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Abstract: Leaf angle distribution (LAD) is an important attribute of forest canopy architecture
and affects the solar radiation regime within the canopy. Terrestrial laser scanning (TLS) has been
increasingly used in LAD estimation. The point clouds data suffer from the occlusion effect, which
leads to incomplete scanning and depends on measurement strategies such as the number of scans
and scanner location. Evaluating these factors is important to understand how to improve LAD,
which is still lacking. Here, we introduce an easy way of estimating the LAD using open source
software. Importantly, the influence of the occlusion effect on the LAD was evaluated by combining
the proposed complete point clouds (CPCs) with the simulated data of 3D tree models of Aspen,
Pin Oak and White Oak. We analyzed the effects of the point density, the number of scans and the
scanner height on the LAD and G-function. Results show that: (1) the CPC can be used to evaluate
the TLS-based normal vector reconstruction accuracy without an occlusion effect; (2) the accuracy
is slightly affected by the normal vector reconstruction method and is greatly affected by the point
density and the occlusion effect. The higher the point density (with a number of points per unit leaf
area of 0.2 cm−2 to 27 cm−2 tested), the better the result is; (3) the performance is more sensitive to the
scanner location than the number of scans. Increasing the scanner height improves LAD estimation,
which has not been seriously considered in previous studies. It is worth noting that relatively tall
trees suffer from a more severe occlusion effect, which deserves further attention in further study.

Keywords: occlusion effect; leaf angle distribution; terrestrial laser scanning; computer simulation

1. Introduction

The leaf angle distribution (LAD) is a mathematical description of the orientation
of leaves [1]; it determines the radiation transmission within vegetation canopies [2] and
has a direct impact on the estimation of other important structural parameters: fraction of
absorbed photosynthetically active radiation (FPAR) [3,4] and leaf area index (LAI) [5–7].
The LAD determines the leaf projection coefficient (the G-function), which is usually
assumed to be 0.5 due to the difficulty in an accurate and efficient measurement. However,
such an assumption may cause significant errors in Beer’s law-based LAI retrieval [8,9]
when the actual LAD deviates from the spherical distribution.

The leaf orientation can be described by two separate angles for an individual leaf: the
inclination angle and the azimuth angle [10]. The leaf inclination angle denotes the angle
between the plane or axis of a leaf lamina and the horizontal plane [11], and the azimuth
angle denotes the azimuth direction of the vector normal to the leaf’s upper surface [10]. A
uniform azimuth direction is usually assumed for most species [9,12,13]; thus, the azimuth

Remote Sens. 2021, 13, 1159. https://doi.org/10.3390/rs13061159 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-5030-748X
https://orcid.org/0000-0002-5556-989X
https://orcid.org/0000-0001-6601-7882
https://orcid.org/0000-0003-3923-6056
https://orcid.org/0000-0003-4812-3045
https://doi.org/10.3390/rs13061159
https://doi.org/10.3390/rs13061159
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13061159
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13061159?type=check_update&version=2


Remote Sens. 2021, 13, 1159 2 of 19

angle is not within the scope of this paper and the leaf inclination angle distribution is used
to describe the LAD. The LAD function defines the probability of leaf normal falling within
a unit interval of inclination angle [9] for a tree or the whole canopy.

Several LAD functions [12] have been proposed to define the nonrandom distribution
of the leaf inclination angle with one [8,14,15] or two parameters [13,16]. Typical forms
include trigonometric distribution [8], two-parameter beta distribution [13], ellipsoidal dis-
tribution [14], elliptical distribution [16], and rotated ellipsoidal distribution functions [15].
Ross [9] summarized six typical LADs: spherical, uniform, planophile, erectophile, pla-
giophile, and extremophile distributions. These mathematical models are approximate
descriptions of the LAD; in general, a spherical distribution is adopted because the corre-
sponding G-function is always 0.5 in any viewing zenith angle and is also approximately
0.5 for other typical LADs when the viewing zenith angle is close to 57.3◦ [1]; thus, no mea-
surement of the LAD is needed. However, considerable deviations were found for other
viewing angles when replacing the actual LAD with the spherical distribution assumption
(G = 0.5). For the whole hemisphere, the G value may vary from 0.27 to 0.84 for six typical
LADs listed by De Wit [8]. The general viewing zenith angles of terrestrial laser scanning
(TLS) are far from 57.3◦, and the assumption of 0.5 for the G value may introduce large
errors in LAI retrieval. As a result, it is necessary to obtain the real LAD and G-function in
TLS measurements.

