& emote sensing

Article

Digital Soil Mapping Using Multispectral Modeling with
Landsat Time Series Cloud Computing Based

Jean J. Novais 1*(0), Marilusa P. C. Lacerda !, Edson E. Sano 2, José A. M. Dematté 3 and Manuel P. Oliveira, Jr. !

check for

updates
Citation: Novais, J.J.; Lacerda,
M.P.C.; Sano, E.E.; Dematté, ].A.M.;
Oliveira, M.P,, Jr. Digital Soil
Mapping Using Multispectral
Modeling with Landsat Time Series
Cloud Computing Based. Remote Sens.
2021, 13, 1181. https://doi.org/
10.3390/rs13061181

Academic Editor: Thomas Schmid

Received: 31 January 2021
Accepted: 14 March 2021
Published: 19 March 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Faculty of Agronomy and Veterinary Medicine, Darcy Ribeiro University Campus, University of Brasilia,
ICC Sul, Asa Norte 70910-960, Brazil; marilusa@unb.br (M.P.C.L.); manueljr@unb.br (M.P.O.]J.)

Empresa Brasileira de Pesquisa Agropecuaria, Embrapa Cerrados, Brazilian Agricultural Research
Corporation Planaltina, Brasilia 73310-970, Brazil; edson.sano@embrapa.br

Department of Soil Science, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Av. Padua Dias,
11, Piracicaba 13416-900, Brazil; jamdemat@usp.br

*  Correspondence: jean.jesus@aluno.unb.br; Tel.: +55-61-999810711

Abstract: Geotechnologies allow natural resources to be surveyed more quickly and cheaply than
traditional methods. This paper aimed to produce a digital soil map (DSM) based on Landsat time
series data. The study area, located in the eastern part of the Brazilian Federal District (Rio Preto
hydrographic basin), comprises a representative basin of the Central Brazil plateau in terms of
pedodiversity. A spectral library was produced based on the soil spectroscopy (from the visible
to shortwave infrared spectral range) of 42 soil samples from 0-15 cm depth using the Fieldspec
Pro equipment in a laboratory. Pearson’s correlation and principal component analysis of the soil
attributes revealed that the dataset could be grouped based on the texture content. Hierarchical
clustering analysis allowed for the extraction of 13 reference spectra. We interpreted the spectra
morphologically and resampled them to the Landsat 5 Thematic Mapper satellite bands. Afterward,
we elaborated a synthetic soil/rock image (SySI) and a soil frequency image (number of times the
bare soil was captured) from the Landsat time series (1984-2020) in the Google Earth Engine platform.
Multiple Endmember Spectral Mixture Analysis (MESMA) was used to model the SySI, using the
endmembers as the input and generating a DSM, which was validated by the Kappa index and the
confusion matrix. MESMA successfully modeled 9 of the 13 endmembers: Dystric Rhodic Ferralsol
(clayic); Dystric Rhodic Ferralsol (very clayic); Dystric Haplic Ferralsol (loam-clayic); Dystric Haplic
Ferralsol (clayic); Dystric Petric Plinthosol (clayic); Dystric Petric Plinthosol (very clayic); Dystric
Regosol (clayic); Dystric Regosol (very clayic); and Dystric, Haplic Cambisol (clayic). The root mean
squared error (RMSE) varied from 0 to 1.3%. The accuracy of DSM achieved a Kappa index of 0.74,
describing the methodology’s effectiveness to differentiate the studied soils.

Keywords: spectroscopy; Landsat imagery; digital soil mapping; pedomorphogeological relationship

1. Introduction

Information about soils is essential for planning sustainability actions. Despite their im-
portance for environmental regulation, soil data at detailed scales are scarce, mainly because
of their high demands in terms of time and financial resources. However, geotechnology
can circumvent the limitations of traditional soil surveying and mapping activities [1-8].

Digital soil mapping (DSM) or predictive soil mapping can be defined as mapping soil
attributes and classes based on the integrated use of pedometric techniques or pedotransfer
functions and computational tools for the spatialization and storage of this information [3].
The DSM is a representation of an environment’s pedological characteristics into digital
spatial information systems. These systems consist of numerical models implemented with
predictive variables [6]. They allow for inferences of these characteristics’ spatial variations
based on observations and empirical knowledge of the soils and the variables involved in
the pedogenesis [4].
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The soil survey carried out by the Brazilian Agricultural Research Corporation (Em-
brapa) in 2004 [3] at a scale of 1:100,000 is the main source of soil maps in the Brazilian
Federal District (FD). However, this map is limited to some applications, such as agro-
industrial projects, housing, mineral exploration, and environmental conservation. There-
fore, there is a need for efficient soil mapping techniques at detailed scales [4]. A number
of researchers have been attempting to test and develop technologies capable of gathering
data and mapping them remotely and efficiently [1,4-14].

Reflectance spectroscopy is a technique that collects spectral data remotely from differ-
ent materials [5]. For example, it can estimate soil attributes or even categorize them based
on the spectral response of different soil units. Soil reflectance is related to soil composition,
with its various degrees of weathering and mineralogical and organic contents [2]. Thus, a
given soil’s reflectance spectrum shows specific absorption and reflection peaks, whose
features characterize its spectral signature, representing the composition, factors, and
pedogenetic processes [10]. Soils with similar spectral curves can be grouped, generating
different reference spectra, and then stored in a spectral library [12].

The Landsat program has provided data on several research topics [15]. The Landsat
satellites are good sources of orbital remote sensing data. They have provided multispectral
images every 16 days, with a spatial resolution of 30 m, since the 1970s [15]. Time series of
this magnitude allow for the monitoring of land cover dynamics at a range of scales, from
local to global [16].

