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Abstract: In the frame of an SMOS follow-on operational mission, a new instrument design is
being developed based on the lessons learned from MIRAS, the SMOS payload. To reduce hard-
ware complexity and mass, digital In-phase Quadrature (IQ) demodulation is considered. In this
schema, Q components are obtained by delaying one clock of the digitized IF signals instead of
using phase quadrature analog mixers. The purpose of this article is to formulate this concept
for application to interferometric radiometry, establish the required data processing methods, and
provide experimental results.

Keywords: interferometric radiometry; digital correlator; signal processing

1. Introduction

Interferometric radiometry is a technique to obtain brightness temperature images
using large arrays of antennas in order to achieve a spatial resolution similar to that of real
apertures of a similar size. It has been used for decades in radio astronomy and has been
successfully applied for Earth observation in the ESA’s (European Space Agency) SMOS
(Soil Moisture and Ocean Salinity) mission.

SMOS is an eleven-year-old satellite currently providing sea surface salinity, soil mois-
ture, ice sheet cover, ocean winds, and other scientific products on a continuous basis from
its launch in 2009 [1,2]. In the frame of developing an SMOS follow-on operational mission,
a new instrument design was proposed taking into account the lessons learned [3] from the
SMOS single payload MIRAS [4] (Microwave Interferometric Radiometer with Aperture
Synthesis). The new instrument includes, for each individual antenna, two independent
receiver chains, one for each polarization, to reduce smearing in the horizontal/vertical
maps and facilitate the full polarimetric operation. Furthermore, to increase radiometric
performances, a hexagonal structure is considered [5], so the total number of receivers
becomes larger (74% increase) than its counterpart MIRAS.

In order to reduce hardware complexity and mass while keeping performances, all
receivers use digital In-phase Quadrature (IQ) demodulation instead of the classical analog
mixers with phase and quadrature local oscillators. A single frequency conversion shifts
the Radio Frequency (RF) signal spectrum to an Intermediate Frequency (IF) low enough
to allow using standard hardware for analog-to-digital conversion. The quadrature compo-
nent is obtained by delaying one quarter of a period, equivalent to shifting the phase 90◦

of the IF signal. The sampling frequency is chosen as four times the center frequency in
order to implement the delay just by selecting the previous sample of a given epoch, so
greatly simplifying the signal processing. This technique is used in digital communication
receivers, and the purpose of this paper is to formulate it for interferometric radiometry
taking into account that input signals are Gaussian band-pass processes.
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The study is carried out as part of an ESA project for developing two units of the
Advanced Receiver for the Future L-Band Radiometer (ALR). Each receiver is composed of
two high gain superheterodyne chains operating at a center frequency of 1413.5 MHz and
producing one-bit digitized IF outputs, as well as low frequency signals from analog power
detectors. The purpose of the project is to serve as a demonstrator of an interferometric
radiometer baseline for the SMOS follow-on mission. The receiver and the characterization
equipment were designed and manufactured by the Spanish company SENER TAFS S.A.U.
in Barcelona.

The paper shows the theoretical formulation and expected performances of the dig-
ital IQ demodulation, as well as results from digital correlation measurements and a
comparison with theoretical predictions.

2. Materials and Methods
2.1. Visibility and Correlation

Visibility is the fundamental measurement of an interferometric radiometer. It is
a complex function of the relative antenna positions linearly related to the brightness
temperature of the source through an integral transform [6]. For any baseline formed
by two antennas, it is proportional to the complex cross-correlation of the corresponding
analytic signals [7,8] representing the thermal noise waves collected by the antennas.
If bk(t) and bj(t) are the analytic signals out of receivers k and j, respectively, their cross-
correlation at zero lag is:

Rbkbj
(0) =

〈
bk(t)b∗j (t)

〉
= 2k

√
BkBj

√
GkGjGkjVkj (1)

where k is the Boltzmann constant, Gk,j and Bk,j respectively the available power gain and
noise equivalent bandwidth of the receivers, Gkj the correlator complex gain, and Vkj the
visibility. To be precise and consistent with [6], the visibility function is here normalized
with respect to the fringe washing function (see Appendix A) at the origin, equal to the
correlator gain Gkj , r̃kj(0). By using this normalization, used also in SMOS processing [9],
the integral relation between visibility and brightness temperature only includes the shape
of the fringe washing function ¯̃rkj(τ), which is unity for τ = 0 by definition.

The particular case when both antennas collapse into a single one is the autocorrelation,
proportional to the system temperature:

Rbk
(0) =

〈
|bk(t)|2

〉
= 2kBkGkTsysk

(2)

A one-bit, two-level digital correlation, as the one used in MIRAS and considered
throughout this paper, measures the normalized cross-correlation:

Mkj =

〈
bk(t)b∗j (t)

〉
√
〈|bk(t)|2〉

〈
|bj(t)|2

〉 =
GkjVkj√
Tsysk

Tsysj

(3)

In an interferometric radiometer such as MIRAS, Mkj is measured by a complex corre-
lator, the system temperatures Tsysk,j

by “Power Measurement Systems” (PMS) included in
each receiver, and Gkj by internal calibration injecting correlated noise [9,10]. The visibil-
ity Vkj is then solved from the above equation, and the brightness temperature is finally
obtained by inverting the visibility equation [11].

