

2. Most detectors consist of deep architecture and millions of parameters, thereby re-
sulting in complex extraction features and lengthy pretraining time. In this study, a
simple lightweight CNN architecture, which is fast and effective, was proposed to
detect the ship.

3. The Grad-CAM was introduced to explain and visualize the CNN model, and then
analyze the great attention pixel when the ship and false alarm were predicted.

The rest of this paper is organized as follows. In Section 2, we present the details of the
dataset, data pre-processing, and the proposed method. Section 3 reports the experiment
results. Sections 4 and 5 present the discussion and conclusions, respectively. Finally, a
summary of this paper is provided.

2. Dataset and Proposed Methodology

In this section, first, the Sentinel-1 SAR images are introduced in detail. Second,
the data progress, candidate targets, and dataset conduction are described. Third, the
lightweight CNN model is presented.

2.1. Dataset

In this section, three Sentinel-1 SAR images located in the East Sea of China and one
Sentinel-1SAR image located in the Huanghai Sea were used in the experiment as shown
in Figure 1. The SAR images contain VH and VV polarizations with a pixel resolution of 10
m × 10 m, and the real resolution is 22 m × 20 m in azimuth and range. The information
of SAR images includes the acquisition time of the image, the swath width, and the image
mode is presented in Table 1.

2.2. Data Pre-Processing

In the section, the process of Sentinel-1 SAR images is described in detail. Figure 2
shows the complete workflow of ship detection. The workflow consists of four steps: pre-
processing, candidate target and dataset construction, CNN model building, and training
and ship detection.
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Figure 1. Image coverage of three Sentinel-1 images: (a) 23 June 2020; (b) 11 July 2020; (c) 17 July
2020; (d) 13 February 2021.

Table 1. Detailed information of Sentinel-1.

No. Time Image Mode Polarization Resolution (Azimuth ×
Range) Swath (km) Position

1. 23 June 2020 IW VH, VV 22 × 20 250 East China Sea
2. 11 July 2020 IW VH, VV 22 × 20 250 East China Sea
3. 17 July 2020 IW VH, VV 22 × 20 250 East China Sea

4. 13 February
2021 IW VH, VV 22 × 20 250 Huanghai Sea

Figure 2. Workflow of ship detection.

The presence of speckle noise in SAR images causes difficulty in interpretation, thereby
degrading the image quality. Therefore, the refined Lee filter [34] was used to improve
the quality of the image and eliminate the coherence noise before the SAR image input
(Figure 3a). In previous research, land-ocean segmentation was unavoidable in the pre-
process to reduce the false alarms from land, harbor, and island. In the SAR images, the
false alarms are mainly from stones, rocks, artificial targets, and island can usually provide
similar backscatter coefficients of ships. Therefore, the island filter is applied to reduce the
false alarms from the island, which is proved effective [30,35], as shown in Figure 3b. The
ship candidates on the dark sea surface are reserved, and similar changes are visible on the
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edge of the island and reef (see Figure 3c). In summary, the false alarm of the island and
reef is reduced more than that of the ship, leading to an increase in the ship-island contrast.
To achieve ship target enhancement, we applied the morphological process consisting of
erosion and dilation to improve contrast (see Figure 3d). Generally, the ship for detection
is assumed to fit a permanent distribution, and then the threshold is calculated through
probability density function. Similar to the CFAR method, after the morphological process,
the image is similar to exponent distribution, and then the threshold is estimated by EICDF
method with the input image mean value and a priori value of 0.999. The segmentation
result is shown in Figure 3e. Finally, eight-connected domain processing was applied in
the segmentation, and the preliminary result is shown in Figure 3f. After eight-connected
domain processing, we can get the minimum bounding rectangle of the candidate target.
Then, we can obtain all candidate slices according to the minimum bounding rectangle.
Noteworthy, taken the centroid of the target as the origin, the slices are extended to 32 × 32
for the minimum bounding rectangle less than 32 × 32 and the slices are resized 32 × 32
for the minimum bounding rectangle of more than 32 × 32.

Figure 3. Pre-processing of SAR image: (a) SAR image, (b) image of island filter, (c) image of Gaussian
filter, (d) image of the morphological process, (e) binary image, and (f) candidate result.

2.3. Candidate Detection

In this section, the candidate detection is discussed in detail based on the threshold
calculation. In the candidate detection stage, the SAR images acquired on 11 July 2020 (No.2)
and 17 July 2020 (No.3) were used. The two SAR images were cropped into 1000 × 1000
sub-images, with 50% overlap, then all sub-images were preprocessed according to the
data-process method described above. Figure 4a shows four SAR image background
scenes with the size of 1000 × 1000 in the flow of candidate detection. Scene 1, screen
2, and screen 3 include different land and islands and different scale ships, and scene 4
includes ships in inhomogeneous conditions. The contrast between the candidate target
and sea background of the SAR data is more obvious after data preprocessing. Thus, we
had an opportunity to detect the targets using the traditional method. The CFAR was
proved available when it was used to detect the candidates in [30]. However, the CFAR
was usually slow due to the parameter calculation of the sliding window in the entire
image. In addition, the parameter estimation may not work well under the inhomogeneous
conditions of the sea background. Thus, the threshold segmentation was considered to
save time and avoid excessive calculation. In previous studies, the Otsu method was one of
the most successful technologies used in image segmentation. However, the method was
not effective in cases where the difference of the variance in object and background was
significant [36]. In our experiment, the image presented exponential distribution (Figure 4c)
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after the morphological process (Figure 4b), and the EICDF could effectively estimate the
threshold. To quantitatively compare the effectiveness of the method, we further discuss
the aforementioned methods. Figure 4d–f shows the candidate results of the Ostu, CFAR,
and EICDF methods. The results indicated that the ships and false alarms can be detected
in both methods. The remarkable difference was the EICDF estimation with less time cost
and false alarms compared with Otsu and CFAR. Table 2 lists the number of candidates
and time cost. Our goal was to detect all ships with the least time cost and false alarms.
In the four different screens, although all of the ships were detected in both methods, the
number of false alarms and time cost were different. CFAR had a large number of false
alarms and time cost than Otsu and ELCDF. The number of candidates was closer in Otsu
and ELCDF, but ELCDF took less time than Ostu. Hence, it is proved that the ELCDF is
effective with the least time cost and candidates.

Figure 4. Progress of candidate detection: (a) original image, (b) morphological process, (c) histogram and probability
density function, (d) candidate detection by Otsu method, (e) candidate detection by constant false alarm rate (CFAR)
(applying Gaussian distribution and the probability of false alarm is 0.0001), and (f) candidate detection by exponential
inverse cumulative distribution function (EICDF).