This study hypothesizes that spectroscopic soil data, obtained, processed, interpreted,
and spectrally classified in a laboratory, can model a synthetic image of bare soil /rock
derived from multispectral satellite sensors [16]. The resulting spectral mixture model can
depict soil units observed in the field [1,8]. Producing synthetic images of the surface of
soil demands hardware with a high storage and processing capacity. Cloud computing
uses various online computers to quickly run complex algorithms over big data [17]. In this
article, we aimed to produce a DSM of the eastern part of the FD (Rio Preto hydrographic
basin) through spectral soil endmembers obtained in a laboratory and a synthetic image
derived from the Landsat time series.

2. Materials and Methods
2.1. Study Area

The study area is located in the Eastern FD, between the UTM coordinates of 216,027
mE to 253,131 mE and 8,284,507 mN to 8,223,851 Mn, 23S zone (Figure 1a), covering an
area of approximately 132,525 ha. The elevation varies from 800 m to 1200 m. According
to Koppen'’s classification system [18], the dominant type of climate is Cwa, that is, dry
winter and hot summer. The mean annual precipitation ranges from 1200 mm to 1800 mm,
mostly from the rainy season (from October to April) [19].

The study area is located in the Brazilian Central Plateau [20], presenting three geomor-
phological surfaces: a high plateau, intermediate plain surface, and dissected valley [21].
The terrain ranges from gentle-wavy to wavy relief [21], comprising 22.5% of the Rio Preto
basin, a Sao Francisco River tributary. Sano et al. [22] stated the region belongs to the
Cerrado (tropical savanna) biome. It is currently under intense agricultural exploitation,
mainly for grain production, in a no-tillage management system [19].

The main source of soil maps was produced by Embrapa in 2004 [3] at a scale of
1:100,000 (Figure la). Ferralsols is the dominant soil type, covering 85% of the region,
followed by Arenosols and hydromorphic soils along the streams. Freitas-Silva and Cam-
pos [23] identified the following geological formations (Figure 1b): The Paranoa Group,
constituted by metarrythmits and an alternation of quartzites; the Canastra Group (phyl-
lites); and the Bambui Group (carbonate rocks).
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Figure 1. Soil (a) and geological (b) maps of the study area. The soil map was adapted from the World Reference Base [24].
CM: Cambisols; PT: Plinthosols; FRro: Rhodic Ferralsol; FRha: Haplic Ferralsol; LX: Lixisol; AR: Arenosol; FL: Fluvisol;
HS: Hydromorphic soils; MNPpr3: sandy metarrythmits; MNPpr4: clayey metarrythmits; MNPpq3: quartzite; MNPccf:

carbonated phyllite; and NPb: pelitic rocks. Sources: [3,23].

2.2. Soil Characterization and Classification

At first, we established pedomorphogeological relationships for the selection of repre-
sentative toposequences of the study area. We selected 42 field locations for soil sampling,
and the description followed the guide proposed by the United States Geological Survey
(USGS) [25]. The profile characterization was based on the Brazilian Soil Classification
System [26]. The soil units were converted to the legends proposed by Soil Taxonomy [27]
and those proposed by the World Reference Base for soil resources [24].

For each of the 42 soil profiles, we collected three soil samples at two depths (0-15 cm
and 80-100 cm), generating 252 soil samples, as described in [28-30], between October 2019
and January 2020. The soil replicates were composed to represent one sample per depth.
The soil colors were identified based on the Munsell soil color chart [31].

The following soil chemistry attributes were obtained from the laboratory analy-
sis: pH in H,O using a pH meter in soil solution; exchangeable calcium (Ca®*), magne-
sium (Mg2+), and aluminum (AI3*) based on extraction with potassium chloride (KCl);
exchangeable potassium (K*) from flame photometer; and exchangeable phosphorus
by the Mehlich-I extractor technique. Based on these data, we calculated the sum of
bases (SB = Ca?* + Mg?" + K*), potential acidity (H* + AI%*), cation exchange capacity
(CEC =SB + [H* + AI**]), base saturation (V = [SB/CEC]  100), aluminum saturation
(m = AI3* /[AP* + SB] * 100), and clay activity ((CEC * 1000]/g-Kg~1) [27,29].

The organic matter content (OM) was determinated through wet oxidation, to proce-
dures described in [29]. In this study, there were no quantitative mineral analyses. Despite
that, the minerals were assessed qualitatively by comparing their soil spectral signatures
with reference data [11,17,20].
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Regarding the physical attributes, we measured the soil texture was determined by
the Bouyoucos densimeter method (volumetric flask) with clay dispersed using sodium
hydroxide (NaOH) based on the principle that suspended matter (silt and clay) exerts a
density to the liquid [32].

2.3. Data Processing

The main steps of the processing of the physical, chemical, and spectral soil data
are shown in Figure 2. The physical and chemical attributes of the soil were analyzed
using non-parametric statistics to produce soil endmembers. These soil endmembers were
interpreted morphologically and resampled to six spectral band intervals of the Landsat
5 Thematic Mapper (TM) satellite.

Pedomorpho- Field validation .| Kappa
§ -relationships [
=
X2
= Soil {

sampling = > MIRS

| Physical
2 —_— ~extraction
=Bl Spectroscopy . l
S Soil
= frequency
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e

Figure 2. Flowchart of the methodology for the production of the digital soil map of the study area. MIRS: morphological
interpretation of reflectance spectra [16]; LS: Landsat; LS-5 TM: Landsat 5 Thematic Mapper; DSM: digital soil map;

EFI: endmember fraction image; RMSE: root mean square error; MIRS: morphological interpretation of reflectance spectra;

and SySI: synthetic soil/rock image.