2.2. In-Phase and Quadrature

A correlator is a piece of hardware that multiplies two input voltages (real waveforms)
and filters the output. The result is a low frequency signal proportional to the real part
of the complex cross-correlation of the corresponding analytic signals (numerator of (3)).
The imaginary part is obtained by multiplying one of the the analytic signals by −j:
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=m
[〈

bk(t) b∗j (t)
〉]

= <e
[〈

[−jbk(t)] b∗j (t)
〉]

(4)

or, equivalently in signal theory terms, by correlating one signal with the Hilbert transform
of the other. In the frequency domain, this transform is equivalent to applying a 90-degree
constant phase shift, so this signal can be said to be in “quadrature” with the original
one. In an analog IQ demodulator, such as the one used in MIRAS, this 90-degree phase
difference is achieved by using two mixers driven by corresponding local oscillators in
quadrature to each other, as shown in the block diagram of the left of Figure 1. Note that
differences in the two band-pass filter responses are responsible for the quadrature error,
which can be corrected using the algorithms provided in [9].

Figure 1. Two systems of implementing a Hilbert transform, or producing a quadrature signal. Left:
An analog IQ mixer. Right: Using a quarter period delay.

The method proposed here is depicted in the block diagram on the right of Figure 1.
It uses a time delay equal to a quarter of a period of the center frequency to generate
the quadrature output. Of course, the 90-degree shift is only achieved exactly at the
center frequency, so the method is only strictly applicable to narrow to moderate band
signals. There is no quadrature error, but there is center frequency error and decorrelation.
The analog version hardware is much more complex: it needs both Radio Frequency (RF)
and Local Oscillator (LO) splitters, a phase shifter, two mixers, and two band-pass filters.
Furthermore, there are two output signals to be sent to the correlator, while in the digital
version, there is only one since the delay is produced by selecting the previous sample (see
Section 2.4). The main purpose of this paper is to propose a digital implementation and
also analyze the limitations and error correction techniques of this strategy.

2.3. Normalized Cross-Correlation Function

A time-domain real waveform is, by definition, the real part of its analytic signal.
Without loss of generality, this one can be written in terms of the “complex envelope” [7]
referenced to an arbitrary frequency f0. Using this representation, the output waveforms
(typically at IF) of two receivers forming a baseline of an interferometric radiometer can be
written as:

bk(t) = <e[b̃k(t)ej2π f0t] ; bj(t) = <e[b̃j(t)ej2π f0t] (5)

where b̃k,j are the corresponding complex envelopes and the terms inside the brackets are
the analytic signals. The cross-correlation function of the real signals bk(t) and bk(t) is
readily computed as:

〈
bk(t)bj(t− τ)

〉
=

1
2
<e
[〈

b̃k(t)b̃∗j (t− τ)
〉

e2π f0τ
]

(6)

in which it has been taken into account that the term at 2 f0 vanishes. Now, it must be
recalled that, by definition, the cross-correlation function is the Fourier transform of the
cross-power spectral density. Then, using the methods outlined in the Appendix of [6],
the cross-power spectral density of the complex envelopes can be expressed in terms of
the visibility and the filters’ response. After some manipulations, (6) can be written as:〈

bk(t)bj(t− τ)
〉
= k

√
B1B2

√
G1G2<e[GkjVkj ¯̃rkj(τ)ej2π f0τ ] (7)
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where ¯̃r kj(τ) is the fringe washing function (see Appendix A) referenced to f0 and normal-
ized to its value at the origin Gkj. It is a function of the frequency domain signal spectra and
depends ultimately on the receivers’ frequency responses. Similar equations hold for the au-
tocorrelation functions of each signal, in this case as a function of the system temperatures
instead of the visibility. Now, using the definition (3), the normalized cross-correlation
function between both time-domain real waveforms becomes:

ρkj(τ) =

〈
bk(t)bj(t− τ)

〉√
〈bk(t)2〉

〈
bj(t)2

〉 = <e[Mkj ¯̃r kj(τ)ej2π f0τ ] (8)

The following property is a direct consequence of (8):

ρkj(τ) ≡ ρjk(−τ) (9)

and for the particular case of a single receiver (for example, unit k), (8) reduces to:

ρkk(τ) =
〈bk(t)bk(t− τ)〉
〈bk(t)2〉 = <e[r̃ kk(τ)ej2π f0τ ] (10)

in which the fringe washing function need not be normalized since always r̃ kk(0) = 1. Note
that (9) implies that ρkk(τ) and ρjj(τ) are even functions of τ.

As indicated in the block diagram in the right part of Figure 1, the quadrature signal
used to get the imaginary part of the visibility is obtained by introducing a delay. In digital
systems, this is easily implemented after Analog-to-Digital (A/D) conversion by shifting
one or more one-bit samples, so any delay must be a multiple of the sampling period
ts = 1/ fs, with fs the sampling frequency. Furthermore, the delay must be one quarter of a
period of the center frequency. Considering a single bit shift, the sampling frequency is
then set to four times the nominal center frequency. If this one is also used as the reference
frequency of the fringe washing function (see Appendix A), then:

fs = 4 f0 (11)

which substituted into (8) yields:

ρkj(τ) = <e[Mkj ¯̃rkj(τ)ej0.5πτ/ts ] (12)

Since the actual receivers’ center frequency fc may differ from the nominal one f0,
the fringe washing function is in general complex and not-symmetrical around the origin
(see Appendix A). In any case, (12) implies that ρkj(0) =<e[Mkj], and neglecting the nor-
malized fringe washing function, ρkj(−ts) ≈ =m[Mkj], demonstrating that this concept is
able to recover both the real and the imaginary parts of the normalized complex correlation
and hence of the visibility. In general, due to the time delay, the imaginary part is affected
by some degree of decorrelation quantified by the normalized fringe washing function.
This one can be important for systems with a large bandwidth, but can be compensated by
proper processing, as explained in Section 2.4.1.