TLS, which swings a tiny footprint laser and provides accurate measurement of dis-
tances to objects, is a promising tool for measuring leaf angles [7,17–20]. By using a large
number of sampling laser beams within the instrument field of view (FOV), TLS can gener-
ate point clouds positioned in three-dimensional (3D) space [7]. Related methods can be
divided into five categories: inversion, leaf plane fitting, the voxel-based method, normal
vector reconstruction of adjacent points, and triangulation. (i) The inversion method:
Zhao et al. [21] proposed a method that inverts the leaf angle information using maximum
likelihood estimation, which is based on the probability that the laser pulses and the vege-
tation intersect. It is a physical–statistical approach and depends on model and parameters
selection. (ii) The leaf plane fitting method: manually extracting complete leaves [7,22] or
automatically segmenting leaf clusters [23,24]. As a semiautomatic method, plane fitting
of the artificially clipped point clouds of complete leaves from the tree was performed to
calculate the normal vectors [7,22]; the leaf inclination angle is computed from the angle
of the normal vector with respect to the zenith. Furthermore, some studies proposed
automatic leaf segmentation algorithms based on the Gaussian mixture model [24] or k-
Means [23] to estimate LAD from the leaf clusters. (iii) The voxel-based method: instead of
extracting leaf clusters, a plane was fitted to some voxels with a size of 5 mm surrounding
the point (voxel) of interest in [25]. (iv) Normal vector reconstruction of adjacent points:
adjacent points of a fixed number [17,20] or within a sphere of a given radius [26,27] were
used. Zheng and Moskal [17] proposed a least squares fitting technique to reconstruct the
normal vector for a specific point according to its six adjacent points, and the inclination of
the plane where the central point is located can be calculated from the normal vector. A
possible source of error is that adjacent points may not be on the same leaf. Vicari et al. [20]
developed an improved method by introducing a threshold based on the covariance matrix
of neighborhood points, and points with large errors were eliminated from the LAD statis-
tic. In methods of obtaining adjacent points through a spherical search, the radius of the
neighborhood distance was constrained by the leaf size in [26] to avoid adjacent points on
different leaves; a radius of 2.5 cm was used in [27], and the number of hits was corrected
for LAD statistic, given that it depends on the leaf orientation relative to the view direction
of the laser. (v) The triangulation method: Bailey and Mahaffee [18] developed a rapid
LAD estimation method based on the triangulation of point clouds: the normal vector of
the plane formed by three adjacent points is directly calculated. This method is relatively
simple to implement but could be sensitive to noise and the positioning error of the TLS
system. Many researchers have proposed practical TLS-based LAD estimation methods,
but their implementation usually requires additional programming. The commonly used
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point clouds processing software CloudCompare (http://cloudcompare.org) (accessed on
16 March 2021), an open source project, has a function for directly calculating the normal
vector of each point, making the calculation of the leaf inclination angle more feasible. Thus,
we intend to use this function to estimate the LAD in our TLS-based LAD measurements.

In addition to the estimation method, the point clouds data themselves are also a
major factor affecting the LAD estimation accuracy. The accuracy values calculated from
point clouds with different point densities or point clouds acquired from different scanning
strategies, e.g., the number of scans and scan locations are different. Vicari et al. [20]
demonstrated that the point density is a major constraining factor in the accuracy of LAD
estimation and suggested the use of multiple scans to improve the accuracy. However,
another study showed that there is a limited effect of point density sampling on the foliage
element orientation when the nearest point distance is less than 2 cm [19]. The analysis
was performed using field-measured TLS data of an artificial tree, where the absolute true
LAD is unknown. Therefore, the influence of the point density on the LAD measurement
still requires further investigation. Moreover, the number and locations of TLS scans are
also important factors affecting the quality of the point clouds [28]; however, the analysis
of their impacts on the LAD are less studied. In practical LAD measurements of individual
trees, three [17], four [18,20], five [19], or six [24] scanning locations have been used. In
terms of scanning location, a scanner height of 1.5 m, which is the general height of a TLS
tripod [29], was usually adopted [20,22,25]. It should be noted that point clouds data are
affected by the occlusion effect—“laser pulses are blocked – at least partially – by leaves,
keeping the pulses from making contact with leaves located further along their path”, as
defined by Béland et al. [29]. The occlusion effect is directly relevant to the observation
geometry, and thus varies across scanning strategies. However, the influence of occlusion
on the estimation accuracy of the LAD is rarely analyzed because of the difficulty in the
validation process.

In validation, early methods generally used manual measurements. However, Bailey
and Mahaffee [18] found that manual measurements contain substantial errors that se-
riously depend on the individuals performing the measurements. Thus, the true leaf
inclination angle is difficult to obtain, and manually measured angles are not necessarily
more accurate than those obtained from TLS. With the development of computer simulation
models [30], such as librat [31], Heidelberg LiDAR Operations Simulator (HELIOS) [32]
and Discrete Anisotropic Radiative Transfer (DART) [33,34], both the simulated TLS point
clouds and the true LAD are available [20]. Therefore, we intend to use the computer simu-
lation, which has been adopted in previous LAD studies [18,20], to evaluate the accuracy of
the method. Note that even though computer simulation techniques can be used to avoid
the problem of lacking the true LAD in evaluating LAD estimation methods, occlusion
effects exist in simulated data as well because not all leaves can be scanned. Occlusion has
been identified as a major source of uncertainty in the estimation of vegetation structure
parameters [35–39] and has been considered as a source of error in LAD estimation using
TLS [19,20,22]; however, current methods for investigating its influence are lacking. As
it is hard to evaluate with just field-measured or simulated TLS data, we developed an
approach for analyzing the influence of the occlusion effect by introducing complete point
clouds (CPC), which is obtained through mathematical calculation and does not suffer
from occlusion.

Based on the simulated point clouds data and the CPC, we investigate the effect of
several influencing factors in TLS measurements on the calculation of LAD and G-function,
which are important input parameters in radiative transfer modelling [40] and indirect LAI
measurement. The studied influencing factors include the point density, the number of
scans, the scanner height, and the occlusion effect. A better understanding of these effects
is significant not only in future improvement of LAD estimation, but also in measurement
setup optimization when estimating other forest structural parameters from TLS.

http://cloudcompare.org
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2. Materials and Methods
2.1. Simulated Point Clouds Data