Afterward, the reference spectra were inserted into the Multiple Endmember Spectral
Mixture Analysis (MESMA) model, together with the denominated synthetic soil /rock im-
age (SySI) created by [16] using cloud-computed processing of the Landsat time series [16]
to produce the DSM from the study area. The modeling performance was assessed using
the ground truth data collected in the field and the Kappa index and confusion matrix.

2.3.1. Statistical Analysis

We used descriptive statistics to compare our soil characteristics with other previ-
ous studies in the literature. We then employed the following non-parametric statistical
techniques: Pearson’s correlation and principal component analysis (PCA) [33,34]. PCA is
often used to determine the soil attributes that better explain the dataset and reduce the
data dimensionality [10].
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After, we selected the clay content as the soil grouping criterion through hierarchical
cluster analysis (HCA) based on the single linkage clustering method and the Euclidean
distance similarity index. The single linkage algorithm was chosen due to its capacity to
process continuous datasets (in this case, a soil texture) [11].

2.3.2. Spectroscopy and Compilation of the Soil Spectral Library

We employed the FieldSpec 4 Pro spectroradiometer [35], which operates in the
range of the electromagnetic spectrum, from visible to shortwave infrared (SWIR) (0.35 to
2.5 um), to obtain reflectance data from the 42 air-dried and sieved soils sampled at the
0-15 cm depth, according to the standard procedures and geometric arrangement of the
equipment described in [36]. Reflectance was measured at three different angles (45°, 90°,
and 135°) [35] and converted into one reading by the simple average. Next, the percentages
of clay, silt, and sand were correlated with the soil reflectance to find the best spectral bands
to assess soil texture.

Following, we calculated the median of the spectral classes grouped by soil texture
using HCA. The resulting curve represented the reference member of that soil class (end-
member). Then, we interpreted the endmember’s spectral signature according to the
general morphology (overall reflectance in the spectra) and the presence of specific absorp-
tion features in different wavelengths, according to the procedure described in [37]. Then,
we subjected the reference spectra to the 2nd Kubelka-Munk derivative technique, which
standardizes the reflectance values around an axis [38], allowing for a better observation of
the target spectral behavior (Equation (1)).

k (1—Rw)?

ST R. - F(Rwo) 1)
where s corresponds to the scattering coefficient; k is the sample absorption coefficient;
R is the diffuse reflectance; and F(Re) is the Kubelka—Munk function. Thus, we applied
the Kubelka-Munk derivative function on spectral data to obtain patterns at specific
diffuse reflectance peaks in the visible-near infrared (VNIR) and shortwave (SWIR) interval.
The reflectance factors in the optical range of wavelengths, under this derivative, were
submitted to Pearson’s correlation with the soil attributes.

We also correlated the clay, silt, and sand contents of 42 samples from the studied soil
surface horizons with the reflectance factor distributed along the 2150 bands of the Fieldspec
4 Pro spectroradiometer [35]. The representative spectra were resampled according to the
spectral bands of the Landsat 5 TM satellite [15].

2.3.3. Landsat Time Series and Synthetic Soil/Rock Image

We edited a script using command-line programming in the Google Earth Engine
(https:/ /code.earthengine.google.com) (GEE) platform, a virtual environment for spatial
and temporal data processing and analysis. The script returned a Landsat time series
from 1984 to 2020. The Landsat collection of surface reflectance at Level 2 processing was
employed. The median of pixels from the overlapping layers along the Landsat time series
formed a synthetic image.

The algorithm generated a standard image based on the Landsat 5 TM band in-
tervals: B1 (0.45-0.52 um), B2 (0.52-0.60 um), B3 (0.63-0.69 um), B4 (0.76-0.90 pum),
B5 (1.55-1.75 pm), and B7 (2.08-2.35 um) [15]. As stated in [10,16,17], the algorithm
uses spectral indices to remove clouds, vegetation, and burned areas, so that only bare
soil/rock, water body, and urban area features remain in the time series. The water bodies
and urbanized areas were removed from the analysis by masking.

Thus, we obtained a SySI image composed of the bare soil features” median val-
ues throughout the time series. The seasonal differences on the surface reflectance were
standardized during the synthetic image production process [16]. We also obtained the
denominated Bare Soil Frequency or Soil Frequency Image (SFI) created by [16], which con-
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sists of the number of times that bare soil/rock features passed through filters established
in the algorithm along the time series.

2.4. Soil Spectral Modeling and DSM Generation

MESMA [39] was employed to model the spectral mixture presented in SySIL. The
reference spectra were inputted into the model using the ENVI v. 5.3.1 software. MESMA
is an algorithm available in the VIPER Tools application package and allows for the
simultaneous analysis of several endmembers through automatic combinations, choosing
the model with the lowest root mean square error (RMSE) [40].

As a result, we obtained an endmember fraction image (EFI), representing the propor-
tion of pixels modeled, an image with the distribution of the errors (RMSE), and an image
with endmember models, corresponding to our DSM map.

Gleisol and Histosol were excluded from the spectral modeling, since they are mostly
covered by perennial vegetation. We also excluded the Haplic Plinthosol and Dystric
Arenosol, since they are not spatially representative [3,10] or occur in locations that are
difficult to capture using the method adopted in this study.

However, these soil classes were included in the clustering analysis to assess the
grouping performance [11]. After the modeling, the spectral unmixing image was smoothed
by a median filter (5 x 5), converted to the shapefile format, and assigned contrasting
colors, as reported in [27].