Table 2. Calculation of candidates and time.

Method Number of Candidates Time (s)

Scene 1
Otsu 112 0.153
CFAR 236 46.137

ELCDF 92 0.051

Scene 2
Otsu 26 0.034
CFAR 232 46.567

ELCDF 29 0.009

Scene 3
Otsu 63 0.008
CFAR 206 49.428

ELCDF 49 0.002

Scene 4
Otsu 8 0.034
CFAR 207 46.027

ELCDF 10 0.011
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2.4. Policies for Construction of Ship Detection Dataset

As a result of data pre-processing in Section 2.2, all targets contain false alarms and
ships can be detected by ELCDF from the sub-images of No. 2 and No. 3, as shown in
Figure 4f. Figure 5 presents the details of the false alarm and ship slices. For most of the
ship slices, the backscatter intensity is relatively larger than the false alarms, and the rest
are dark sea surface pixels distributed in the edges and corners. By contrast, the false
alarm slices vary widely, some targets have strong backscatter intensity and the other has
relatively weak backscatter intensity.

Figure 5. Candidate target: (a) false alarm and (b) ships.

A dataset including both false alarm slices and ship slices is constructed to make the
CNN model more robust in the training stage. The policies of the dataset construction are
considering both ships of different sizes and non-ship objects with a very similar shape
and structure to that of a ship. Hence, we divide both the ship and false alarm slices into
different categories, and the detailed categories are listed as follow:

The false alarms are divided into four categories:
False alarm #1: The characteristics of this type of false alarm mainly come from

artificial targets such as cross-sea bridges, tall buildings, lighthouses and others, which are
similar to the ship slices, as shown in the first two rows in Figure 5a. Most of these targets
have strong scattering intensity across the center.

False alarm #2: The characteristics of this type of false alarm mainly come from the
land targets, where has a bright ridge line as shown in the third row of Figure 5a.

False alarm #3: The characteristics of this type of false alarm mainly come from natural
targets such as small islands, reefs, and rocks, as shown in the fourth row of Figure 5a. Most
of those targets are similar to the medium-level ship in the third row of Figure 5b, which
has low scattering intensity across the center and is surrounded by a dark sea surface.

False alarm #4: The characteristics of this type of false alarm mainly come from
azimuth ambiguity as explained in [37], which usually brings a great challenge in ship
detection through the traditional method. This type of false alarm is distributed at the
center of the slice, close to the backscattering intensity of the ships, as shown in the fifth
row of Figure 5a.

The ships are divided into three categories:
Ship #1: The characteristics of these ships have a strong scattering intensity and a

large-level size, as shown in the first two rows in Figure 5b.
Ship #2: The characteristics of these ships have a strong scattering intensity and a

medium-level size, as shown in the third and fourth row in Figure 5b.
Ship #3: The characteristics of these ships have a low scattering intensity and a small-

level size, which is similar to the ghost, as shown in the fifth row of Figure 5a,b.
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After the pre-process and candidate detection by the VH and VV polarizations of No.
2 and No. 3 SAR images, then, labeled the false alarm and ship by comparing manually
the SAR image and the Google Earth high-resolution optical image, and by considering
the scattering characteristics and context information of targets. The results of a dataset
of the ship and false alarms are listed in Table 3. VH and VH polarization have a total of
4198 false alarm slices and 3132 ship slices.

Table 3. Pre-process detection result.

Name Number of Slices Polarization

False alarms 4198
VH, VVShips 3132

2.5. CNN Model

As mentioned, the classic object detectors tend to have deep convolutional layers and
more training parameters, which often take a long time to train. In this letter, we introduce
a two-layer lightweight CNN model similar to the classic LeNet-5 model [38], called the
modified LeNet-5 (M-LeNet). Detailed information on the proposed CNN model is listed
in Table 4. The CNN model contains convolution, MaxPool, rectified linear units (ReLU),
dropout, and full-connection layers.

y = φ

(
∑

i
wixi − θ

)
. (1)

Table 4. Details of M-LeNet model.

Name Layer Type Input Size Kernel Size Output Size

Input Input - - 1 × 32 × 32
C1 Convolution + ReLU 1 × 32 × 32 3 × 3 16 × 32 × 32
P1 MaxPooling + Dropout 16 × 32 × 32 2 × 2 16 × 16 × 16
C3 Convolution + ReLU 16 × 16 × 16 3 × 3 32 × 16 × 16
P2 MaxPooling + Dropout 32 × 16 × 16 2 × 2 32 × 8 × 8

FC1 Fully connected +
ReLU + Dropout 32 × 8 × 8 - 512

FC2 Fully connected +
ReLU + Dropout 512 - 128

FC3 Fully connected 128 - 2

In general, the convolution operation computes its output as a nonlinear function φ of
the weighted sum of its inputs and of a bias term θ, as shown in Equation (1).

In the previous studies, the input size was set to 60 × 60, 64 × 64, and 128 × 128,
respectively [26,30,31,39]. In this letter, the input size was set to 32 × 32 to reduce the
calculation and simplify the model. As the length and width of some marine objects in
this study were larger than 32 pixels, the resize process was applied in the pre-process
stage to ensure the same input size. To limit the number of weights to learn, all the filter
kernels were set to 3 × 3. In the beginning, 16 convolutional kernels of size work on the
input images to extract features, after which the outputs are downsampled by max-pooling
kernels with a size of 2 × 2. Then, the second convolutional layer filters the outputs
of the first pooling layer with 32 filter kernels. Thereafter, the convolutional layers are
downsampled by the second pooling layer to shrink the feature maps. Finally, three fully
connected layers (FC1 with 512 output neurons, FC2 with 128 output neurons, and FC3
with 2 output neurons) take the outputs of the dropout layers as input, and then the softmax
function is used to predict the labels of the targets after the final output vector. The strides
of all the convolutional layers and all the pooling layers are set to 1 and 2, respectively.
Furthermore, overfitting may occur easily when a neural network is trained on a small
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dataset. The dropout layer [27] is used for every max-pooling and fully connected layer
to prevent overfitting and improve the performance of the neural network. Furthermore,
rectified Linear Unit (ReLU) is used for every convolutional layer and fully connected layer
to prevent a vanishing or exploding gradient. The mathematical derivation of the forward
and backpropagation algorithm was proved and discussed in [40].

The cross-entropy loss function is used to minimize the error between the ground
truth and the CNN prediction output, which can be written as follows:

L(w) =
1
m

m

∑
i=1

P
(

y(i)
∣∣∣x(i); w

)
, (2)

where w is the trainable weight parameter, m represents the total number of training
samples, and yi, xi refer to the true label and predicted label of the ith example, respectively.