Three tree models of different species (Tree1—Aspen, Tree2—Pin Oak, and Tree3—
White Oak) were generated in OnyxTREE (http://www.onyxtree.com/) (accessed on 16
March 2021); each of the leaves were made up of two triangles. Average leaf sizes for each
tree were different, with an average leaf length and width—8 cm × 5 cm, 12 cm × 8 cm,
and 13 cm × 9 cm for Tree1, Tree2, and Tree3, respectively. The leaf area density (defined
as the one-sided leaf area per volumetric unit (m3) [7]), is calculated from the ratio of the
total leaf area and the crown volume, and the crown volume is the volume of the envelope
reconstructed from the simulated point clouds. There were large differences between the
three tree models. The crown diameter (CD) (east–west) and tree height (TH) were very
small for Tree1 (Aspen) (1.4 m × 1.3 m and 2.7 m, respectively), but the leaf area density
(3.8 m2/m3) was the largest of all three trees (Figure 1(a1)). The CD of Tree2 (Pin Oak)
(5.5 m × 5.5 m) was much larger than that of Tree1, and the TH (3.4 m) was slightly taller
than that of Tree1 (Figure 1(a2)), with a leaf area density of 0.9 m2/m3. Tree3 (White Oak)
was the tallest of all of three trees (6.5 m), and the CD was similar with that of Tree2, with
a leaf area density of 1.7 m2/m3 (Figure 1(a3)). The true LAD of each tree (illustrated in
Figure 1(c1–c3), respectively) was calculated based on the coordinates of the triangles.
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Simulated TLS point clouds were generated for the three 3D tree models based on the
DART model, which can simulate the Light Detection and Ranging (LiDAR) data based
on a quasi-Monte Carlo ray tracing approach [34]. The parameter settings in the DART
simulation were the same as those in FARO Focus 3D X330 TLS [41]. The wavelength of
the laser beam was 1550 nm, the beam divergence was 0.19 mrad (corresponding to an
increase in spot size of 0.95 mm at a distance of 5 m), and the beam waist diameter (1/e)
was 2.25 mm. The scanner heights (SHs) were 1.5 m and 3 m. Additionally, branches were
excluded in the DART simulations to avoid the influence of woody materials on the LAD.
DART TLS simulations were performed at eight locations around Tree1 (Figure 1(d1)) and
four locations around Tree2 (Figure 1(d2)) and Tree3 (Figure 1(d3)). The distance between
the scanner and the center of the tree was 5 m for each simulation; the scan angle resolution
in both the zenith and azimuth direction was set to 0.05◦, with an average distance between
the center points of two neighboring laser spots being 4 mm at 5 m. In in-situ laser scanning,
several target balls should be adequately positioned in the field before scanning; the point
clouds acquired from different scans are registered into the same coordinate system based
on these common targets. Different from the field measurement, registration of different
scans is not needed. Data from multi-location scanning can be directly merged together
(using “Merge” function in CloudCompare) because the simulations were performed in
the same coordinate system, thus there is no registration error.

A point thinning procedure was performed to reduce redundant points. To investigate
the influencing factors (shown in Figure 2), comparison between LADs computed from
single-scan and multi-scan data, and each of them with the LADs computed from the
complete point clouds (CPC) with equal point density on each leaf (see Section 2.4), are
needed. Regions that can be scanned from two or more locations are oversampled, resulting
in larger point density than those that are just scanned once, if we merge multi-scan data
directly. Considering that the point density affects the LAD estimation, the merged point
clouds were thinned using the “subsample” function in CloudCompare 2.10.1 by setting
the minimum space between points (we call it the least neighbor point distance (NPD)) to
5 mm to reduce redundant points. Selecting points from the original point clouds, no point
in the output data is closer to another point than the specified NPD after the subsample.
This makes the point densities at different regions of the tree more consistent than the
original data. In addition, the point thinning process was also applied to the single-scan
TLS data to obtain an NPD of 5 mm, making it comparable in point density to the merged
multi-scan point clouds.
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2.2. LAD Estimation

An automatic method was used to reconstruct the normal vectors of all points of a
tree; the basic principle is to extract the nearest neighbor points around each point through
a spherical search with a certain radius, and then perform the plane fitting. A referenced
radius can be obtained from the normal computation in CloudCompare 2.10.1. After several
tests, we found that the radius automatically calculated by the software was usually close
to four times the NPD; thus, this value was used as the searching radius, and the accuracy
of LAD estimation was tested. The normal vector

→
n is set to be oriented to the upper

hemisphere and is calculated from the covariance matrix of the neighborhood points [17].
If we set the zenith vector to

→
z (0,0,1), the leaf inclination angle a can be calculated as [20]:

a = cos−1

[ →
z ·→n

‖→z ‖·‖→n‖

]
·180

◦

π
(1)

The probability density function of leaf inclination angle (a) at 5-degree intervals is
calculated to obtain the LAD.

2.3. G-function Calculation

The G-function is the mean projection of the leaf area unit in a plane perpendicular
to the sunrays [6]. The G value is a constant 0.5 for spherical distribution. For TLS
measurements, the viewing direction is equivalent to the incident direction. Assuming the
azimuth angle to be uniform, the G-function is computed as:

G(θ) =
∫ π

2

0
A(θ, θl)g(θl) sin θld(θl) (2)

A(θ, θl) =

{
cos θ cos θl , |cot θ cot θl | > 1

cos θ cos θl [1 + (2/π)(tan ψ− ψ)], |cot θ cot θl | ≤ 1
(3)

where ψ = cos−1(cot θ cot θl) θ is the viewing zenith angle, θl is the leaf inclination angle,
and g(θl) is the probability density function that describes the leaf inclination distribution
function, which can be obtained through the automatic normal vector calculation of point
clouds data.

2.4. Validation

(1) Calculating the true LAD and G-function from the 3D tree model. The tree models
are made up of triangles of which the coordinates of the vertexes are known. The true leaf
inclination angle, LAD, and G-function can be calculated directly based on each definition.

(2) Generating simulated TLS point clouds to analogize actual measurement. The 3D
tree models were input into the DART model, and the simulated TLS data were obtained.
The simulated TLS data together with the known LAD allow us to perform a validation.
We estimate the LAD, which describes the fraction of leaves within a certain angular range,
based on the point clouds that we can obtain from TLS. However, there are the following
problems when scanning trees using TLS: (i) some leaves cannot be scanned when they are
occluded by other leaves before them; (ii) the number of points may be different for each
leaf, even those of the same size but in different positions of the tree due to the increasing
point spacing with increasing scanning distance; (iii) the number of hits varies on leaves
with the same size and same distance to the laser scanner but with different orientations,
since it depends on the leaf orientation relative to the view direction [19,27]. Thus, the point
clouds obtained from TLS are non-uniform samplings of the leaves. The error sources of
the LAD computed from the simulated point clouds data come from both the error caused
by the method and the sampling issue of TLS.