Validation of Soil Spectral Mapping

We selected 328 points, which were distributed randomly and proportionally in the
study area. Weights were assigned according to each polygon area [41]. The ground truth
data were used to estimate the DSM map’s accuracy through a confusion matrix and the
Kappa index [41,42].

3. Results
3.1. Soil Characteristics

The pedomorphogeological relationships analysis allowed us to select eight topose-
quences located in the central part of the study area. The 42 soil profiles were considered
to be representative of the study area’s pedological distribution, as corroborated by field
observations, the regional soil database, and previous findings [3,10,11,20]. The results of
the textural and chemical soil analysis are shown in Table 1.

Table 1. Descriptive statistics of the studied surface soil attributes.

Clay Silt Sand AR+ SB CEC A% m 50M
Attributes/Parameters gKg1 pPH —— Cmolc-dm—3 % gKg1
Surface Horizons (0-20 cm)

Average 504.7 197 .4 298.0 49 1.2 1.9 9.0 22.3 37.8 34.1
Standard error 31.3 20.1 40.3 0.1 0.2 0.2 0.3 2.5 44 1.1
Median 590.7 159.4 190.8 49 1.0 1.6 8.7 18.5 31.0 31.5
Mode 792.2 87.1 120.7 5.0 0.4 3.9 14.6 6.2 89.0 44.0
SD 202.7 130.4 261.3 0.6 1.2 1.3 2.1 16.4 28.5 7.4
Variance 41,102.1 17,008.2  68,259.4 0.4 14 1.7 4.3 267 814 55
Kurtosis —0.2 —1.1 0.4 25 0.5 1.2 1.0 3.3 —-0.9 —1.4
Asymmetry —0.8 0.4 14 0.7 1.2 1.2 1.0 1.7 0.6 0.4
Range 747.3 442 .5 863.5 3.1 4.1 53 8.8 76.3 89.0 24.0
Minimum 449 10.5 67.3 3.7 0.0 0.4 59 4.1 0.0 22.0
Maximum 792.2 453.0 930.8 6.8 4.1 5.7 14.6 80.4 89.0 46.0
Count 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0 42.0
CL (90.0%) 52.6 33.9 67.8 0.2 0.3 0.3 0.5 4.2 7.4 1.9

AP*: Exchangeable aluminum; SB: Sum of bases; CEC: Cation exchange capacity; V: Base saturation; m = Saturation by aluminum;
OM: Organic matter; SD: Standard deviation; and CL: Confidence level.
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The soil attribute data indicated soils with a clayey texture (average of 504.7 g-Kg ! of
clay content), acid pH (average of 4.9), and high A% levels (average of 37.8%) [24,26,27],
characteristics inherited from the parent material that is, pelitic rocks [20]. The V average
was below 22.3, which is typical of dystrophic soils, with a low natural fertility and highly
weathered tropical soils [10]. This value is below that recommended for most commercial
crops, which can be circumvented by soil management [43].

The OM levels were within average (34.1 g-Kg~1) [11], as most of the sampling areas
were covered by natural vegetation or within no-tillage systems, with straws covering the
soil surface during certain periods [20,43].

Table 2 presents the soil attribute values. The lower OM and exchangeable base
contents are consequences of no-tillage soil management, as demonstrated in [20]. The
clayey texture presented little variations in the study area. The subsurface horizons nor-
mally present a lower V than surface layers due to fertilization practices and OM, which is
concentrated up to a depth of 20 cm.

Table 2. Descriptive statistics of the studied subsurface soil attributes.

Attributes/Parameters

Average
Standard error
Median
Mode
SD
Variance
Kurtosis
Asymmetry
Range
Minimum
Maximum
Count
CL (90.0%)

Clay Silt Sand - A+ SB CEC A m SoMm
gKg1 P —— Cmolc-dm~3 % gKg1
Surface Horizons (0-20 cm)

553.1 204.7 242.2 51 1.3 0.7 49 15.9 39.8 20.0
29.8 19.1 35.6 0.0 0.3 0.1 0.3 14 51 1.3
607.5 189.2 144.7 5.0 0.4 0.6 45 13.9 31.0 19.0
748.2 107.1 144.7 4.9 0.1 0.4 49 8.0 17.0 20.0
193.2 123.9 230.6 0.3 1.7 0.4 2.2 8.9 32.9 8.2
37,3258 153619  53,194.3 0.1 29 0.2 4.8 79.8 1079.3 66.9
0.0 -1.1 1.1 7.3 1.7 41 8.2 7.3 -1.4 —0.3
-1.0 0.5 15 1.9 15 2.0 2.3 2.4 0.5 0.6
715.3 386.6 845.1 1.6 6.5 1.7 12.2 443 93.0 29.0
69.2 48.8 36.9 4.6 0.0 0.4 2.3 7.7 0.0 8.0
784.6 435.3 882.0 6.2 6.5 2.1 14.5 52.0 93.0 37.0
42.0 42.0 42.0 420 420 420 42.0 42.0 42.0 42.0
50.2 32.2 59.9 0.1 0.4 0.1 0.6 2.3 8.5 21

Exchangeable aluminum (AI3*); SB: Sum of bases; CEC: Cation exchange capacity; V: Base saturation; m: Saturation by aluminum;
OM: Organic matter; SD: Standard deviation; CL: Confidence level.