2.4. Data Processing

A digital correlator based on this concept measures all correlation products between
the I and Q signals defined in the block diagram of the right of Figure 1. Both of them
are obtained by sampling the output IF signal at the clock period ts. At a given epoch,
the I signal is just the measured sample, and the Q signal is the one at the previous epoch.
According to this schema, Figure 2 provides a representation of the sampling strategy to
measure all four correlation products.
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Figure 2. Sampling strategy to measure the four real correlation products. Each color represents a
complete and consistent set for a given snapshot and ts is the sampling period. Note that, for example,
the II measurement of the blue snapshot is the same as the QQ of the red snapshot. In this drawing,
green and yellow snapshots are not complete.

Particularizing (12), they can be written as:〈
Ik(0)Ij(0)

〉
=
〈

Qk(0)Qj(0)
〉
= ρkj(0) = <e[Mkj] No delays. (13)〈

Qk(0)Ij(0)
〉
= ρkj(−ts) = =m[Mkj ¯̃r kj(−ts)] Delay ts in unit k. (14)〈

Ik(0)Qj(0)
〉
= ρkj(ts) = −=m[Mkj ¯̃r kj(ts)] Delay ts in unit j. (15)

and the self-“IQ” correlation of a single receiver (k):

〈Ik(0)Qk(0)〉 = ρkk(ts) = −=m[ r̃kk(ts)] (16)

In all above equations, the zero in parenthesis (0) indicates “zero delay” apart from
the one used to get the Q signal. Later in Section 2.5, additional delays will be considered.
Using now the following definitions:

µii
kj =

〈
Ik(0)Ij(0)

〉
µ

qq
kj =

〈
Qk(0)Qj(0)

〉
µ

qi
kj =

〈
Qk(0)Ij(0)

〉
µ

iq
kj =

〈
Ik(0)Qj(0)

〉
(17)

and defining also the nominal and redundant complex correlations as:

“Nominal” correlation: µkj = µii
kj + jµqi

kj (18)

“Redundant” correlation: µkj = µ
qq
kj − jµiq

kj (19)

Equations (13)–(15) can be solved for Mkj, resulting in:

Mkj = <e[µkj] + j=m[Mµkj] (20)

where the constant M is:

M =
1− j=m[ ¯̃rkj(±ts)]

<e[ ¯̃rkj(±ts)]
(21)

in which the plus sign applies to redundant correlation and the minus sign to nominal.
In fact, only one kind of correlation, either nominal or redundant, is needed since both of
them provide exactly the same measurement. In summary, provided the fringe washing
function at ±ts is known, the above equations allow retrieving the corrected complex
normalized correlation Mkj out of the raw measurements.
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2.4.1. Decorrelation of the Imaginary Part

If, according to the property 5 of the fringe washing function (Appendix A), this one
is approximated by just a sinc function, then (21) simplifies to M=1/sinc Bts, and (20)
approximates to:

Mkj ≈ <e[µkj] + j
=m[µkj]

sinc Bts
(22)

so the real part of Mkj is correctly retrieved, while the imaginary part needs a correction for
the decorrelation quantified by the fringe washing function. Substituting for example B=19
MHz and fs=115.3875 MHz, it follows that, for the nominal case, Mkj ≈ µii

kj + j1.0460µ
qi
kj.

Equation (22) can be used to get a first estimation of the corrected normalized corre-
lation Mkj directly from the correlation products’ measurements. Note that the constant
affecting the imaginary part is only an educated guess based on the approximated sinc
shape of the fringe washing function. For narrow band systems with B� fs, the denomina-
tor of (22) becomes close to one, so the error is small. If the receiver’s bandwidth increases,
the denominator decreases, incrementing the retrieval noise. The term becomes singular if
B = fs, and then, no retrieval is possible.

2.4.2. Center Frequency Error

Consider that the frequency response of a given receiver is centered on f= fc, different
from the nominal value f0, so that:

f0 = fc + ∆ f (23)

Then, still using the sinc approximation, the fringe washing function of the single receiver
k is:

r̃ kk(τ) ≈ sinc Bτ e−j2π ∆ f τ (24)

where the property 4 of the fringe washing function was used. Introducing this result into
(16), the correlation of adjacent samples becomes:

〈Ik(0)Qk(0)〉 = µ
iq
kk = sincBts sin 2π ∆ f ts (25)

Note that, if the nominal center frequency coincides with the actual value (∆ f = 0),
then this correlation vanishes. Otherwise, it can be used to estimate the center frequency as:

fc =
fs

4
− fs

2π
arcsin

(
µ

iq
kk

sincBts

)
(26)

in which (11) was used. This operation can be carried out for each individual receiver to
obtain its corresponding center frequency, which in general are different from each other.

On the other hand, using the same approximations, the normalized fringe washing
function of the baseline kj becomes identical to that of a single receiver (24) and can be
written as:

¯̃rkj(τ) ≈ sincBτ(cos 2π∆ f τ − j sin 2π∆ f τ) (27)

where ∆ f is the center frequency error for the baseline, which can be set equal to the
average of those estimated from the self-IQ correlation of each receiver (25). The above
Equation (27) can be directly introduced into (21) to get the correction factor M for the
imaginary part of the correlation:

M =
1± jsincBτ sin 2π

∆ f
fs

sincBτ cos 2π
∆ f
fs

(plus sign for redundant and minus for nominal) (28)
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which in turn is substituted into (20) to obtain the corrected normalized correlation Mkj.
Without additional information, this is the best correction that can be applied to the raw
measurements in order to estimate the corrected normalized correlation Mkj.