(3) Generation of complete point clouds to evaluate the accuracy of the method itself
under different point densities and analyze the influence of the occlusion effect. With
known coordinates of the vertexes of the triangles, the theoretical complete point clouds
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(CPC) can be obtained based on regular gridding of the triangles (Figure 3) with a certain
grid point distance (GPD) (Figure 3a), from which a dataset of CPCs with different point
densities can be obtained. In CPC calculation, the direction of one side of the grid is parallel
to the leaf lamina (AB in Figure 3a). The CPC has two characteristics: (i) the points on each
leaf are regular; (ii) the number of points on each leaf is proportional to the leaf size since
the grid size is the same for each leaf. Therefore, CPC is ideal point clouds data unaffected
by the shooting pattern, occlusion effect, and the geometric relationship between the leaf
and the laser beam, which can be used in three aspects: (i) assessing the normal vector
reconstruction accuracy more objectively; (ii) analyzing the impact of point density by
setting different GPDs in the generation of the CPCs; (iii) evaluating the influence of the
occlusion effect through a combined use of CPC and simulated TLS data.
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(4) Calculating the absolute errors to assess the accuracy. The absolute errors of the
LAD and the G-function were calculated as:

AELAD =

[
n

∑
i=1
|Pe(i)− Pt(i)|

]
× 100% (4)

AEG =

[
1
N

N

∑
j=1

|Ge(j)− Gt(j)|
Gt(j)

]
× 100% (5)

AELAD is the overall absolute error of the LAD, which can be used to measure the per-
centage of the overall deviation between the estimated LAD and the true LAD. Pe(i) and
Pt(i) are the estimated and true proportion of leaves in the ith 5◦ class (a 5-degree interval
was used in [19,20]), respectively; i = 1 denotes a 0◦–5◦ leaf inclination angle, and n = 18.
∑n

i=1 Pe(i) = 1, and ∑n
i=1 Pt(i) = 1. AEG is the average absolute error of the G-function,

which can be used to measure the percentage of the deviation between the estimated
G-function and the true G-function. Ge(j) and Gt(j) are the estimated and the true G-
functions in the j × 0.1◦ viewing zenith angle, respectively, j = 1 means the viewing zenith
angle is 0.1◦, and N = 900.

2.5. Sensitivity Analysis of the Influencing Factors

Influencing factors including the point density, number of scans, scanner height, and
occlusion effect on the LAD and the G-function were investigated. To analyze the effect
of the point density, the LADs and the G-functions estimated from the CPCs with GPDs
(Figure 3a) of 2 mm, 5 mm, 1 cm, 2 cm, and 4 cm, corresponding to a number of points
per unit leaf area of 26.6 cm−2, 4.6 cm−2, 1.4 cm−2, 0.4 cm−2, and 0.2 cm−2 on average of
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the three trees, were compared. In the analysis of the effect of the number of scans and
the scanner height, the difference between one scan and the merged point clouds of two,
four, and eight scans of the simulated TLS data with the scanner height set to 1.5 m and
3 m were compared. Combining CPCs with a GPD of 5 mm and simulated point clouds
data with an NPD of 5 mm, the influence of the occlusion effect was analyzed. Detailed
information is listed in Table 1:

Table 1. Sensitivity analysis.

Sensitivity Analysis Comparisons Data

Point density

Grid point distances (GPDs) of 2 mm, 5 mm,
1 cm, 2 cm, and 4 cm; they are equivalent to:

a number of points per unit leaf area of 26.6 cm−2,
4.6 cm−2, 1.4 cm−2, 0.4 cm−2, and 0.2 cm−2

Complete point
clouds (CPC)

Number of scans One scan and the merged point clouds of two,
four, and eight scans Simulated TLS data

Scanner height 1.5 m, 3 m Simulated TLS data

3. Results
3.1. The Point Density Effect on the LAD and G-Function Calculations Based on CPCs

The LAD and the G-function estimated from CPCs with different GPDs of 2 mm,
5 mm, 1 cm, 2 cm, and 4 cm are illustrated in Figure 4. GPD means the grid point distance;
the larger the value is, the lower the point density. The errors in the LAD and G-function
show an increasing trend with decreasing point density for all three tree models, and the
point density has a greater influence on the LAD. When the GPD is 5 mm (which is easily
available in real-world scanning), the errors in the LAD and G-function estimation are 6.9%
and 0.4% for Tree1, 3.2% and 0.9% for Tree2, and 1.2% and 0.3% for Tree3, respectively.
When the GPD is greater than 1 cm, the error increases greatly, and the result of the 4-cm
GPD is illustrated to show the great influence of the point density: the errors in the LAD
and G-function estimation are 60.7% and 20.9% for Tree1, 92.4% and 32.0% for Tree2, 13.1%
and 4.4% for Tree3, respectively. With the decrease in the point density, the increases in the
error for the three trees differ. Nevertheless, the increasing trend generally indicates that
the number of points per unit leaf area should be larger than 1 cm−2 (roughly equivalent
to GPD = 1 cm) when using the point clouds to estimate the LAD in our studied cases.