3.1.1. Statistical Analysis

The Pearson’s correlation among the 15 soil attributes expressed a strong relationship
between clay, silt, and sand in the diagnostic horizons (Figure 3a). A strong positive
correlation was found between the exchangeable bases and pH in H,O, whereas the AI**
values showed a strong negative correlation with pH in H,O. The correlation results close to
—1 or +1 were generally caused by redundant values: collinear variables derived from the
attribute values, for example, the sum of the base and Ca?* content. The PCA demonstrated
the interaction between the attributes. Emphasis was placed on the attributes related to
soil texture (Figure 3b). The eigenvalues indicated that the four components (sand, clay, V,
and OM) could predict 80% of the dataset (Figure 3c).

The correlation results close to —1 or +1 were generally caused by redundant values:
collinear variables derived from the attribute values, for example, the sum of the base and
Ca?* content. The PCA demonstrated the interaction between the attributes. Emphasis was
placed on the attributes related to soil texture (Figure 3b). The eigenvalues indicated that
the four components (sand, clay, V, and OM) could predict 80% of the dataset (Figure 3c).
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Figure 3. Pearson correlation between soil attributes (a), principal component analysis (b), and eigenvalues (c) of the soil
diagnostic horizons.
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The Pearson’s correlation between the texture and the spectra of the surface hori-
zons (Figure 4a) showed a variation along the VNIR-SWIR interval. The clay fraction
showed a negative correlation at the beginning of the visible spectra and the end of the
SWIR. In contrast, the sand fraction obtained a positive correlation in these wavelengths,
agreeing with most of the literature results obtained using these bands to predict soil
texture [2,6-8,12,14,37]. The HCA successfully grouped the 42 soil samples based on tex-
ture content. This statistical method organized the samples into 13 clusters through the
Euclidean distance similarity index (Figure 4b).

Silt
8 | V » I sand
0.95 1.25 1.55 1.85 2.15 245
Wavelength (um) e

Figure 4. (a) Pearson’s correlation between texture and spectral signatures; (b) texture-based hierarchical cluster analysis.
FRro-I and FRro-II: Rhodic Ferralsol; FRha-I and FRha-II: Haplic Ferralsol; PTpt-I and PTpt-II: Petric Plinthosol; PTha:
Haplic Plinthosol; RGdy-I, RGdy-II: Dystric Regosol; CMdy: Dystric Cambisol; GLha: Haplic Gleisol; HSha: Haplic Histosol;
and ARdy: Dystric Arenosol.

3.1.2. Soil Classification

Previous studies revealed that soil color is a function of mineralogical composition,
mainly iron oxides and OM content [2,11]. Soils with high levels of quartz and low levels of
OM and iron oxides are related to lighter colors [6,8,14,44]. Hematite and goethite are the
most common iron oxides in tropical regions [10]. These minerals often condition the soil
color, as demonstrated in [17], in which it was concluded that hematite produces reddish
tones and goethite, red-yellowish, and yellowish tones in the Cerrado soils.
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Rhodic Ferralsols showed similar colors along the soil profiles, ranging from dark red
(10R 3/6) to light brown (2.5YR 5/8). The Haplic Ferralsols also showed homogeneous
colors along the soil profile, ranging from dark-brown (7.5YR 3/4) to light-brown (10YR
6/6). The Petric Plinthosols and Haplic Plinthosols showed colors varying from brownish
(10YR 6/8) in the A horizon to red (10R 5/8) in the C horizon.

Regarding Dystric Regosols colors, they exhibited a transition between the A and
C horizons: from dark reddish-brown (5YR 4/4) to reddish yellow (10YR 5/4) in the A
horizons and dark red (10R 3/6) to reddish yellow (2.5YR 6/8) in the C horizon.

The Haplic Cambisols presented a gradual color transition between the A and Bi
horizons. In the C horizon, the dominant color was reddish (10R 6/4). The Dystric
Arenosols presented reddish colors (10YR 5/6). They were derived from quarzitic rocks
associated with the parent material, which is rich in iron oxides [20]. The Haplic Gleisols
showed a color gradation between the A and C horizons (grey-blue tones, from 10YR 4/2
to 2.5Y 8/2). The Haplic Histosols presented dark colors, from black to brown-yellowish
(10YR) typical of OM in decomposition [10].

The soil texture is a parameter indicative of the state of soil weathering [6]. This
attribute is one of the key parameters in soil classification [24,26,27]. Table 3 shows nine
soil units and 13 taxons, achieving the 5th categorical level, according to SiBCS [26], with
texture as the key attribute.

Table 3. Classification of soils in the study area.

SiBCS Soil Taxonomy WRB FAO T S EM
Ve s DysrcRiodcremiel 9093 Ml
Latosszllios t‘:g;?;i’:,;;zmardo Typic Acrustox Dystric Haplic Ferralsol i‘lgzae}; 2 IERRII:;-_III
Db P e Dysvierencrmbost S04 He
Pl;?;f:;}géz I:ZZ ZCO Typic Plinthaquox Dystric Haplic Plintosol v. clay. 2 PTha
Ngﬁiﬁéﬁii@tgﬁgw Typic Ustorthent Dystric Regosol f}l?{;}: i 1553;{-111
ﬁlZéZiiét}igdffgffo Typic Fluvaquents Dystric Haplic Gleysol clayey 2 GLha
OrgZZZiiZl?fﬁffliCO Typic Haplohemist Hemic HaplicHistosol clayey 1 HSha
%"L;n;?;iizjlﬁocfz;z i’icoo Oxic Dystrustepts Dystric Rhodic Cambisol clayey 3 CMdy
Neossolo Quartzarénico Typic Quartzipzament Dystric Rhodic Arenosol sandy 2 ARdy

ortico tipico

SiBCS: Brazilian Soil Classification System [26]; WRB: World Reference Base [24]; T: Soil Texture, v. clay.: very clayey; 1. clay.: loam-clayey;
S.: Sample number; EM: Endmember.