2.5. Fringe Washing Function Shape

In the MIRAS instrument, the fringe washing function shape is characterized by
measuring correlations at three time delays −ts, zero, and +ts [12]. This procedure is
neat since at each delay, a complete and consistent set of correlation products is measured.
However, in the proposed digital IQ demodulator, some correlation products include
already a time delay to retrieve the imaginary part of the complex correlation. To avoid
conflict, the three delays must be set to −2ts, zero, and +2ts.

2.5.1. Three-Delay Measurements

Delay 0 means using directly the sampling strategy depicted in Figure 2. Taking as the
reference the red dots in this figure, delaying two clock periods, the signals of either receiver
k or j mean using the sampling strategy schematized in Figures 3 and 4, respectively.

Figure 3. Sampling strategy for delaying receiver k two clock periods based on the non-delayed
reference of Figure 2. Only the red snapshot is complete.

Figure 4. Sampling strategy for delaying receiver j two clock periods based on the non-delayed
reference of Figure 2. Only the red snapshot is complete.

The combination of delaying one clock to measure the IQ or QI product and the
additional delay of one or other signals results in different overall delays that must be
analyzed with care. For example, the IQ product with receiver k delayed (bottom right of
Figure 3) for the red snapshot coincides with the QI product with no delay (top right of
Figure 2) for the blue snapshot. The same happens between the product QI with receiver j
delayed and IQ with no delay.

Using the general Equation (12), the measured correlation products for both cases
become:
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• Delaying receiver k (Figure 3):〈
Ik(2)Ij(0)

〉
=
〈

Qk(2)Qj(0)
〉
= ρkj(−2ts) = −<e[Mkj ¯̃r kj(−2ts)] Delay 2ts in receiver k. (29)

〈
Qk(2)Ij(0)

〉
= ρkj(−3ts) = −=m[Mkj ¯̃r kj(−3ts)] Delay 3ts in receiver k. (30)〈

Ik(2)Qj(0)
〉
= ρkj(−ts) = =m[Mkj ¯̃r kj(−ts)] Delay ts in receiver k. (31)

• Delaying receiver j (Figure 4).〈
Ik(0)Ij(2)

〉
=
〈

Qk(2)Qj(0)
〉
= ρkj(2ts) = −<e[Mkj ¯̃r kj(2ts)] Delay 2ts in receiver j. (32)〈

Qk(0)Ij(2)
〉
= ρkj(ts) = −=m[Mkj ¯̃r kj(ts)] Delay ts in receiver j. (33)

〈
Ik(0)Qj(2)

〉
= ρkj(3ts) = =m[Mkj ¯̃r kj(3ts)] Delay 3ts in receiver j. (34)

where the number 2 in parenthesis means delaying two clock periods (on top of the one-
clock delay for Q signals). Then, the raw normalized complex correlations for nominal case
(18) become:

Delay receiver k: µkj = −<e[Mkj ¯̃r kj(−2ts)]− j=m[Mkj ¯̃r kj(−3ts)] (35)

No delay: µkj = <e[Mkj] + j=m[Mkj ¯̃r kj(−ts)]

Delay receiver j: µkj = −<e[Mkj ¯̃r kj(2ts)]− j=m[Mkj ¯̃r kj(ts)]

and similar equations for the redundant case. Recovering from these three measurements
the complex values of the normalized fringe washing function at±2ts (as is done in MIRAS)
is not possible, so an alternative solution is proposed below.

2.5.2. The system of Equations

Equations (13)–(15) and (29)–(34) is first re-ordered as:〈
Qk(2)Ij(0)

〉
= ρkj(−3ts) (36)〈

Ik(2)Ij(0)
〉
=
〈

Qk(2)Qj(0)
〉
= ρkj(−2ts) (37)〈

Qk(0)Ij(0)
〉
=
〈

Ik(2)Qj(0)
〉
= ρkj(−ts) (38)〈

Ik(0)Ij(0)
〉
=
〈

Qk(0)Qj(0)
〉
= ρkj(0) (39)〈

Ik(0)Qj(0)
〉
=
〈

Qk(0)Ij(2)
〉
= ρkj(ts) (40)〈

Ik(0)Ij(2)
〉
=
〈

Qk(0)Qj(2)
〉
= ρkj(2ts) (41)〈

Ik(0)Qj(2)
〉
= ρkj(3ts) (42)

where ρkj(τ) is the normalized cross-correlation function (8). Except for the first and last
equations above, all the rest correspond each to two independent measurements, which
have to be averaged before using.

It is convenient now to use as the reference frequency of the fringe washing function
the actual (unknown) center frequency fc instead of the nominal f0. Since a change in
reference frequency produces a linear phase (Property 4, Appendix A), the center frequency
of the baseline is conveniently defined as the frequency at which the slope of the fringe
washing function phase vanishes. In this case, assuming selective filters and using (A4)
and (A6), the fringe washing function referenced to the actual center frequency can be
approximated by:

r̃kj(τ; fc) ≈
B√
BkBj

sincB(τ + ∆t)ej2π fc∆t (43)



Remote Sens. 2021, 13, 1156 9 of 20

where B is the equivalent bandwidth and ∆t the group delay difference between receivers
k and j, both of them unknown. The normalized fringe washing function is then:

¯̃rkj(τ; fc) =
r̃kj(τ; fc)

r̃kj(0; fc)
≈ sincB(τ + ∆t)

sincB∆t
(44)

Introducing (44) into (8) and taking into account that this fringe washing function is
referenced to fc, the cross-correlation function for τ = ± κts becomes:

ρkj(±κts) = |Mkj|
sincB(±κts + ∆t)

sincB∆t
cos(±2π fcκts + φkj) (45)

where |Mkj| and φkj are respectively the amplitude and phase of Mkj. Substituting this
result into Equations (36)–(42) for κ = 0, 1, 2 and 3, a system of seven equations with
five unknowns (|Mkj|, φkj, fc, B, and ∆t) is obtained. A numerical optimization algorithm
is used to solve the system and retrieve them. Finally, the normalized fringe washing
function referenced to the nominal center frequency f0 is obtained by applying Property 4,
resulting in:

¯̃r kj(τ) = A sinc B(τ − C)ej2πEτ (46)

where A = 1/sinc B∆t, C = ∆t, and E = fc − f0 = fc − fs/4.
Note that the amplitude and phase of the corrected complex correlation Mkj obtained

in the optimization process are not used. This can be the basis of a different data processing
methodology in which multiple delays are introduced at each snapshot, not only to get the
fringe washing function, but also to retrieve the corrected complex correlation.

3. Results

The technique is demonstrated in the Advanced Receiver for the Future L-Band
Radiometer (ALR) developed by SENER-TAFS under an ESA contract. The simplified
block diagram is shown on the left of Figure 5. It is a dual-polarization receiver formed
by two independent chains. Each one has an RF section with a highly selective filter of
bandwidth B = 19 MHz and a single-ended mixer driven by a common local oscillator at
fLO = 1384.65 MHz to convert the RF to an IF centered at about 28.85 MHz. Both chains
include a detector diode as a Power Measurement System (PMS) and a sampler with a
one-bit analog-to-digital converter. The sampling frequency is chosen as fs = 115.3875 MHz,
which is four times the IF center frequency and one twelfth of that of the local oscillator,
which is synthesized from the same clock signal.

Figure 5. Left: Simplified block diagram of an Advanced Receiver for the Future L-Band Radiometer
(ALR). Labels HIP, VIP, and CIP refer respectively to the Horizontal, Vertical, and Calibration Input
Planes. The additional position of the input switch to a matched load and IF switched attenuation,
needed for offset measurement, are not shown for simplicity. Right: Test bench to measure the
cross-correlation and power of a baseline formed by two ALR units.

The test bench uses two different ALR units driven by correlated noise provided by a
single source and a power divider (see Figure 5, right). Eleven levels are injected in-phase
to both units by means of a variable attenuator. Within each ALR unit, the input power
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is further divided into both H and V channels, as seen in the block diagram at the left of
the figure. The digitized output signals are sent to a data processing unit (labeled “PMS
and correlation measurement” in the figure) that includes one-clock delays to get the Q
signals. The data processing unit includes a matrix of 1-bit two-level digital correlators [13]
to compute all correlation pairs between the different ALR output digital signals (H1, V1,
H2, V2), including self-IQ for each one. Correlation with additional delays to measure the
fringe washing function shape are also implemented. The analog detected output from the
diode is converted to a square signal by a voltage to a frequency converter. Both correlation
and power data are saved in text files for further processing by a dedicated software.

3.1. Power Measurements

Figure 6 shows the noise equivalent temperature injected at each ALR unit for all
eleven levels. The twelfth one corresponds to switching all inputs to matched resistors
(not shown in Figure 5) in order to inject ambient uncorrelated noise. The level of noise at
each level is computed from the S-parameters of the noise distribution network, measured
independently, and the Excess Noise Ratio (ENR) of the source using the procedures of [14].
The insertion loss of the switches inside the ALR units was also taken into account in order
to provide the level of noise at the Horizontal Input Plane (HIP) and VIP, respectively (see
Figure 5, left). As seen in Figure 6, the noise distribution network is highly symmetrical
and injects the same amount of noise to both units.

Figure 6. Left: Noise equivalent temperature injected at the HIP/VIP for each level. Right: Corre-
sponding PMS measurements by all receivers.

In the same figure, right, the PMS output is shown as a function of the injected power.
Units are kHz due to the voltage-to-frequency converter implemented in the PMS. As seen,
all four chains show high linearity and similar gains. Using the four-point technique [15]
with the hot and warm points marked in the figure, the parameters summarized in Table 1
are obtained. All four receiver chains have similar parameters with a somewhat better
noise figure in the case of ALR Unit 1. Both the gain and noise figure are referenced to the
HIP/VIP (see Figure 5).

Table 1. Parameters of PMS characterization.

DUT Offset (Hz) Gain (Hz/K) Noise Figure (dB)

ALR01 H 8503 9.56 1.02
ALR01 V 7143 11.59 0.99
ALR02 H 7399 9.58 1.20
ALR02 V 7306 7.92 1.18
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3.2. Correlation Measurements

The correlation counts measured by the setup of Figure 5 are first converted to the
normalized correlation of the input Gaussian signals using the same method as for the
MIRAS instrument on board SMOS and detailed in Equation (2) of [9]. This first step
needs the measurement of the correlation of all signals with all ones and all zeroes in
order to calibrate the correlator offset. While in MIRAS, this correction was important (see
Figure 14 of [10]), in this case, this correction was shown to be almost negligible due to
the improved design of the samplers and the correlators. Figure 7 shows the percentage of
zeroes and ones in all signals and also the estimated offset due to the zero-one unbalance
expressed in correlation units (cu), defined as ×10−4. Results for all I and Q signals are
provided; however, as expected, the zero-one unbalance for any Q signal is identical to the
corresponding I signal since they are both the same, and only a delay is introduced to get
one from the other.

Figure 7. Percentage of zeroes and estimated samplers offset as a function of the total noise tempera-
ture at the HIP/VIP.