3.2. The Effect of the Number of Scans and Scanner Height on the LAD and G-Function
Calculations and the Occlusion Effect

Considering that lower point density leads to larger error, simulated TLS data with an
NPD of 5 mm, which is close to the original point spacing (4 mm) were used for further
analysis of other influencing factors including the number of scans, scanner height, and
the occlusion effect. Figure 5 shows the estimated LAD and G-function for Tree1. Both the
calculated CPC with a GPD of 5 mm and the simulated TLS data with an NPD of 5 mm
from different scans were used to assess the accuracy of the method. For the calculated
CPC, the overall deviation between the estimated value and the true value (AE) is 6.6%
for LAD and 0.4% for G-function, respectively. For the simulated TLS, when the scanner
height (SH) is 1.5 m, the AEs of the one scan, two, four, and eight scans are 39.4% (19.4%,
SH = 3 m), 33.2% (20.9%, SH = 3 m), 41.1% (16.7%, SH = 3 m), and 38.3% (14.5%, SH = 3 m)
for the LAD, respectively; and 9.9% (0.6%, SH = 3 m), 7.7% (0.9%, SH = 3 m), 5.9% (0.6%,
SH = 3 m), and 10.3% (2.0%, SH = 3 m) for the G-function, respectively. Both the accuracy of
the LAD and G-function increased considerably when the SH was doubled. The difference
in the LAD between one scan and two scans was 6.2% of the AE; increasing the number of
scans additionally does not make the results better in this case because the accuracies of
the results from four scans and eight scans are similar. The results show that the scanner
height has a greater influence on the accuracy of LAD estimation, when compared with the
number of scans.
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Taking the results of the LAD and the G-function based on the CPC (with a GPD of 5
mm) as a reference, the occlusion effect causes an AE up to 26% and 14% when the two
scans were performed at SHs of 1.5 m and 3 m, respectively. The influence of the occlusion
effect is significantly different when the scanner height changes, and the corresponding
analysis will be detailed in the Discussion. In addition, eight scans are not considered for
the other trees since we found in Tree1 that the differences between the eight scans and the
four scans are small.

Figure 6 shows the estimated LAD and G-function for Tree2. Both TH and CD of Tree2
are larger than that of Tree1, but the leaf area density is much lower (see Figure 1). The
results of the CPC with a GPD of 5 mm for Tree2 are illustrated, and the method causes
an AE of 3.2% for LAD and 0.9% for G-function when applied to the CPC. Regarding the
simulated TLS data with an NPD of 5 mm, when the SH is 1.5 m, the AEs of the one scan,
two scans, and four scans are 21.3% (12.8%, SH = 3 m), 15.7% (12.7%, SH = 3 m), and 14.0%
(8.6%, SH = 3 m) for the LAD, respectively; and 5.6% (3.2%, SH = 3 m), 3.8% (2.7%, SH = 3
m), and 4.0% (2.1%, SH = 3 m) for the G-function, respectively. Both the accuracy of the
LAD and the G-function increase when the scanner height is doubled. Taking the result of
the LAD and the G-function based on the CPC (with a GPD of 5 mm) as a reference, the
occlusion effect causes an AE up to 13% and 10% when two scans were performed with
SHs of 1.5 m and 3 m, respectively. Regarding the effect of the number of scans on the LAD,
the difference in AE between the one scan and the merged result of the two scans is 5.6%
for the LAD and 1.8% for the G-function, when the SH is 1.5 m. The result of the four scans
is similar to that of the two scans. The effect of the number of scans has a similar trend
when the SH increases to 3 m.
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Figure 5. The effect of the number of scans and the scanner height on the leaf angle distribution (LAD)
(a) and the G-function (b1,b2) for Tree1; (b1,b2) are the results for scanner heights (SHs) of 1.5 m and
3 m, respectively: the “Exact” curves in black are the true LADs and G-functions computed from the
three-dimensional (3D) tree model; the green curves are the LAD and the G-function computed from
the complete point clouds (CPC) with a grid point distance (GPD) of 5 mm, which can represent the
accuracy without the occlusion effect; TLS_SIM denotes simulated TLS point clouds. The scanning
strategy is illustrated in Figure 1(d1).

Figure 7 shows the LAD and G-function results for Tree3. The height of Tree3 is 6.5 m,
the tallest of all the three tree models. For the CPC with a GPD of 5 mm, the method causes
an AE of 1.3% for LAD and 0.2% for G-function. Regarding the simulated TLS data with
an NPD of 5 mm, when the scanner height (SH) is 1.5 m, the AE of the one scan, two scans,
and four scans is 71.5% (43.8%, SH = 3 m), 64.2% (38.0%, SH = 3 m), and 64.7% (40.9%,
SH = 3 m) for the LAD, respectively; and 21.7% (13.3%, SH = 3 m), 19.9% (11.7%, SH = 3 m),
and 19.9% (12.6%, SH = 3 m) for the G-function, respectively. Both the accuracy of the LAD
and the G-function increase when the SH is doubled. Taking the result of the LAD and
the G-function based on the CPC (with a GPD of 5 mm) as a reference, the occlusion effect
causes an AE up to 63% and 37% when two scans are performed with SHs of 1.5 m and
3 m, respectively. Both the accuracy of the LAD and the G-function increase considerably
when the SH is doubled; however, the results show that relatively accurate results cannot
be obtained even if the SH increases considerably when the height of the tree is large.
Regarding the effect of the number of scans, both the LAD and G-function calculations
show that two scans are better than one scan (an improvement of 7.3% for LAD, and 1.8%
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for G-function) when the SH is 1.5 m. The difference between the two and the four scans is
small (less than 2%). A similar trend was found when the SH was 3 m.
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Figure 6. The effect of the number of scans and the scanner height on the leaf angle distribution
(LAD) (a) and the G-function (b) for Tree2: the “Exact” curves in black are the true LAD and the
G-function computed from the three-dimensional (3D) tree model, respectively; the green curves
are the LAD and G-function computed from the complete point clouds (CPC) with a grid point
distance (GPD) of 5 mm, which can represent the accuracy of the method without the occlusion effect;
TLS_SIM denotes simulated TLS point clouds. The scanning strategy is illustrated in Figure 1(d2).
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Figure 7. The effects of the number of scans and the scanner height on the leaf angle distribution
(LAD) (a) and the G-function (b) for Tree3: the “Exact” curves in black are the true LAD and G-
function computed from the three-dimensional (3D) tree model; the green curve is the LAD and the
G-function computed from the complete point clouds (CPC) with a grid point distance (GPD) of
5 mm, which can represent the accuracy of the method without the occlusion effect; TLS_SIM denotes
simulated TLS point clouds. The scanning strategy is illustrated in Figure 1(d3).