3.1.3. Soils Spectral Behavior

The spectral curves revealed an ascending pattern between 0.35 um and 1.30 um,
changing to a flattened aspect in the range of 1.30 um to 1.85 um and decreasing be-
tween 1.85 um to 2.50 um. This spectral pattern represents the typical behavior of highly
weathered Cerrado soils [6,10,11]. FRro-I, FRro-1I, FRha-I, FRha-II, PTpt-I, PTpt-1I, RGdy-
I, RGdy-II, and CMdy showed similar results described in [10]. The OM content tends
to reduce the reflectance factor [4,14,44]. Conversely, smaller soil particles increase the
reflectance factor [6].

The FRro spectra showed a general curve aspect that is similar to the spectral sig-
natures from the FRha (Figure 5). However, the reflectance factor for FRro was higher
compared with FRha. The hematite features were more prominent in the FRro than the
goethite features were more prominent in the FRha curves. These soils are more gibbsitic
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than the FRro. The FRro-I presented stronger absorption features than FRro-II due to the
smaller particle size in the first endmember, especially those related to kaolinite features.
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Figure 5. Interpretation of the spectral behavior of (a) Rhodic Ferralsol (FRro-I and FRro-II) and (b) Haplic Ferralsol (FRha-I
and FRha-II). Ht: Hematite, Gt: Goethita; Kt: Kaolinite; Gb: Gibbsite; OM: Organic matter.

Baptista and Teobaldo [45] examined iron oxides in the region using spectroscopy,
and they found hematite percentages ranging from 0 to 20%, gibbsite from 0.8 to 6.8% for
tropical Rhodic Ferralsols. These results agree with [3], who state that iron oxide content
varies by 15% in the study area. Lacerda and Barbosa [20] also analyzed soils in the same
region. They observed significant differences in the mineral composition between FD soil
classes since more evolved soil presented higher iron oxide contents and lower primary
mineral contents than less weathered soils.

The authors from [37] successfully predicted mineralogical, physical, and chemical
attributes from soil spectra and concluded that soil composition strongly affects the spectral
signature of tropical soils. These authors also observed a range of iron oxides percentage
varying from 0.2 to 24.1%, which directly influences the soil color in soils on basaltic rocks
from Southern Brazil.

Figure 5 also reveals some differences in the Ferralsol spectra, mainly in the reflectance
factor’s intensity. The OM had a more significant influence on FRha than FRro. The lower
reflectance in this soil is also caused by the higher residual moisture presented by FRha.
In this case, they present a subsurface layer of petroplinthite, which obstructs the water
percolation along the soil profile [20].

The PTpt curve (Figure 6a) displayed a maximum reflectance factor of 0.35 in PTpt-I
and 0.5 in PTpt-II. This spectral behavior is influenced by the very clayey texture, which is
associated with the attenuating effect of OM on the PTpt-I curve [11]. It was possible to
observe iron oxide features at specific points on the curve, with a predominance of goethite
over hematite, in addition to kaolinite absorption features (1.4 pm and 2.205 um), hydroxyl
groups (1.4 um and 1.9 um), and gibbsite (2.265 um). Previous studies [10,17,20,45] revealed
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Figure 6. Interpretation of the spectral behavior of (a) Petric Plinthosol (PTpt-I and PTpt-II) and (b) Dystric Regosol
and Dystric Cambisol (RGdy-I, RGdy-II, and CMdy). Ht: Hematite; Gt: Goethita; Kt: Kaolinite; Gb: Gibbsite; and OM:

Organic matter.

Hydromorphic soils usually exhibit a lower albedo due to the higher OM and residual
moisture in the soil solution [4]. These materials absorb a large part of electromagnetic
energy, reducing the reflectance, especially in natural environments [37]. Opaque minerals
in soils, such as iron oxides, also reduce the soils’ ability to reflect [6,13].

Figure 6b shows that the RGdy median spectra had a reflectance factor between
0.4 (RGdy-II) and 0.5 (RGdy-I). Despite the fine texture, the most significant albedo in these
soils was due to the lower OM content, combined with stable minerals, such as quartz. Fe
oxides exhibited the lowest absorption peaks, mainly in RGdy-I, as observed in [9]. The
Regosols presented low absorption peak features of kaolinite and gibbsite, revealing the
initial stage of pedoevolution [20].

By definition, CMdy are soils with an intermediate level of evolution [20]. They were
represented by a single endmember, which reached the reflectance factor’s maximum
intensity (0.45). The obliterating effect of the presence of OM in the soil was less significant
than in the RGdy spectra. In agreement with the results presented in [44], the mineral
features in CMdy are highlighted, especially the proportion between goethite and hematite
and between kaolinite and gibbsite (Figure 6b). Our CMdy spectral curve indicated a weak
presence of the 2:1 mineral. Poppiel et al. [10] attributed this spectral behavior to the OM
content obliterating the mineral features.

As shown in Figure 6, the reflectance factors vary from 0.4 (RGdy-II) to 0.5 (RGdy-I)
due to the different textures. The most significant albedo in these soils is related to the
lower OM content, combined with stable minerals, such as quartz. Iron oxides exhibited
the lowest absorption features, mainly in RGdy-I, as observed in [10]. The Regosols



Remote Sens. 2021, 13, 1181

12 of 18

presented low absorption features of kaolinite and gibbsite, revealing the initial stage of
pedoevolution [11].