3. Experimental Results and Analysis

For the comprehensive evaluation of the ship detection result using the proposed
method, two sub-images of the No. 1 SAR image acquired on 23 June 2020 located in
the East China Sea area were clipped, as shown in Figure 6a–d. The sizes of the two sub-
images were 3791 × 2847 and 2589 × 1565. Besides, a sub-image of 4339 × 3258 was also
clipped from the No.4 SAR image acquired on 13 February 2021, located in the Huanghai
Sea area, as shown in Figure 7a,b. Figure 6 shows that the land and island contain sea
areas in both regions. The azimuth ambiguities are often caused by the sampling of the
Doppler spectrum at finite intervals of the pulse repetition frequency (PRF) due to the
acquisition mode of two channels [37]. Thus, in the SAR images, a small amount of “ghost”
appears around the ship in high-speed movement, but is not negligible in ship detection.
Figure 6e,f shows the azimuth ambiguities caused by ships moving at high speed. In
general, the scattering intensity of co-polarization (see Figure 6b,d) is higher than that of
cross-polarization (see Figure 6a,b). Thus, the same targets may present different scattering
intensity in VH and VV polarization. The characteristic of the target in VH polarization is
less than that in VV polarization, especially for the small targets. In previous studies, the co-
polarization data were also selected for ship detection. However, the VH polarization is less
influenced by azimuth ambiguities. Thus, in PolSAR images, the azimuth ambiguity was
usually suppressed by two cross-polarization channels [37]. However, in previous studies,
the performance of ship detection by VH and VV polarization was less discussed. Thus,
considering the characteristics of dual-polarization SAR in marine imaging, we utilized VH
and VV to detect the ship using the CNN method. Figure 8 shows the candidate results of
ship detection based on the method described in Section 2.3. The sub-image with complex
background presents that all ships can be detected, and false alarm caused by land, island
and azimuth ambiguity also can be detected. There are 122 true ships and 244 false alarm
targets in the sub-images of No. 1 SAR image and 17 true ship and 137 false alarm targets
in the sub-image of No. 4 SAR image. The ground truth can be obtained by using SAR
expert knowledge interpretation and Google Earth in order to evaluate the performance
of the proposed method in the next section. It should be noted that the interpretation
of those ground truth is to identify false alarms by comparing the SAR image with the
high-resolution optical image on Google Earth and then identifying the ship based on the
scattering characteristics and context of the ship on the SAR image.

3.1. Training Details

In this section, the implementation of the hardware and platform is introduced in our
experiments. We perform the experiments on the Ubuntu 14.04 operating system with
an 11.9 GB memory NVIDIA TITAN Xp GPU. Inspired by the hyperparameters set of the
literature [23,41,42], the learning rate, batch size, max epoch, moment, and momentum were
set at 0.01, 32, 0.9, 1000, and 0.0005, respectively. Considering the SAR characteristics, we
discarded the data augmentation in our experiment [43]. A set of optimal hyperparameters
for a learning algorithm list in Table 5.
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Figure 6. Sub-images of No. 1 image vertical–horizontal (VH) and vertical–vertical (VV) polarizations
in the East China Sea area. The red rectangle in (e,f) shows the azimuth ambiguities caused by ships
in VH and VV polarization.

Figure 7. Sub-images of No. 4 image VH and VV polarizations in the Huanghai Sea area.

Figure 8. Results of candidate detection. (a,b) The sub-image of the No. 1 SAR image located in the
East China Sea area. (c) The sub-image of the No. 4 SAR image location in the Huanghai Sea area.
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Table 5. The hyperparameters settings.

Hyperparameters Value

Learning rate 0.01
Momentum 0.9

Weight decay 0.005
Epochs 1000

Batch size 32
Learning rate scheduler StepLR (step size = 200, gamma = 0.1)

Optimizer SGD
Loss function cross-entropy

To compare with our method, we also introduced machine-learning methods such as
KNN, SVM, RF, and the classic CNN LeNet-5 method, which was commonly used and
showed good performance in the classification task. In this letter, KNN, SVM, and random
forest (RF) were implemented on the Ubuntu 14.04 operating system and Scikit-learn in
Python. The parameters of KNN, SVM, and RF can be set with the default parameters.
Besides, the classic CNN LeNet-5 method was also used. The hyperparameters of LeNet-5
were set as the M-LeNet. To ensure similarity in input data, these data were normalized to
0 and 1, with the values of mean and variance set to 0.5.

The training and validation samples are listed in Table 6. In all methods, the training
and validation sample comes from 11 July 2020 (No. 2) and 23 July 2020 (No. 3), and the
ratio is set at 8:2 in the training stage. In the testing stage, the test sample comes from the
SAR data acquired on 23 June 2020 (No. 1) and 13 February 2021 (No. 4).

Table 6. The information of training, validation, and test data.

Samples Location SAR Image Width × Heigh False Alarm Ship

Training and
validation

East China Sea
11 July 2020 25,138 × 8667

4198 313217 July 2020 25,493 × 16,718

Testing East China Sea 23 June 2020 3791 × 2847, 2589
× 1565 244 122

Huanghai Sea 13 February 2021 4339 × 3258 137 17

3.2. VH Polarization Results

In this section, we first conducted the experiments on VH polarization by KNN,
SVM, RF, LeNet-5, and our method. Figure 8 shows the candidate results of the ship
and false alarm. Apart from the true ship, many false alarm targets are detected in the
land and island areas. As mentioned above, in order to detect ships more accurately,
a lightweight CNN method is proposed. Meanwhile, the KNN, SVM, RF, and classic
LeNet-5 methods were introduced to indicate the effectiveness of our methods. Figure 9
shows the results of different methods through which all ships could be detected and false
alarms were reduced further. The KNN method presents more false alarms and fewer true
ships than the other methods. The performance of different machine learning methods
was discussed [30,44]. Noi and Kappas [44] confirmed that when the number of training
samples increases from 1267 pixels to 2619 pixels (each class has 135 polygons) in land
cover classification experiments, the accuracy of SVM and RF is significantly better than
that of KNN. Wang et al. [30] also demonstrated that the performance of KNN is less than
that of RF and SVM in ship detection. Thus, the performance of RF and SVM is reasonably
better than that of KNN. In the CNN method, the performance of M-LeNet is better than
that of the LeNet-5 method.
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Figure 9. Sub-image 1 (up) and sub-image 2 (down) detection results of VH polarization in the East China Sea area.
(a–e) KNN, SVM, RF, LeNet-5, and M-LeNet, respectively. (f–j) KNN, SVM, RF, LeNet-5, and M-LeNet, respectively. (Red
rectangle: ship, red rectangular box with arrow: false alarm, and blue rectangle: missed ship).