4. Discussion
4.1. The Accuracy Assessment of LAD Estimation

There are two methods used to test the accuracy of LAD estimation in the current
studies: manual measurement [18,19] and computer simulation [18,20]. In manual mea-
surement, the number of leaves that can represent the LAD of the tree should be measured.
The main difficulties are that manual measurements contain substantial errors that can vary
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between the individuals performing the measurements [18]. Moreover, the selected leaves
should be representative, which is difficult to implement in the field. With the development
of computer simulation models [31,32,34], which can realize the simulation of TLS data,
the simulated point clouds with a known true LAD were used to assess the accuracy: 23,
33, 43, 53, and 63 disks with a uniform distribution in the volume were used by Bailey and
Mahaffee [18], and five trees in the 4th Radiation Transfer Model Intercomparison (RAMI-
IV) were used by Vicari et al. [20]. Computer simulation used in this study can avoid
the problem of the lack of the true LAD; however, there are some limitations due to the
assumptions that are inconsistent with the real-world conditions: (i) simplifying the leaf as
two triangles neglects the curvature and complex shape of leaves; (ii) the lack of noise and
artifacts in the simulated point clouds is inconsistent with real TLS measurement; (iii) the
Lambertian assumption of the leaf optical property; (iv) registration errors using multi-scan
data, which were merged directly without suffering errors since they were simulated in
the same coordinate system, is not considered; (v) the scanning stations are designed to be
regular, with the same scanning distance around a tree; however, establishing the location
of the TLS is usually difficult to define in fieldwork, which might be limited by the terrain
and environmental conditions. Except for these assumptions which are difficult to avoid in
the simulation, there is a problem in evaluating the method using simulated point clouds:
it is difficult to distinguish whether the error is caused by incomplete scanning and the
uneven points, or the method itself, since the occlusion effect also exists in simulated TLS.

The concept of the CPC was proposed in this paper, which is calculated mathematically
and is not influenced by the occlusion effect and the beam divergence of LiDAR. Thus,
the CPC was used to evaluate the effect of the occlusion on the LAD, combined with the
simulated TLS data. In fact, the influence of the occlusion effect, calculated as the difference
between the error of LAD from CPC and simulated TLS data, respectively, also contains
the influences of the shooting pattern of the laser scanner and the geometric relationship
between the object and the laser pulse. Both the spot size and point spacing increase
with increasing distance between the object and the scanner. Moreover, the number of
hits varies with leaf orientation to the laser pulse of TLS, [19,27] even though a leaf is not
occluded by other objects at all. Nevertheless, the use of CPC provides a way to know the
accuracy of the method itself, and it makes it clear that it is the quality of the point clouds
data that dominates the reliability of the LAD estimated from TLS in our studied cases.
In addition, we believe that the CPC can also be used to validate the accuracy of other
methods [17,20], such as the normal vector reconstruction of the adjacent points method
and the triangulation method [18].

4.2. Possible Sources of Error in LAD Estimation

In the normal vector calculation, a factor that greatly influences the accuracy is the
point density. The higher the point density is, the higher the accuracy of LAD and G-
function estimation. Neighboring points are more likely to not be on the same leaf when
the point density is low, which yields a large calculation error for the leaf inclination angle.
As shown in Figure 4, great changes in both the LAD and the G-function occur as the
point density changes. It should be noted that the true LAD curve for Tree2 approximately
follows a spherical distribution, but the estimated one is totally different from the true LAD
curve when the GPD is 2 cm and 4 cm. This finding indicates that the number of points
per unit leaf area should be at least larger than 1 cm−2 (corresponding to GPD = 1 cm, see
Table 1 for more details) in our studied cases with leaf length ranging from 8 cm to 13 cm
and leaf width from 5 cm to 9 cm. In real measurement, this value should be considered
according to the curvature and average size of the leaves. Closely related to the point
density, the radius used for spherical search of adjacent points was four times the NPD
of the simulated point clouds that was subsampled to an NPD of 5 mm. The setting of
the searching radius is a tricky problem. Assuming a fixed NPD, larger radius leads to a
higher probability of including points on adjacent leaf, especially for trees with crowded
leaves (e.g., the AE (6.6%) computed from the CPC of Tree1 (with the largest leaf area
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density) is the largest of all the three trees); smaller radius (i.e., less adjacent points) causes
the calculation of inclination angle to be more sensitive to the noise (see an experiment
(Figure 8) of the influence of the noise on inclination angle calculation, when using different
numbers of adjacent points) in real measurement.
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Figure 8. Influence of the noise on the inclination angle calculation. (a) Schematic diagram of original
points (white) with a point spacing of 5 mm on a horizontal plane, and noised points (red) acquired
by adding random values on Z coordinates of the original points; (b) influences of different levels of
noise (by adding random values with a mean of zero and a standard deviation (σ) of 0.5 mm and
1.5 mm) on the inclination angle calculation of point P using a least squares fitting technique. P is
originally on a plane with an inclination angle of 0◦; the estimated inclination angles of P on the fitted
planes with different number of adjacent points increases with the noise level, and the error generally
decreases with the increasing number of adjacent points when the noise level is fixed. A total of
100 datasets of the noised points for each noise level (with the same mean and standard deviation)
were generated, and each angle shown in (b) is the average angle calculated from the 100 datasets.