3.2. Synthetic Soil/Rock Image Analysis

The SFI image is shown in Figure 7a. The bare soil/rock features registered by the
algorithm, which varied from 0 to 461 times along the time series, are shown. The absence
of bare soil features in some regions of the study area indicates the natural preservation
areas, where the vegetation covers the soil during most of the year. The light grey areas
show the consolidated agricultural plantations. A no-tillage agricultural system keeps the
soil exposed in the off-season when the straws are almost all decomposed [43].
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Figure 7. (a) Soil frequency image of the Landsat time series and (b) synthetic soil /rock image.

The SySI image (Figure 7b), a bare soil composite image, presented different purple
tones, representing clayey soils, and light magenta tones, representing a sandy texture.
Areas with a rough terrain also presented a low reflectance (dark tones close to purple).
The SWIR reflectance was higher in flat landscapes than in rough terrains.

The sum of these factors caused a general reduction in the reflectance, highlighting
the blue band (Red) over the red band (SWIR) in the Landsat TM RGB composition [16]
and thus exhibiting a magenta color. Areas with dark colors were covered by sparse
native vegetation, which periodically exposes the soils as permanently preserved areas [11].
Darker tones are also caused by successive burnings [7], typical in the Cerrado [22] along
the time series considered in this research.

Bare soils covered 80% of the study area, mainly due to the no-tillage system, which
has been widely adopted in the central region of Brazil [43] and is associated with the
Cerrado climate, which presents a dry season and low relative humidity favoring natural
soil exposure in sparse areas of Cerrado and areas in the Cerrado with a lot of shrubbery
(savanna formation) [22]. Table 4 lists some authors who also applied a similar method.

Table 4. A list of some studies used the SySI method.

Authors Study Area Time Series Percentage (%)
[5] Swiss Plateau 1984-2016 43
[71 Brazil, Southeast 1984-2011 68
[8] Brazil, Southeast 1984-2017 53
[9] Germany 1984-2014 26
[10] Brazil, Midwest 1984-2018 74
[16] Brazil, Southeast 1984-2018 68
[17] Brazil, Midwest 1984-2019 100 *
[46] Worldwide 1985-2015 34

* Using Krigagem on the achieved SySI area.
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3.3. Mapped Area Accounting

We obtained 106,828 ha (80.6% of the total area) of the study area (Table 5), which cor-
responds to the pixels captured using the SySI methodology over the time series. FRro and
FRha were the dominant soil types (80%), followed by PTpt and RGdy. CMdy presented
a low spatial representation. CMdy generally occurs in transition zones associated with
FRha and PTpt. These results are in agreement with previous studies reported in [3,10]
regarding soil classes proportion and distribution.

Table 5. Accounting for mapped and unmapped areas. WRB: World Reference Base [24].

Mapping Unit Soil Class on WRB System [24] Area
Hectares Percentage (%)

FRro-I Dystric Rhodic Ferralsol (Clayic) 53,754 50.3
FRro-II Dystric Rhodic Ferralsol (Very Clayic) 15,149 14.2
FRha-I Dystric Haplic Ferralsol (Loam-Clayic) 5051 4.7
FRha-II Dystric Haplic Ferralsol (Clayic) 12,301 115
PTpt-1 Dystric Petric Plinthosol (Clayic) 4844 45
PTpt-1I Dystric Petric Plinthosol (Very Clayic) 10,252 9.6
RGdy-I Dystric Regosol (Clayic) 1424 1.3
RGdy-1II Dystric Regosol (Very Clayic) 3,223 3.0
CMdy Dystric Haplic Cambisol (Clayic) 828 0.8
Subtotal 106,828 80.6

Unmapped 25,697 19.4

Total 132,525 100.0

3.4. Validation of Spectral Mixing Models

The DSM accuracy evaluation, based on the analysis of 328 validation points, pre-
sented a Kappa index of 0.74 (Table 6), which is considered a substantial agreement level,
according to the classification proposed in [41,42]. The Producer’s Accuracy (PA) achieved
the highest percentage for FRro-I and RGdy-I (86%). This means that these soils presented
the best spectral separation, indicating that the method modeled these endmembers more
correctly, with a higher number of matches than that achieved for other endmembers. The
lowest scores of User’s Accuracy (UA) were found for FRha-II and PTpt-I (54% and 59%,
respectively). The omission errors (OE) ranged from 12% (FRro-I) to 46% (FRha-I).

Table 6. Confusion matrix for digital soil mapping.

Field Truth UA OE
Soil Cl1
oil Classes A B C D E F G H . Total %
A 79 5 2 2 1 0 0 0 1 90 88 12
B 8 38 0 0 0 0 0 0 0 46 83 17
C 1 0 17 2 0 0 0 1 1 22 77 23
D 2 1 6 27 7 4 1 2 0 50 54 46
Digital soil map E 1 2 0 7 23 3 1 1 1 39 59 41
F 1 0 0 4 0 25 0 1 0 31 81 19
G 0 0 0 2 5 2 19 1 0 29 66 34
H 0 0 0 1 0 0 1 12 0 14 86 14
I 0 0 0 1 1 0 0 0 5 7 71 29
Total 92 46 25 46 37 34 22 18 8 245
PA o 86 83 68 59 62 74 86 67 63
CE ° 14 17 32 41 38 26 14 33 38
K% 74.6951 Validation points 328

A: FRro-I; B: FRro-1I; C: FRha-L; D: FRha-II; E: PTpt-I; F: PTpt-1I; G: RGdy-I; H: RGdy-II; I: CMdy; UA: User’s accuracy; OE: Omission error;
PA: Producer’s accuracy; CE: Commission error, k: Kappa index, in percentage.
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Still, regarding Table 6, we observed CMdy presenting 38% of the commission error
(CO) due to the low number of validation points. As stated in [6], when PTdy samples are
air-dried, crushed, and sieved, their spectral behavior becomes similar to that of FRro. This
occurs because Ferralsol and Petric Plinthosol are similar in pedogenetic terms. In other
words, they present ferratilization as one of their soil formation processes [20].