To quantitatively evaluate the performance of KNN, SVM, RF, LeNet-5, and M-LeNet,
we introduced the evaluation indicator, such as accuracy, precision, recall, and F1 score. In
these evaluation indicators, the F1 score is the weighted average of precision and recall,
and is usually more useful than accuracy. The equations are as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
, (3)

Precision =
TP

TP + FP
, (4)

Recall =
TP

TP + FN
, (5)

F1 Score = 2× Recall× Precision
Recall + Precision

, (6)

where true positive (TP) means that the ships are correctly predicted, true negative (TN)
means that the ships are predicted to be false alarms, false positive (FP) means that the
actual class is a false alarm and the predicted class is the ship, and false negative (FN)
means that the actual class is the ship but the predicted class is a false alarm. In the CNN,
the input data are the slices, the output is the probability of ships and false alarms. Hence,
the evaluation performance is based on the number of ships and false alarms. Then, the
accuracy, precision, recall, and F1 score were evaluated based on ground truth and the
number of predictions of the ship and false alarm slices.

In addition, the number of missed ships and the number of false alarms were also
calculated. In the sub-images, 122 true ships were obtained through expert knowledge
interpretation using the SAR scattering mechanism. Table 7 presents the detailed evaluation
indicators. RF provides the best evaluation indicators compared with KNN and SVM for
the machine learning method. M-LeNet presents the best evaluation indicators for the
CNN method. The number of the least missed ship is one in the RF method, and the
number of the most missed ship is five in the KNN method. The number of the least false
alarms is zero in M-LeNet, and the number of the most false alarms is eleven. The false
alarm mainly occurs in the land areas in the lower-left corner of the image, which shows
a structure similar to a ship, with low surrounding background. Furthermore, the false
alarms caused by azimuth ambiguity are also incorrectly detected. Compared with VV
polarization, VH polarization has lower backscattering, especially for small targets. Thus,
the poor performance of this type of ship fails to be detected in the CNN methods, as
indicated by the blue rectangles in Figure 9. The CNN method generally exhibits better
performance than the machine learning method. Although several ships are missed, the
overall performance of M-LeNet is better than that of RF. The reason is that the RF classifier
based on the statistical model is sensitive to the image pixels, while the convolution and
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pooling kernel operations lead to the small targets miss detailed texture information and
rich semantic information in the CNN method. Thus, the performance of small target
detection in RF is better than that of M-LeNet and the performance of false alarm detection
in M-LeNet is better than that of RF. Although the number of correct ship detections by
M-LeNet is not as much as that of RF, the false number of ship detections is less than that
of RF and LeNet-5. The comprehensive evaluation indicators such as the F1 score, accuracy,
and recall show better performance than RF. M-LeNet showed the best performance with
an F1 score of 0.99 and an accuracy of 99.40%. Besides, in order to show our CNN model
more transferability, a SAR image located in the Huanghai Sea area was used to test the
performance of ship detection. In order to quickly evaluate the accuracy, a sub-image
with the size of 4339 × 3258 was clipped. In the sub-images, 17 true ships were obtained
through expert knowledge interpretation and Google Earth. Although the number of the
ship is less than the sub-images in No. 1, the VH and VV polarization shows different
sea background. Figure 10 shows the detection results and Table 8 presents the detailed
evaluation indicators. The LeNet-5 presents better performance than KNN, SVM, and
RF with an F1 score of 0.90 and an accuracy of 98.05%. The M-LeNet shows the best
performance in those methods with an F1 score of 0.97 and an accuracy of 99.35%.

Table 7. Detailed evaluation index of VH polarization in the East China Sea area.

Polarization Method Accuracy (%) F1 Recall Precision Correct False Miss

VH

KNN 95.20 0.94 0.96 0.91 117 11 5
SVM 96.98 0.96 0.98 0.94 119 7 3
RF 98.81 0.98 0.99 0.98 121 3 1

LeNet-5 97.60 0.97 0.95 0.98 116 2 6
M-LeNet 99.40 0.99 0.98 1.0 120 0 2

The best evaluation criteria are highlighted in bold and underlined in each column.

Figure 10. Sub-image detection results of VH polarization in the Huanghai Sea. (a–e) represent KNN,
SVM, RF, LeNet-5, and M-LeNet, respectively. (Red rectangle: ship, red rectangular box with arrow:
false alarm, and blue rectangle: missed ship).

Table 8. Detailed evaluation index of VH polarization in the Huanghai Sea area.

Polarization Method Accuracy (%) F1 Recall Precision Correct False Miss

VH

KNN 96.10 0.82 0.82 0.82 14 3 3
SVM 97.75 0.84 0.76 0.92 13 1 4
RF 94.16 0.67 0.53 0.90 9 1 8

LeNet-5 98.05 0.90 0.82 1.0 14 0 3
M-LeNet 99.35 0.97 0.94 1.0 16 0 1

The best evaluation criteria are highlighted in bold and underlined in each column.
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3.3. VV Polarization Results

Figure 11 shows the detection results of VV polarization. Similar to VH polarization,
the more false alarms were reduced, the more ships were retained. In sub-image 1, the
more false alarms mainly appeared in Figure 11a,b,d. In sub-image 2, the false alarms
mainly existed in Figure 11f,g. Figure 11 shows that RF performs best in machine learning
and M-LeNet performs best in deep learning. To quantitatively compare the performance
of different methods, we calculated the accuracy, precision, recall, and F1 score. Table 9
presents the results of the evaluation indicators. The number of the least missed ship is
zero in the RF and SVM method, and the number of the most missed ship is ten in the
LeNet-5 method. The number of the least false alarms is three in M-LeNet, and the number
of the most false alarms is twenty-one in the KNN method. RF and SVM could detect
all the true ships, but a few false alarms were retained compared with VH polarization.
Similar to the performance of VH polarization, KNN had more missed ships and false
alarms. LeNet-5 performed worst with more missed ships. Although the number of missed
ships in the M-LeNet method was more than that of RF and SVM, the comprehensive
evaluation indicators showed the best performance with an F1 score of 0.98 and an accuracy
of 98.2%. The characteristics of false alarms caused by azimuth ambiguity are similar to
those of the true ship, so distinguishing the false alarms is difficult. Although the M-LeNet
method could reduce false alarms caused by azimuth ambiguity more effectively than
other methods, the false alarms still existed. In [31], 680 ships and 170 ghosts were selected
for training; the experiments on the Sentinel-1 images showed encouraging results, but
further improvement is needed. In our experiment, the number of ghosts was under
0.2%, which indicated a great imbalance for ship and ghost training samples. Thus, the
predicted performance for the ghost is poor. Figure 12 shows the detection result and
Table 10 presents the evaluation index of VV polarization in the No.4 sub-image of the
Huanghai Sea area. Different from the VH polarization in Figure 10, the VV polarization
image shows an inhomogeneous pattern in the SAR scene due to other marine phenomena
that may exist in the images, e.g., moderate-to-high wind, upwelling, and eddies [45,46].
In those methods, the RF shows the better performance with an F1 score of 0.97 and an
accuracy of 99.35% than other methods. Although the M-LeNet achieves an F1 score of 0.92
and an accuracy of 98.05%, the M-LeNet enables all ships detected in the inhomogeneous.