An inherent limitation in any optical measurement is that objects occluded from the
view of the sensor cannot be measured [18], and several studies have determined that
the occlusion effect is a major source of uncertainty in the retrieval of canopy structure
variables from TLS measurement [7,37]. Figures 5–7 show that the accuracy of the LAD is
relatively high for all three CPCs with a GPD of 5 mm: 6.6% for Tree1, 3.2% for Tree2, and
1.3% for Tree3. However, a large difference is found between them when the method is
applied to the simulated TLS data with an NPD of 5 mm. For Tree1 which has the largest
leaf area density, the error of the LAD still reaches 38.3% even though it had been scanned
at eight locations. This indicates that the occlusion effect has a substantial influence on
the LAD when the leaf area density is large; in addition, this effect cannot be improved
through multiple scanning at the same height. With a height of 3.4 m and a leaf area
density of 0.9 m2/m3, Tree2 is between Tree 1 and Tree3, and its calculation accuracy is the
highest among them. The LAD error of Tree3 with a height of 6.5 m is the largest (64.2%
for two scans), indicating that the influence of the occlusion effect is more serious when the
trees are taller. The above results are all obtained with a scanner height of 1.5 m, which
is the general height of a TLS tripod and was adopted in other studies [18,20]. It should
be noted that the result may be greatly improved (from 64% to 38%) when the scanner
height is doubled (3 m). Raising the height of the instrument can reduce the influence of
the occlusion effect for tall trees. Larger scanner heights are not considered in this study
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considering the limitation of the tripod used in current measurements. Furthermore, only
factors relevant to the measurement are considered; future study should focus on the wind
effect, and the impact of tree structure on LAD estimation.

4.3. Difference between the Effect of Number of Scans and Scanner Location on TLS-Based LAD
and G-Function Estimation

The results show that the G-function is less affected by the point density and the
occlusion effect compared with the LAD. The AEs in all the cases are all much smaller than
those of the LAD. For LAD, the higher the point density is, the better the LAD estimation.
We found that the results of the merging of two scans are slightly better than one scan in
the results of the three simulated trees, with an improvement of 6.2% for Tree1, 5.6% for
Tree2, and 7.3% for Tree3, and the average improvement of the three trees in AE is 6.4%,
when the SH is 1.5 m. A similar finding is obtained for a 3-m SH. However, the results
are not much improved when the number of scans further increases. This is likely due to
the fact that scanning the tree at more locations at the same height does not provide more
effective samplings of different inclination angles. Therefore, estimating the LAD of an
individual tree by performing two scans is slightly better than just performing a single scan.
However, it might be difficult to use joint point clouds obtained in the field from different
scanning stations. As can be inferred from the results shown in Figure 8b, the influence of
registration error using multi-scan data is non-negligible since inclination angle calculation
is very sensitive to generated noise. Future explorations, either focusing on improving the
LAD estimation just using high-resolution single-scan point clouds data or estimating LAD
(e.g., in case the estimation of azimuth angle is necessary) using data from each scanning
station directly and then combining them properly through a weighting method, would
be interesting topics. In addition, it is worth noting that if we increase the height of the
instrument, we may achieve an improvement in the LAD estimation.

As shown in the previous results, there is great improvement in the LAD of all three
tree models when the scanner height changes from 1.5 m to 3 m with one scan: a decrease
in the AE from 39.4% to 19.4% for Tree1 (a 20.0% improvement in accuracy), 21.3% to 12.8%
for Tree2 (an 8.5% improvement), and 71.5% to 43.8% for Tree3 (a 27.7% improvement).
Taking Tree1 as an example, many leaves lie between 0◦ and 5◦; however, the estimated
proportion of leaves at angles less than 5◦ is substantially less than the true proportion when
the scanner height is 1.5 m (Figure 5a), indicating that horizontal leaves are scanned less
often. However, when the scanner height is doubled (Scan II), the overall LAD estimation
accuracies are greatly improved, and the estimated proportion of leaves between 0◦ and
5◦ increases considerably compared with the result of Scan I. The possible reasons can be
explored from the simplified case in Figure 9. Figure 9 shows four leaves, two of which are
horizontal but are at different heights, and the other two pieces are slanted. A simulation
was performed to test the effect of the scanning location. Two horizontal circles with a
radius of 15 cm are simulated using the DART model. One circle is placed at a height
of 1.5 m (leaf 1©); no point is acquired when scanning from Scan I, and some points are
acquired in Scan II (Figure 8b). Similarly, the other circle is placed at a height of 0.5 m
(leaf 2©); more points are acquired with Scan II than with Scan I (Figure 9c) because the
angle between the emitted pulses of Scan II and leaf 2© (β in Figure 9a) is larger than that
of Scan I (α in Figure 9a). This indicates that more pulses are incident on leaf 2© than
leaf 1©. The results of leaf 3© and leaf 4© are similar to those of leaf 1© and leaf 2©, so they
are not shown here. We believe that this finding might be a reason for the considerable
improvement in the LAD accuracy when the scanner height is increased. The limited
sampling capability of TLS at the top of tall trees and the fact that the number of hits
is affected by the leaf orientation relative to the view direction of the laser [27] result in
some leaves under-represented and some over-represented; increasing the tripod or adding
platforms could be a pathway to improvement in such cases.
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Figure 9. The occlusion effect in terrestrial laser scanning (TLS) and the effect of the scanner height
(SH) (a) on the scanned points (b,c). Leaf 1© and leaf 2© are horizontal, leaf 3© and leaf 4© are slanted.
The leaves are represented by a straight line because they are illustrated from the side. Dashed lines
represent pulses emitted by TLS: the black and blue dashed lines are the pulses emitted by Scan I
and Scan II, respectively. α and β are the angles between the emitted pulses of Scan I and leaf 2© and
between Scan II and leaf 2©, respectively, β > α.