4. Discussion
4.1. Performance of Spectral Modeling

The MESMA method achieved 100% of the SySI, meaning that every pixel is associated
with at least one endmember. The RMSE image showed the best and worst modeling fits
(lowest and highest error, respectively) (Figure 8a), while the EFI exhibited the endmem-
ber’s proportion utilized to model the features (Figure 8b). The general performance of the
MESMA can be considered satisfactory, according to the criterion described in [10], since
it was able to model nine endmembers presenting low errors, which is also the criterion
described in [1].

Endmember %
Fraction
Image
100%

J J J
213450 228450 243450

J J J
213450 228450 243450

(a) (b)

Figure 8. Image of (a) root mean square error (RMSE) and (b) fraction image from the modeled endmember.

In Figure 8a, the light-yellow tones indicate low RMSE values, starting from 0, grad-
ually changing to dark red tones, indicating the maximum values (0.13) of RMSE. The
research proposed in [10] stated that the RMSE is a standard way to assess quantitative
data predictive models. They also obtained lower error values (about 3%), attributing this
performance to the small extension of the study area analyzed.

The low RMSE values were associated with the agricultural areas and a flat relief,
while the high errors were related to the natural vegetation and rough terrain. This fact
was attributed in [16] to the higher and lower spectral mixture in these areas, respec-
tively. Gend et al. [1] demonstrated the same behavior, in which the endmember fraction
image presented a lower endmember proportion in areas where there was a lower bare
soil frequency.

As in [10], our global fraction of modeled endmembers was considered high, with an
average proportion of 68%, meaning that the reference spectra reached approximately three
of every four modeled pixels. This result was attributed to the representative soil spectral
library, which could portray the spectral behavior dataset and a suitable soil clustering
technique, similar to that employed in [1] for a similar study of bare soils in Southern Brazil.

Gallo et al. [8] also utilized HCA to group the soils in Southern Brazil and concluded
that this method is able to predict several attributes using other similarity indices, for
example, the complete linkage. Poppiel et al. [11] achieved similar findings when they
grouped soils using the Munsell color as the cluster criterion in Midwest Brazil.

4.2. Digital Soil Map

The DSM map showed irregular polygons distributed along the entire study area
(Figure 9). FRro occurred predominantly in areas with a flat relief and high elevation,
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surrounded by very clayey FRro at lower levels [20], while FRha appeared in gentle-
wavy slopes, which are usually associated with FRro and PTpt. When the slope increases,
CMdy, PTpt, and RGdy become dominant. FRha occurs at the plateau’s edges, which is in
agreement with the parent material (quartzites) [20,22].
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Figure 9. Digital soil map of the eastern Federal District, according to the World Reference Base [24].
FRro-I: Dystric Rhodic Ferralsol (clayic); FRro-II: Dystric Rhodic Ferralsol (very clayic); FRha-I:
Dystric Haplic Ferralsol (clayic); FRha-II: Dystric Haplic Ferralsol (loam-clayic); PTpt-I: Dystric Petric
Plinthosol (clayic); PTpt-II: Dystric, Petric Plinthosol (very clayic); RGdy-I: Dystric Regosol (very
clayic); RGdy-II: Dystric Regosol (very clayic); and CMdy: Dystric Haplic Cambisol (clayic).

Some soil classes in the agricultural areas showed regular polygons. These areas
are related to the dominant agricultural practices in the study area [11]. Traditional or
no-tillage practices influenced the reflectance, leading the image presenting dark or light
features in the SySI, thus confusing the models [10]. As reported in [16], the rectangular,
triangular, or circular patterns in the map represent anthropized features.

We obtained a Kappa index of 0.74. The agreement coefficient demonstrated in [44]
showed spectroscopic data and terrain attributes for mapping soil classes, obtaining a
Kappa index of 0.41. In [9], the authors achieved a 0.75 Kappa index for the DSM in the
same region of the current study. As stated in [8], these similar spectral behaviors led to
errors in multispectral modeling

5. Conclusions

The MESMA algorithm-based spectral classification was efficient in the discrimination
of the soil spectral patterns in the study area. It had a strong capacity to identify the most
suitable soil class (endmember) for every pixel in the synthetic soil/rock image, with few
errors. This fact explains the satisfactory accuracy of the digital soil map generated in this
study. However, spectral libraries of endmembers with a low spatial representativity could
lead to confusion in the modeling process.
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We assume that the percentages of bare soils will increase over time by expanding the
Landsat legacy and integrating other sensors. A more robust time series could provide data
that would improve the modeling performance. Additionally, the hybrid mapping could
supply unmapped areas using geostatistical techniques applied, for example, in pedometry.
Alternatively, we could include spectral information to implement new predictive models
or increase the capacity of the existing ones.

Although the proposed method demonstrated efficiency for digital soil mapping in
the study area, differences in the pedomorphogeological and vegetation cover conditions
must be taking into consideration for application of this method in other regions. Besides,
the MESMA has a limited number of endmembers, which may be another challenging
issue in extrapolating to other regions.
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