Figure 11. Sub-image 1 (up) and sub-image 2 (down) detection results of VV polarization in the East China Sea area:
(a–e) show KNN, SVM, RF, LeNet-5, and M-LeNet, respectively. (f–j) represent KNN, SVM, RF, LeNet-5, and M-LeNet,
respectively. (Red rectangle: ship, red rectangular box with arrow: false alarm, and blue rectangle: missed ship).

Table 9. Detailed evaluation index of VV polarization in the East China Sea area.

Polarization Method Accuracy (%) F1 Recall Precision Correct False Miss

VV

KNN 91.59 0.89 0.94 0.85 115 21 7
SVM 95.80 0.95 1.0 0.90 122 14 0
RF 97.00 0.96 1.0 0.92 122 10 0

LeNet-5 94.89 0.93 0.92 0.94 112 7 10
M-LeNet 98.20 0.98 0.98 0.98 119 3 3

The best evaluation criteria are highlighted in bold and underlined in each column.
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Figure 12. Sub-image detection results of VV polarization in the Huanghai Sea area. (a–e) represent KNN, SVM, RF,
LeNet-5, and M-LeNet, respectively. (Red rectangle: ship, red rectangular box with arrow: false alarm, and blue rectangle:
missed ship).

Table 10. Detailed evaluation index of VV polarization in the Huanghai Sea area.

Polarization Method Accuracy (%) F1 Recall Precision Correct False Miss

VV

KNN 95.20 0.81 1.0 0.68 17 8 0
SVM 96.98 0.85 0.82 0.88 14 2 3
RF 99.35 0.97 0.94 1.0 16 0 1

LeNet-5 98.05 0.92 0.94 0.89 16 2 1
M-LeNet 98.05 0.91 1.0 0.85 17 3 0

The best evaluation criteria are highlighted in bold and underlined in each column.

3.4. CNN Feature Visualization Analysis

Deep neural networks have enabled unprecedented breakthroughs in classification,
semantic segmentation, and object detection task. Although those CNN networks enable
superior performance, interpreting and visualizing them are difficult due to the lack of
decomposability into intuitive and understandable components [47]. CAM was proposed
to identify discriminative regions by a restricted class of image classifications and to gain
a better understanding of a model. However, any fully connected layer of the model
was removed, and instead of global average pooling (GAP) to obtain the localization of a
class [48]. Thus, altering the model architecture was unavoidable, training is needed again,
and the available staffing scenarios are restricted. Grad-CAM improved the CAM by using
the gradient information flowing into the last convolutional layer of CNN to understand
the importance of each neuron for a classification decision [49]. Similar to CAM, Grad-CAM
uses the feature maps produced by the last convolutional layer of a CNN. In CAM, we
weigh these feature maps using weights taken out of the last fully connected layer of the
network. In Grad-CAM, we obtained neuron importance weight using ac

k (Equation (5))
calculated based on the global average pool, with the gradients over the height dimension
(indexed by i) and the width dimension (indexed by j). Therefore, Grad-CAM obtained the
class discriminative localization map Lc

Grad−CAM without a particular model architecture
because we can calculate gradients through any kind of neural network layer we want.



Remote Sens. 2021, 13, 1184 16 of 21

Lc
Grad−CAM performs a weighted combination of forward activation maps, and follows it

by ReLU to obtain the final class discriminative saliency map, as shown in Equation (6).

ac
k =

1
Z ∑

i
∑

j

∂yc

∂Ak
ij

, (7)

Lc
Grad−CAM = ReLU

(
∑
k

ac
k Ak

)
, (8)

where weight ac
k is the feature map k of a target class. Ak

ij represents feature map k. Ak is
the feature map of a convolutional layer, Lc

Grad−CAM ∈ Ru×v of height v, and width u for

any class c, yc is the feature map Ak of a convolutional layer, i.e., ∂yc

∂Ak
ij

. Detailed information

can be found in [49].
The output of Grad-CAM is a “class-discriminative localization map,” i.e., a heatmap

where the hot part corresponds to a particular class. Figures 13 and 14 show the Grad-CAM
visualization heatmap for “false alarm” and “ship” of VH and VV polarization, respectively.
The heatmap represents the image region with the greatest attention from CNN for the
correct prediction of images belonging to a particular class. Figures 13a and 14a show great
attention through the CNN prediction of images belonging to false alarms. These image
slices belong to the same area of the VH and VV polarization, which contain buildings
near the sea-land, small island, reef, and azimuth ambiguity. The heatmap of false alarms
shows that the surrounding background was conducive to the false alarm recognition. The
azimuth ambiguity presented different characteristics in VH and VV polarization; a similar
phenomenon has been discussed in Section 3. Fortunately, the azimuth ambiguity could be
observed in the first row in VH and VV polarization. The azimuth ambiguity scattering
intensity in VV polarization was more obvious than that in VH polarization. Furthermore,
the false alarm in VV polarization presented different characteristics. One focused on the
surrounding background from the heatmap, and another focused on the azimuth ambiguity
itself, which was why the azimuth ambiguity of false alarm could not predict better in
polarization. Figures 13b and 14b show great attention through the CNN prediction of
images belonging to the ship. The different scale ships with high scattering intensity had
an important contribution to ship recognition than the surrounding sea surface, which was
different from the false alarm in the VH and VV polarization.

Figure 13. Visualization of VH polarization: (a) heatmap of false alarm and (b) heatmap of ship.
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Figure 14. Visualization of VV polarization: (a) heatmap of false alarm and (b) heatmap of ship.