3.2.1. Self-IQ Correlation

Figure 8 shows the correlations measured between the I and Q signals of each receiver
with this last one obtained just by delaying one clock. According to the theoretical pre-
dictions of Section 2.4.2, this correlation is related to the center frequency of the signal.
The plot on the left shows the measured correlation and the plot on the right the estimated
center frequency according to (26), both as a function of the total input power at each
level provided in Figure 6. The nominal value (11) f0 = 28.8469 MHz is marked with a
dashed line. These results confirm that the center frequency error can be measured by this
technique and show that it is small in all units, ranging in this case from about 900 kHz to
−60 kHz. It is observed that Unit 2 is better centered in the nominal intermediate frequency
in both channels.
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Figure 8. Self-IQ correlation and estimated center frequency. The average errors with respect to the
nominal value are 890.6, 294.0, 43.4, and −58.6 kHz for receivers H1, V1, H2, and V2, respectively.

3.2.2. Cross-Correlation

The complex cross-correlation, both nominal and redundant, is computed out of the
raw measurements provided by the setup of Figure 5 according to Equations (20) and (21)
and using the approximation (28), the nominal bandwidth, and the center frequency error
estimated in Figure 8. Figure 9 shows the results in amplitude (correlation units) after
averaging nominal and redundant retrievals as a function of the correlated input noise
temperature (48). Shown also in the plot (circles) is the expected theoretical cross-correlation
computed using Equation (29) of [14], repeated here for convenience:

Figure 9. Left: Amplitude of the normalized correlation after correction and theoretical values in
circles. The right plot shows the error with respect to the theoretical values. The legend of the left
plot applies.

M12 ≈
G12T12S10S∗20√

Tsys1Tsys2
(47)

where T12 is the “correlated input temperature”, also used in the horizontal axis of the
figure and defined as:

T12 = (TNS − TNDN)S10S∗20 (48)

where TNS is the noise temperature of the source determined from its excess noise ratio,
TNDN the physical temperature of the network, assumed constant and measured simultane-
ously with a sensor, and Sk0 the S-parameters of the noise injection network when the noise
source is in port 0. They were independently measured by a network analyzer. The system
temperatures in (47) are computed as:

Tsysk = |Sk0|2TNS + TNDN(1− |Sk0|2) + TRk (49)
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where the receiver noise temperature TRk is the one in Table 1 retrieved with the four-
point technique. Finally, the term G12 in (47) is the fringe washing function at the origin,
computed from the four-point characterization directly with Equation (15) of [16]. Retrieved
values for all six baselines are given in Table 2.

Table 2. Measured fringe washing function at the origin.

Baseline Amplitude Phase (deg)

H1-V1 0.9876 −6.13
H1-H2 0.9939 −159.44
H1-V2 0.9694 −106.37
V1-H2 0.9982 −153.75
V1-V2 0.9961 −100.42
H2-V2 0.9928 53.67

As seen in Figure 9, the consistency between measured and corrected correlations and
theory is remarkable, even though the S-parameters used in the computations are only
approximate. Referring to Figure 5, the actual measurements using a network analyzer
were only done for the external part of the distribution network. All the part that is inside
the ALR to be divided into both H and V chains is only approximated by a fixed 5-dB loss,
and no phase is available. Furthermore, the isolation parameters between these inner ports
was not measured.

Figure 10 shows the phase of the complex correlation as a function of correlated input
temperature. As seen, it is almost constant for all baselines with variations lower than 0.1◦,
except for the baseline H1-V1, which has a larger variation. For low values of input power,
the uncertainty in the phase is very large, as expected.

Figure 10. Phase of normalized correlation. The right plot shows the same phase with the average
removed to see the variations.

3.2.3. Fringe Washing Function Shape

Equations for retrieving the fringe washing function are derived in Section 2.5. They
are based on introducing additional delays to each one of the signals and measuring the
corresponding correlation. This feature has been implemented in the setup of Figure 5,
and the results are given below. Figure 11 shows the measured real correlation between
signals H1 and V1 for Noise Level 6 (see Figure 6) at the seven time delays specified in
Equations (36)–(42). For points where there are two measurements (all except the first and
the last ones), the average value is used. The theoretical value computed from (45) is
drawn in the same figure using first-guess values of the unknown parameters. Specifically,
Mkj and φkj are the amplitude and phase of the correlation obtained in Section 3.2.2; fc
and B are set to their nominal values; and ∆t is set to zero. As seen, even though using
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approximate parameters, the measured values of correlation match quite well with the
theoretical expectations.

Figure 11. Correlation function measured at different delays. On the left, it is compared with the
theoretical formula using initial parameter values. On the right, after optimizing the parameters.

In the plot on the right, the result of a numerical optimization of these parameters
is shown. In this case, both lines just superimpose each other, indicating that the correct
parameters have been found. Parameters for the fringe washing function shape are then
computed as indicated after Equation (46).

The procedure was repeated for all baselines, resulting in the parameters specified in
Table 3.

Table 3. Measured fringe washing function shape parameters. cu, correlation units.

Baseline A-1 (cu) B (MHz) C (ns) E (kHz)

H1-V1 100.163 19.688 3.945 600.290
H1-H2 19.602 18.398 1.875 359.365
H1-V2 191.575 18.733 5.723 177.256
V1-H2 29.676 18.976 −2.236 173.539
V1-V2 18.610 19.112 1.759 42.783
H2-V2 104.440 19.036 4.166 −99.463

As expected, the A parameter is close to unity for all baselines. The B parameter is
the actual signal bandwidth retrieved by this procedure and is compatible with a nominal
value of 19 MHz. The parameter C represents the differential group delay between the
two receivers forming the baseline. It is of the order of some nanoseconds in all cases and
some of them out of the one-sigma margin obtained in SMOS-LICEF, probably due to the
lack of symmetry of the H and V channels. Finally, the E parameter is the center frequency
displacement and is compatible with the values obtained for each receiver individually in
Section 3.2.1.