4.4. Future Research Perspectives

The applicability of TLS in LAD estimation for tall trees is limited because TLS suffers
from a lower sampling density towards the top of the canopy [36], considering that the
scanner is usually placed on a tripod whose height is limited around 1.5 m [29]. It is possible
to fly a rotary-wing unmanned aerial vehicle (UAV) (strictly speaking, it is the remotely
piloted vehicle (RPA)) and scan a tree in hemisphere space, which would yield minimal
occlusion (Figure 10). As illustrated in Figure 10, Scan I and Scan V can be considered
conventional TLS, leaf 1© is a horizontal leaf located at the same height as the scanner
of Scan I and Scan V; as a result, no point on this leaf will be scanned. However, when
the UAV laser scanning (UAVLS) system scans from the hemisphere space, the leaf that
cannot be viewed by Scan I and Scan V may be scanned at other locations, such as Scan
II. Regarding the occlusion between leaves, leaf 3© and leaf 1© cannot be scanned during
Scan III because of the occlusion of leaf 2©, but leaf 3© can be scanned during Scan V and
leaf 1© can be scanned during Scan II. When the TLS scans a tree at a fixed position, leaves
parallel to the pulse direction can never be scanned. However, the UAVLS system can
perform multi-angle scanning at multiple locations, thus ensuring relatively complete
scanning of the leaves. A recent development in laser scanning is the deployment of
lightweight laser scanners such as RieglVUX-1 on UAV platforms [42–44]. UAV laser
scanning (UAVLS) is close to TLS in terms of resolution (i.e., point density) [36]. However,
currently studies using UAVLS are mostly focused on tree-level, such as the estimation of
tree height, crown diameter, canopy volume, above-ground biomass (AGB), and individual
tree detection [45–48]. To the best of our knowledge, there are no leaf-level studies yet. The
reason is that the accuracy of UAVLS, which is affected by the range accuracy of the laser
scanner and the positional accuracy that is dependent on the Global Navigation Satellite
System/Inertial Navigation System (GNSS/INS) unit, is around cm-level. A 5 cm to 6 cm
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vertical and horizontal accuracy at nadir direction was reported by [49]. If the accuracy can
be improved in the future, we believe that UAVLS is promising in LAD estimation due to
its great flexibility in scanning. However, the large field of view (FOV) of UAVLS (such as
±70◦ used in [49]) leads to a non-uniform sampling as well. Measurement strategy about
how to acquire a high-resolution leaf-level point clouds, such as the design of the flying
height, flying speed, the FOV, flight line in hemispherical space, etc., is important to ensure
the data quality. Although further investigations are beyond the scope of this study, it is a
direction which deserves further attention in the future.
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be acquired through scanning. 

Figure 10. Hemispherical scanning of a tree using UAV laser scanning (UAVLS). Leaf 1© is horizontal,
and leaf 2© and leaf 3© are slanted. Dashed lines represent the pulses emitted by the laser scanner: A,
B, C and D are parallel to the leaf, indicating that no point can be acquired in these cases, and the rest
(in blue) represent pulses that intersect with the leaves, indicating that some points can be acquired
through scanning.

This study just focused on the LAD, future explorations on the effect of the influencing
factors on the estimation of other parameters that are often estimated from TLS, such
as the LAI [50,51], leaf area density [35,52,53], tree volume [54], above-ground biomass
(AGB) [55,56], and foliage height diversity (FHD) [57], would be interesting and important
topics. Even though these parameters are not a statistic-dependent variable like the LAD,
(i) the measurement strategy might have some influence on the gap fraction estimation
between the top and bottom part of an individual tree or a canopy, since gap fraction is
affected by the laser spot size [29,58], which varies with the range. The uncertainty of
gap fraction inevitably affects the LAI and leaf area density estimation; (ii) estimation of
tree volume from TLS might be affected by the way of data acquisition, and thus the AGB
since it is relevant to the volume [56]; (iii) FHD is a measure of variability in the vertical
structure and is affected by the relative amount of vegetation in each strata [57]. Some
studies calculate FHD (FHD = ∑i(h(i) ∗ ln(h(i))) based on the number of hits (h(i)) in
each vertical layer (i) from single-scan TLS [57]; measuring the tree at different locations
might result in different h(i).

5. Conclusions

We study several issues concerned with TLS point clouds-based LAD estimation,
including the point density, the scanning numbers, the scanner locations, and the occlusion
effect. Simulated TLS data of realistic tree models were used to test the accuracy, and we
reached the following conclusions: (i) obtaining simulated TLS data from the computer
simulation model is a way to carry out LAD methodological research and validation
because the true LAD can be calculated. However, it is difficult to evaluate the accuracy
of the method itself because simulated data also suffer from the occlusion effect. The
concept of complete point clouds (CPC) was proposed in this paper, from which the
theoretical accuracy of the LAD and G-function calculation with different point densities
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can be evaluated without the occlusion effect. Furthermore, the occlusion effect on the
LAD and G-function calculation using TLS point clouds data can be assessed based on
the CPC. (ii) The accuracy of LAD estimation is less affected by the method used in this
study; however, it is greatly affected by the point density and the occlusion effect. The
result becomes better as the point density increases, and the number of points per unit leaf
area should be larger than 1 cm−2 (corresponding to a grid point distance of 1 cm) in our
studied cases (leaf length × leaf width: 8 cm × 5 cm, 12 cm × 8 cm, 13 cm × 9 cm). Even
though the number of points per unit leaf area of 1 cm−2 is just obtained from CPCs, it is
helpful in designing scanning distance (s) of TLS to acquire an average point spacing (d,
d = 2·s· tan ∂/2) with a certain scan angle resolution (∂); (iii) increasing the number of scans
at different locations at the same height does not result in apparent improvement (there is
an average improvement of 6.4% in AE of the three trees using two-scans data than just
single-scan data). Future research should focus on improving LAD using high-resolution
single-scan data to avoid the influence of registration error when using multi-scan data;
(iv) the height of the instrument should be seriously considered for LAD estimation. The
occlusion effect is greatly mitigated when the scanner height is two times the traditional
height (1.5 m) in our experiments; with a distance of 5 m from the tree locations to the
scanner, and the height from the scanner to the bottom of the tree crown of 2.77 m, 2.64 m,
and 2.80 m for Tree1, Tree2, and Tree3, respectively. For tall trees with large leaf area density,
we should pay special attention to LAD and G-function calculation using TLS point clouds
due to the serious occlusion effect.
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