4. Discussion

The performance of ship detection in CNN methods proves its great potential in
different backgrounds such as incidence angles, wind speeds, sea states, and ocean dynamic
parameters that mainly influence the backscattering coefficient between the ocean surface
and the ship [23,50,51]. Besides, the scattering characteristics of ghosts caused by azimuth
ambiguity when the ship is moving at high speed is similar to the characteristics of the
ship, thereby causing difficulty in distinguishing between the ship and ghost in a single-
polarization image. The CNN method also shows great potential. In this study, the
performance of lightweight CNN does not completely suppress the ghost due to the lack
of adequate training samples in VV polarization. Fortunately, the ghost in VH polarization
is less affected, and thus, the performance of lightweight CNN shows the best result in VH
polarization. Future work will be conducted to add the training samples of the ghost.

In the object detectors, the size of small targets is less than 32 × 32 for nature im-
ages [21]. However, the SAR images are different from the nature images, and the size
of the ship is usually much less than 32 × 32, especially for ships operating offshore.
Figure 15 shows the size of the ship in the test SAR image. Almost all ships have an area
of less than 32 × 32, and most ships have an area of less than 24 × 25. The SVM and RF
methods based on statistical characteristics show good performance with the fewest ships
missed, especially the small ships in VV polarization; however, some false alarms cannot
be avoided. The PFN module and feature fusion strategy are often used to improve the
detection accuracy and reduce the false alarms of the small target [26,42,52]. Furthermore,
those modules always integrate into the VGG16 and ResNet-50 networks [42,53]; the CNN
models are complex and have many parameters to train. The PFN module and feature
fusion strategy show effectiveness for small goals in object detectors, but may show poor
effectiveness for much less than 32 × 32. Thus, in this study, we provide a dataset and
two-stage method for ship detection with the SAR image, where even extremely small
ships can be completely recognized in the first stage. In the second stage, the different scale
candidates in the test SAR images can be accurately detected by considering context back-
ground information. The best and stable performance of ship detection is demonstrated by
M-LeNet, which can reduce the false alarms and missed ships, and obtain higher precision
in VH and VV polarization than other methods in different ocean areas and scenarios.

In the previous studies, the ship detection using sentinel-1 SAR images was carried
out by Wang et al. [54]. The performance of ship detection can reach an accuracy of 98.07%
and an F1 score of 0.90 by Faster RCNN, thus, the number of false alarms was detected to be
relatively large [54]. The accuracy could reach 90.05% based on YOLOv2 for imagery [55].
The test precision and F1 score were 91.3% and 0.92 for detecting multiscale ships and
small ships, when using the GF-3 dataset, respectively [42]. In [29], the attention module
was used to improve the performance of ship detection, the recall, precision, and F1 score
could reach 0.96, 96.4%, and 0.96, respectively. Although the performance of ship detection
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was improved, the model complexity had increased. To reduce model complexity, a simple
CNN was used to detect the ship, and the accurate rate of ship detection was 97.2% when
using the spaceborne image [30]. The lightweight CNN was proposed to improve the
accuracy and F1 score in our experiments. The performance of lightweight CNN shows that
the best result can reach an accuracy of 99.4% and an F1 score of 0.99 based on Sentinel-1
images. Figure 15 shows the most ship has an area of less than 24 × 25 pixel. The test
accuracy and F1 score also demonstrate the proposed method can detect the small-level
ship. To sum up, the proposed method can detect the ship effectively in contrast to that
with the detector above. Unfortunately, it was rarely analyzed and visualized the feature
to gain a better understanding of a model in the previous studies. In order to understand
and visualize the model, the Grad-CAM was used, and the result demonstrated it could
help us understand the mechanism of how the ship and false alarm was predicted by
the lightweight CNN model work. Hence, based on the visualization and analysis of the
Grad-CAM, it can be used to help to detect the ship with the weakly unsupervised method
in future work.

Figure 15. Area of the ship in test data.

From the above discussion, the lightweight CNN we proposed can show good perfor-
mance in different ocean areas and scenarios. The difference with those detectors [29,54,55]
does not need the input data and ground truth bounding box one-to-one correspondence,
and only labeled in ship and no-ship. Besides, the CNN model we proposed is simplified as
a shallow convolution neural network and improves efficiency in comparison with Faster
RCNN, SSD, and Yolo, etc. However, comparing with those detectors, the CNN model we
proposed is not end-to-end. To obtain the detect result, the data preprocess first needs to
be applied to SAR images, then the lightweight CNN is used to accurately detect the ship.
Although, the proposed method shows an accuracy of 99.4% and an F1 score of 0.99, how
to simplify the data preprocess and integrate it into the CNN model to achieve end-to-end
training is worth considering in future work. Besides, the ocean surface is modulated and
complexed by ocean dynamics processes such as wind, waves, upwelling, and eddies, as
well as sea state. Due to the limited data for training, it cannot cover all sea state conditions.
The CNN model was not truly explored with comparably limited training data by Zhang
et al. [5]. Hence, in order to make the CNN model to have more generalization capability,
more data should be added in future work.

5. Summary and Conclusions

In this paper, the two-stage ship detection method is proposed in a complex back-
ground, i.e., in the offshore area. First, the SAR data pre-process contains the image filter,
island filter, and threshold segmentation. The island filter is proposed to improve the ship
contrast using a convolutional kernel, and threshold segmentation is proposed for slice
production and candidate detection for time-saving. Second, the CNN model is proposed
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for slice fine classification and recognition. The experiment demonstrates that compared
with the KNN, SVM, RF, and LeNet-5 methods, the proposed method can obtain stable
accuracy in VH and VV polarization. Furthermore, although the proposed method cannot
eliminate the false alarm caused by azimuth ambiguity in VV polarization because the few
ghosts of false alarms sample in the training stage are insufficient to maintain the balance
between the ship and false alarm, the false alarm caused by azimuth ambiguity in VH
polarization give a little contribution. The detection performance shows better results in
both VH and VV polarization for the ship size of much less than 32 × 32. Fortunately, the
CNN interpretation and visualization of the ship and false alarm are accurate predictions
through Grad-CAM visualized analysis. The experiments demonstrate that the high scatter-
ing intensity of the ship itself provides an important contribution to ship recognition rather
than the surrounding sea surface in VH and VV polarization. However, the surrounding
sea surface is useful for false alarm recognition in VH and VV polarization.

Author Contributions: Conceptualization, J.Z. and W.S.; data curation, L.Z.; methodology, X.G. and
L.S.; supervision, P.L. and J.Y.; validation, X.G.; writing—original draft, X.G.; writing—review and
editing, X.G. All authors have read and agreed to the published version of the manuscript.