As an example of the shape of the fringe washing function, Figure 12 shows the plot
for two baselines (H1-H2 and V1-V2). The vertical lines indicate plus/minus the clock
period. As seen, the decorrelation for this delay is not negligible, and the effect of group
delay is noticeable in the shift of the maximum of the function.
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Figure 12. Normalized fringe washing function for baselines H1-H2 and V1-V2. The rest of the
baselines have similar functions.

3.2.4. Sensitivity Circles

In order to assess the correct retrieval of the correlation phase, a test was performed by
changing the phase of the local oscillator by steps of 30 deg from zero to 360. This change
must be reflected in the phase of the measured correlation, so that the result must be a circle
centered at the origin. Failure to calibrate correctly will result in a distorted circle, as for
example an ellipse. This test is important to check that the decorrelation of the imaginary
part mentioned in Section 2.4.1 is well corrected by the procedure proposed.

Figure 13 shows the results for a circle corresponding to injecting about 15k of corre-
lated noise. Only four baselines are shown since the local oscillator distribution between
the H and V channels within the ALR is fixed, and its phase cannot be changed. These are
applied only to baselines formed by ALR 1 and ALR 2. As seen, for all baselines, a circle is
correctly retrieved. The radius and the center is indicated in the figure.

Figure 13. Sensitivity circles.

3.3. Effective Integration Time

For the proposed digital IQ demodulation, the sampling rate must be set equal to
four times the center IF. This is larger than the minimum Nyquist rate of twice the signal
bandwidth, so some level of oversampling is present, which is beneficial in terms of noise
reduction. The effective integration time taking into account actual filters’ response and one-
bit digital correlator is estimated as a function of the sampling frequency using the method
outlined in [17]. The result for the parameters of the hardware designed are provided
in Figure 14, left. It should be pointed out that the filters used in this simulation are
prototypes measured for SMOS, not the actual units used in the ALR, so some discrepancy
is expected. As seen, the oversampling allows having an effective integration time of about
0.7 times the actual value for the sampling frequency of fs = 115.3875 used in the test.
This result is much better than the ratio of 0.55 of SMOS [17]. Note the local maximum at
fc = 2B = 38 MHz and also the stabilization after about 80 MHz, compatible with twice
the maximum frequency of the signal spectrum f0 + B/2 = 76.7 MHz. For an ideal case of
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no quantization and ideal rectangular filters, the effective integration time is equal to the
actual one in these two cases and keeps constant beyond the last one.

The right plot of Figure 14 shows the measured variance of the correlation for un-
correlated input signals corresponding to baseline H1 V1as a function of integration time.
These data were obtained by continuously measuring the PMS and correlation during a
couple of hours using the setup of Figure 5. Drawn in the same plot also is a straight line
corresponding to the expected standard deviation using the theoretical effective integration
time of τeff = 0.7τ. The agreement is quite considerable, and even the measured standard
deviation for a 1-s integration time is smaller than expected theoretically. According to
these measurements and using the result for a 1-s integration time, the effective integration
time is about 0.8 times the actual one.

Figure 14. Left: Effective integration time as a function of clock frequency. The actual clock is marked
with a star. Right: Standard deviation of measurements as a function of integration time.

4. Discussion

The ALRs are the new receiving units currently being developed for a follow-on
SMOS operational mission. They include a number of improvements with respect to
the LICEF presently implemented in SMOS. One of the main differences between both
is that the analog phase/quadrature mixer of the LICEF is substituted in the ALR by a
digital design based on a simple one-clock delay. This difference has to be taken into
account for the correct formulation of the complex correlation and to properly define its
requirements. Most of the equations used in the SMOS level 1A data processing [9] are no
longer valid, and they have to be substituted by the ones developed here in Section 2. The
new formulation is based on the equations governing the cross-correlation of Gaussian
random signals and is rigorous. It provides the expected values of the correlation for given
input signals and proposes an analytical method to correct for the two errors associated
with this technique: center frequency and decorrelation.

The technique makes no assumption regarding the type of digital correlator used,
but in this paper, it is specifically applied to a one-bit two-level design. It is the one
implemented in SMOS and has the advantage of simplicity and easiness to fabricate large
correlator arrays needed for an instrument with a large number of elements such as SMOS
or its future version.

Experiments using correlated noise injection are very encouraging as they demon-
strate that the digital technique is able to measure both amplitude and phase just as the
analog counterpart. Furthermore, the proposed error correction technique compensates
effectively the distortion of raw measurements, as clearly demonstrated by the recovery of
perfect circles in the complex plane when only the phase of the local oscillator is changed
(Figure 13). Moreover, the cross-correlation amplitude as a function of the input power
is found to behave in a compatible manner with the expected one computed from only
the noise distribution network characterization. The small discrepancies found can be
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attributed to uncertainties in the distribution network. The fringe washing function at the
origin, which is actually the correlator complex gain, is successfully retrieved.

The equations presented predict that the autocorrelation of a given signal is directly
related to the center frequency difference with respect to the nominal one. This is perfectly
demonstrated experimentally by retrieving the actual center frequency in all four channels
characterized (Figure 8).