Funding: This study was funded by the National Natural Science Foundation of China under Grant
Nos. 42071295, 41771377 and 41901286. The Key Laboratory of Surveying and Mapping Science and
Geospatial Information Technology of Ministry of Natural Resources under Grant No. 201906, and
the Open Research Fund of Jiangsu Key Laboratory of Resources and Environmental Information
Engineering, CUMT under Grant No. JS201909.

Acknowledgments: The authors are grateful to the Hubei Province Postdoctoral Science and Tech-
nology Preferred Project for funding this study. They thank the European Space Agency and Alaska
Satellite Facility for providing free Sentinel-1 data online. The authors would also like to thank the
anonymous reviewers for their comments to improve this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ai, J.; Qi, X.; Yu, W.; Deng, Y.; Liu, F.; Shi, L. A New CFAR Ship Detection Algorithm Based on 2-D Joint Log-Normal Distribution

in SAR Images. IEEE Geosci. Remote Sens. Lett. 2010, 7, 806–810. [CrossRef]
2. Ai, J.-Q.; Qi, X.-Y.; Yu, W.-D. Improved Two Parameter CFAR Ship Detection Algorithm in SAR Images. J. Electron. Inf. Technol.

2009, 31, 2881–2885.
3. Dai, H.; Du, L.; Wang, Y.; Wang, Z. A Modified CFAR Algorithm Based on Object Proposals for Ship Target Detection in SAR

Images. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1925–1929. [CrossRef]
4. Wang, C.; Bi, F.; Zhang, W.; Chen, L. An Intensity-Space Domain CFAR Method for Ship Detection in HR SAR Images. IEEE

Geosci. Remote Sens. Lett. 2017, 14, 529–533. [CrossRef]
5. Zhang, W.; Liljedahl, A.K.; Kanevskiy, M.; Epstein, H.E.; Jones, B.M.; Jorgenson, M.T.; Kent, K. Transferability of the deep learning

mask R-CNN model for automated mapping of ice-wedge polygons in high-resolution satellite and UAV images. Remote Sens.
2020, 12, 1085. [CrossRef]

6. Bhuiyan, M.A.E.; Witharana, C.; Liljedahl, A.K. Use of Very High Spatial Resolution Commercial Satellite Imagery and Deep
Learning to Automatically Map Ice-Wedge Polygons across Tundra Vegetation Types. J. Imaging 2020, 6, 137. [CrossRef]

7. Yang, W.; Zhang, X.; Luo, P. Transferability of Convolutional Neural Network Models for Identifying Damaged Buildings Due to
Earthquake. Remote Sens. 2021, 13, 504. [CrossRef]

8. Zhang, C.; Wei, S.; Ji, S.; Lu, M. Detecting Large-Scale Urban Land Cover Changes from Very High Resolution Remote Sensing
Images Using CNN-Based Classification. ISPRS Int. J. Geo-Inf. 2019, 8, 189. [CrossRef]

9. Wang, Y.-R.; Li, X.-M. Arctic sea ice cover data from spaceborne SAR by deep learning. Earth Syst. Sci. Data Discuss. 2020, 1–30.
[CrossRef]

10. Shao, Z.; Zhou, W.; Deng, X.; Zhang, M.; Cheng, Q. Multilabel Remote Sensing Image Retrieval Based on Fully Convolutional
Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 318–328. [CrossRef]

11. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Region-based convolutional networks for accurate object detection and segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 142–158. [CrossRef] [PubMed]

12. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December
2015; pp. 1440–1448.

13. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings
of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 91–99.

http://doi.org/10.1109/LGRS.2010.2048697
http://doi.org/10.1109/LGRS.2016.2618604
http://doi.org/10.1109/LGRS.2017.2654450
http://doi.org/10.3390/rs12071085
http://doi.org/10.3390/jimaging6120137
http://doi.org/10.3390/rs13030504
http://doi.org/10.3390/ijgi8040189
http://doi.org/10.5194/essd-2020-332
http://doi.org/10.1109/JSTARS.2019.2961634
http://doi.org/10.1109/TPAMI.2015.2437384
http://www.ncbi.nlm.nih.gov/pubmed/26656583


Remote Sens. 2021, 13, 1184 20 of 21

14. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of
the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 21–37.

15. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
16. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.
17. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,

arXiv:2004.10934.
18. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
19. Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International

Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.
20. Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J.

Comput. Vis. 2010, 88, 303–338. [CrossRef]
21. Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in

context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 740–755.
22. Li, J.; Qu, C.; Shao, J. Ship detection in SAR images based on an improved faster R-CNN. In Proceedings of the Sar in Big Data

Era: Models, Methods & Applications, Beijing, China, 13–14 November 2017.
23. Wang, Y.; Wang, C.; Zhang, H.; Dong, Y.; Wei, S. A SAR dataset of ship detection for deep learning under complex backgrounds.

Remote Sens. 2019, 11, 765. [CrossRef]
24. Li, B.; Liu, B.; Huang, L.; Guo, W.; Zhang, Z.; Yu, W. OpenSARShip 2.0: A large-volume dataset for deeper interpretation of ship

targets in Sentinel-1 imagery. In Proceedings of the 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA),
Beijing, China, 13–14 November 2017; pp. 1–5.

25. Wei, S.; Zeng, X.; Qu, Q.; Wang, M.; Su, H.; Shi, J. HRSID: A high-resolution SAR images dataset for ship detection and instance
segmentation. IEEE Access 2020, 8, 120234–120254. [CrossRef]

26. Ma, M.; Chen, J.; Liu, W.; Yang, W. Ship Classification and Detection Based on CNN Using GF-3 SAR Images. Remote Sens. 2018,
10, 2043. [CrossRef]

27. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84–90. [CrossRef]

28. Zhang, T.; Zhang, X. High-Speed Ship Detection in SAR Images Based on a Grid Convolutional Neural Network. Remote Sens.
2019, 11, 1206. [CrossRef]

29. Zhao, Y.; Zhao, L.; Xiong, B.; Kuang, G. Attention receptive pyramid network for ship detection in SAR images. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 2020, 13, 2738–2756. [CrossRef]

30. Wang, Z.; Yang, T.; Zhang, H. Land contained sea area ship detection using spaceborne image. Pattern Recognit. Lett. 2020, 130,
125–131. [CrossRef]

31. Cozzolino, D.; Di Martino, G.; Poggi, G.; Verdoliva, L. A fully convolutional neural network for low-complexity single-stage ship
detection in Sentinel-1 SAR images. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium
(IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 886–889.

32. Martinez, W.L.; Martinez, A.R. Computational Statistics Handbook with MATLAB; CRC Press: Boca Raton, FL, USA, 2015; Volume
22.