The fringe washing function accounts for signal decorrelation due to a finite band-
width. In any interferometric radiometer, especially if it includes large baselines, it has to be
taken into account in the image reconstruction process. Moreover, in the proposed digital
IQ demodulator, this function has also an impact on the decorrelation of the imaginary
part. A simplified guess of this function is obtained just from the signal bandwidth, but for
better results, it must be measured using delays introduced in the signals. The technique is
already applied to SMOS where delays at plus and minus the sampling period are peri-
odically introduced in all calibration events performed every two months [18]. The same
strategy cannot be implemented when the digital IQ demodulator is used since the Q signal
is already delayed. However, a method based on extra delays is proposed in this paper
and allows measuring the fringe washing function shape after a fast optimization proce-
dure. Experimental results are provided in Section 3.2.3 demonstrating that the measured
correlation function is well described by the theoretical development. Furthermore, as a
result of the optimization, an improved value of the cross-correlation is obtained, both in
amplitude and in phase, which could be the basis for defining still an enhanced method
to get the complex correlation in future developments. In any case, the fringe washing
function shape to be applied in the image reconstruction processor is clearly retrieved with
the method proposed.

The sampling rate at four times the center IF frequency assures a large effective
integration time, estimated to about 0.8 times the actual one when using a 1-bit two-level
correlator, much larger than the case of SMOS, so reducing the thermal noise associated
with the correlation measurement and ultimately improving the radiometric sensitivity.

5. Conclusions

Digital IQ demodulation is successfully implemented in a baseline of an interferomet-
ric radiometer by a one-clock delay of the output IF signal of one receiver with respect
to the other. If the sampling frequency is chosen as four times the center IF frequency,
for a narrow-band signal, this schema provides approximately the correct complex cross-
correlation. The quadrature error of analog IQ demodulators is no longer present, but two
new ones appear: the center frequency error and the decorrelation of the imaginary part.
Both of them are successfully corrected by data processing based on the new formulation
presented. In a simplified version, only the nominal signal bandwidth is needed as addi-
tional information, but the complete one needs to know the normalized fringe washing
function. A technique to retrieve this function using additional delays is proven to be
robust and to provide accurate values for this function, which can be ultimately used to
improve the correlation measurements. The experimental results in a single baseline are
highly consistent with the theoretical predictions and provide a solid path in the develop-
ment of a large instrument, eventually to take over the successful SMOS mission for Earth
observation.
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Abbreviations

The following abbreviations are used in this manuscript:

ALR Advanced Receiver for the Future L-Band Radiometer
DUT Device Under Test
ESA European Space Agency
EBB Elegant Breadboard
IF Intermediate Frequency
IQ In-phase and Quadrature
LICEF Lightweight Cost-Effective Front-end
LO Local Oscillator
MIRAS Microwave Imaging Radiometer with Aperture Synthesis
NOSU Noise Source
PMS Power Measurement System
RF Radio Frequency
SMOS Soil Moisture and Ocean Salinity

Appendix A. The Fringe Washing Function

Given two receivers k and j, the fringe washing function with respect to an arbitrary
reference frequency f0 is defined as (see [6]):

r̃ kj(τ) =
e−j2π f0τ√

BkBj

∫ ∞

0
Hnj( f )H∗nj( f )ej2π f τd f (A1)

where Hnk,j( f ) are the receivers’ frequency responses normalized to their maximum value
and Bk,j their noise-equivalent bandwidths defined as:

Bk,j =
∫ ∞

0
|Hnk,j|2d f (A2)

Equation (A1) is the inverse Fourier transform of the conjugated product of the
receivers’ frequency responses (for positive frequencies) shifted to the origin by an amount
equal to f0. For a single receiver, a fringe washing function can also be defined by collapsing
in (A1) both frequency responses into one:

r̃ kk(τ) =
e−j2π f0τ

Bk

∫ ∞

0
|Hnk( f )|2ej2π f τd f (A3)

The fringe washing function is in general complex and has the following general
properties:

1. If the product Hnk( f )H∗nj( f ) is real, then r̃kj(−τ)=r̃∗kj(τ), so the real part is even and
the imaginary part odd. This happens either if both receivers have identical frequency
responses or if a single receiver is considered (the case of r̃kk or r̃jj).

2. If both frequency responses are symmetrical around the reference frequency (that is,
if Hnk,j( f0 + ∆ f )=Hnk,j( f0 − ∆ f )), then the fringe washing function is real.

3. A group delay difference between both receivers, defined as ∆t=tk − tj, is equivalent
to a linear phase shift in the frequency domain. As a consequence, the integrand of
(A1) can be written as the product of two filter responses with equal group delay
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H′nk( f )H′∗nj( f ) multiplied by exp j2π f ∆t. After some mathematical operations, it is
easily found that the fringe washing function becomes:

r̃kj(τ) = r̃′kj(τ + ∆t)ej2π f0∆t (A4)

where r̃′kj is the fringe washing function corresponding to filters with equal group
delay. As expected, this result is compatible with adding a delay of ∆t to (8).

4. Changing the reference frequency of the fringe washing function only adds a linear
term to the phase, with no change in the amplitude:

r̃kj(τ; fc) = r̃kj(τ; f0)e−j2π( fc− f0)τ (A5)

5. If the product Hnk( f )H∗nj( f ) can be approximated by a rectangular function of width B
centered at f0, then the fringe washing function referenced to this frequency becomes:

r̃kj(τ; f0) =
B√
BkBj

sincBτ (A6)

simplifying to just sinc Bτ if Bk=Bj=B. For filters centered at another frequency,
(A5) applies.

6. Independent of the reference frequency, the fringe washing function at the origin is:

r̃ kj(0) =
1√
BkBj

∫ ∞

0
Hnk( f )H∗nj( f )d f (A7)

which is complex in general and normally has an amplitude close to unity (if the
filters are similar enough).
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