33. Davis, T.A. MATLAB Primer; CRC Press: Boca Raton, FL, USA, 2010.
34. Lee, J.S.; Grunes, M.R.; De Grandi, G. Polarimetric SAR speckle filtering and its implication for classification. IEEE Trans. Geosci.

Remote Sens. 2002, 37, 2363–2373.
35. Wang, Z.; Wang, C.; Zhang, H.; Wang, F.; Jin, F.; Xie, L. SAR-based ship detection in sea areas containing small islands. In

Proceedings of the 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Singapore, 1–4 September 2015;
pp. 591–595.

36. Xu, X.; Xu, S.; Jin, L.; Song, E. Characteristic analysis of Otsu threshold and its applications. Pattern Recognit. Lett. 2011, 32,
956–961. [CrossRef]

37. Velotto, D.; Soccorsi, M.; Lehner, S. Azimuth ambiguities removal for ship detection using full polarimetric X-band SAR data.
IEEE Trans. Geosci. Remote Sens. 2013, 52, 76–88. [CrossRef]

38. El-Sawy, A.; Hazem, E.-B.; Loey, M. CNN for handwritten arabic digits recognition based on LeNet-5. In Proceedings of the
International Conference on Advanced Intelligent Systems and Informatics, Cairo, Egypt, 24–26 October 2016; pp. 566–575.

39. Sharifzadeh, F.; Akbarizadeh, G.; Kavian, Y.S. Ship Classification in SAR Images Using a New Hybrid CNN-MLP Classifier. J.
Indian Soc. Remote Sens. 2019, 47, 551–562. [CrossRef]

40. Wu, J. Introduction to convolutional neural networks. Natl. Key Lab Nov. Softw. Technol. Nanjing Univ. China 2017, 5, 23.
41. Kim, K.; Hong, S.; Choi, B.; Kim, E. Probabilistic Ship Detection and Classification Using Deep Learning. Appl. Sci. 2018, 8, 936.

[CrossRef]
42. Dai, W.; Mao, Y.; Yuan, R.; Liu, Y.; Pu, X.; Li, C. A Novel Detector Based on Convolution Neural Networks for Multiscale SAR

Ship Detection in Complex Background. Sensors 2020, 20, 2547. [CrossRef]
43. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; Mit Press: Cambridge, MA, USA, 2016.

http://doi.org/10.1007/s11263-009-0275-4
http://doi.org/10.3390/rs11070765
http://doi.org/10.1109/ACCESS.2020.3005861
http://doi.org/10.3390/rs10122043
http://doi.org/10.1145/3065386
http://doi.org/10.3390/rs11101206
http://doi.org/10.1109/JSTARS.2020.2997081
http://doi.org/10.1016/j.patrec.2019.01.015
http://doi.org/10.1016/j.patrec.2011.01.021
http://doi.org/10.1109/TGRS.2012.2236337
http://doi.org/10.1007/s12524-018-0891-y
http://doi.org/10.3390/app8060936
http://doi.org/10.3390/s20092547


Remote Sens. 2021, 13, 1184 21 of 21

44. Thanh Noi, P.; Kappas, M. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land
Cover Classification Using Sentinel-2 Imagery. Sensors 2018, 18, 18. [CrossRef]

45. Zhu, S.; Shao, W.; Armando, M.; Shi, J.; Sun, J.; Yuan, X.; Hu, J.; Yang, D.; Zuo, J. Evaluation of Chinese quad-polarization
Gaofen-3 SAR wave mode data for significant wave height retrieval. Can. J. Remote Sens. 2018, 44, 588–600. [CrossRef]

46. Corcione, V.; Grieco, G.; Portabella, M.; Nunziata, F.; Migliaccio, M. A novel azimuth cutoff implementation to retrieve sea surface
wind speed from SAR imagery. IEEE Trans. Geosci. Remote Sens. 2018, 57, 3331–3340. [CrossRef]

47. Lipton, Z.C. The mythos of model interpretability. Queue 2018, 16, 31–57. [CrossRef]
48. Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2013, arXiv:1312.4400.
49. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks

via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29
October 2017; pp. 618–626.

50. Tings, B.R.; Bentes, C.; Velotto, D.; Voinov, S. Modelling ship detectability depending on TerraSAR-X-derived metocean parameters.
Ceas Space J. 2019, 11, 81–94. [CrossRef]

51. Wang, Y.; Wang, C.; Zhang, H.; Dong, Y.; Wei, S. Automatic Ship Detection Based on RetinaNet Using Multi-Resolution Gaofen-3
Imagery. Remote Sens. 2019, 11, 531. [CrossRef]

52. Zhang, G.; Li, Z.; Li, X.; Yin, C.; Shi, Z. A Novel Salient Feature Fusion Method for Ship Detection in Synthetic Aperture Radar
Images. IEEE Access 2020, 8, 215904–215914. [CrossRef]

53. He, J.; Guo, Y.; Yuan, H. Ship Target Automatic Detection Based on Hypercomplex Flourier Transform Saliency Model in High
Spatial Resolution Remote-Sensing Images. Sensors 2020, 20, 2536. [CrossRef]

54. Wang, Y.; Wang, C.; Zhang, H. Combining a single shot multibox detector with transfer learning for ship detection using sentinel-1
SAR images. Remote Sens. Lett. 2018, 9, 780–788. [CrossRef]

55. Chang, Y.-L.; Anagaw, A.; Chang, L.; Wang, Y.C.; Hsiao, C.-Y.; Lee, W.-H. Ship Detection Based on YOLOv2 for SAR Imagery.
Remote Sens. 2019, 11, 786. [CrossRef]

http://doi.org/10.3390/s18010018
http://doi.org/10.1080/07038992.2019.1573136
http://doi.org/10.1109/TGRS.2018.2883364
http://doi.org/10.1145/3236386.3241340
http://doi.org/10.1007/s12567-018-0222-8
http://doi.org/10.3390/rs11050531
http://doi.org/10.1109/ACCESS.2020.3041372
http://doi.org/10.3390/s20092536
http://doi.org/10.1080/2150704X.2018.1475770
http://doi.org/10.3390/rs11070786

	Introduction 
	Dataset and Proposed Methodology 
	Dataset 
	Data Pre-Processing 
	Candidate Detection 
	Policies for Construction of Ship Detection Dataset 
	CNN Model 

	Experimental Results and Analysis 
	Training Details 
	VH Polarization Results 
	VV Polarization Results 
	CNN Feature Visualization Analysis 

	Discussion 
	Summary and Conclusions 
	References

