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Abstract: Synthetic aperture radar (SAR) is an effective tool in detecting building damage. At present,
more and more studies detect building damage using a single post-event fully polarimetric SAR
(PolSAR) image, because it permits faster and more convenient damage detection work. However,
the existence of non-buildings and obliquely-oriented buildings in disaster areas presents a challenge
for obtaining accurate detection results using only post-event PolSAR data. To solve these problems,
a new method is proposed in this work to detect completely collapsed buildings using a single
post-event full polarization SAR image. The proposed method makes two improvements to building
damage detection. First, it provides a more effective solution for non-building area removal in
post-event PoISAR images. By selecting and combining three competitive polarization features, the
proposed solution can remove most non-building areas effectively, including mountain vegetation
and farmland areas, which are easily confused with collapsed buildings. Second, it significantly
improves the classification performance of collapsed and standing buildings. A new polarization
feature was created specifically for the classification of obliquely-oriented and collapsed buildings via
development of the optimization of polarimetric contrast enhancement (OPCE) matching algorithm.
Using this developed feature combined with texture features, the proposed method effectively
distinguished collapsed and obliquely-oriented buildings, while simultaneously also identifying
the affected collapsed buildings in error-prone areas. Experiments were implemented on three
PoISAR datasets obtained in fully polarimetric mode: Radarsat-2 PolSAR data from the 2010 Yushu
earthquake in China (resolution: 12 m, scale of the study area: 50 kmz); ALOS PALSAR PolSAR
data from the 2011 Tohoku tsunami in Japan (resolution: 23.14 m, scale of the study area: 113 kmz) ;
and ALOS-2 PolSAR data from the 2016 Kumamoto earthquake in Japan (resolution: 5.1 m, scale of
the study area: 5 kmz). Through the experiments, the proposed method was proven to obtain more
than 90% accuracy for built-up area extraction in post-event PoISAR data. The achieved detection
accuracies of building damage were 82.3%, 97.4%, and 78.5% in Yushu, Ishinomaki, and Mashiki
town study sites, respectively.

Keywords: disaster research; remote sensing; PoISAR; building damage detection; OPCE; texture
features; collapsed buildings

1. Introduction

Destructive earthquakes and tsunamis often lead to serious casualties and to the loss
of property [1]. After these disasters, fast and effective disaster monitoring and damage
detection are essential to reduce casualties and loss [2]. Building damage detection, which
directly relates to human life and economic losses, is crucial to emergency rescue [3].
Ground surveying provides the most accurate results for building damage detection, but it
is time-consuming and dangerous. Alternatively, remote sensing is an excellent tool for
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building damage detection because it can provide a quick response and allows monitoring
of large areas after the disaster [4].

Many remote sensing technologies are used in building damage detection after dis-
asters, such as optical, light detection and ranging (LiDAR), and synthetic aperture radar
(SAR) [5]. LiDAR can obtain three-dimensional information of disaster areas and is a
useful tool for building damage detection [6]. However, the LIDAR dataset is not always
available [5]. Optical images provide an intuitive view of the observed area and are easy to
interpret. Various optical-based studies for building damage detection have been proposed.
The related studies vary from the methods based on multi-temporal optical images [7]
to the methods based on single-temporal optical image [8], from the methods based on
a single optical platform to the methods based on multiple optical platforms [9], from
the methods based on pixels [7] to the methods based on objects [8], from the methods
using machine learning [10] to the methods utilizing deep learning [11]. Optical-based
methods have been studied widely and can obtain accurate detection results of building
damage. However, optical remote sensing greatly depends on sun illumination for imaging
and is easily affected by atmospheric conditions, such as cloud coverage, which limits its
application as an emergency tool directly following a disaster [5,12].

As an active remote sensing technology, SAR can work during day and night, and in
poor weather conditions. Due to these advantages, SAR is more suitable for emergency
rescue immediately following a disaster [12]. Many SAR-based methods for building
damage detection have been proposed. Among these, the change detection-based method
using both pre- and post-event SAR images is the most widely studied. According to
the information used to construct the indicators of change detection, these studies can
be classified into intensity change detection [13,14], coherence change detection [15,16]
and polarimetry-based change detection methods [17-19]. Because it is more difficult to
obtain both pre- and post-event fully polarimetric SAR (PolSAR) images, change detection
methods based on intensity and coherence information are studied more widely than
polarimetry-based methods. Furthermore, these two parameters are sometimes combined
to conduct building damage detection [20,21]. Due to the development of high-spatial-
resolution (HR) and very-high-spatial-resolution (VHR) SAR images, an increasing number
of change detection methods have been proposed to detect building damage at the individ-
ual building level [22-26]. In addition, deep learning-based methods for building change
detection have been proposed using VHR SAR images [25,27]. Change detection-based
methods for building damage detection have been studied adequately and used in many
cases of emergency observation. However, suitable pre-event SAR images are not always
available, and the collection of pre-event SAR images is time-consuming. To detect building
damage more quickly and conveniently, including in the absence of pre-event SAR images,
developing methods that use only post-event SAR images is important and necessary.

PolSAR makes it possible to detect building damage accurately using only post-event
SAR images because it can acquire abundant scattering information of the target. Sev-
eral research works have been presented for detecting building damage using a single
post-event PolSAR image. In 2009, Guo et al. [28] proved that the circular polarization cor-
relation coefficient p, the anisotropic A, and the double-bounce scattering component of the
Yamaguchi four-component scattering model exhibited a high correlation with collapsed
buildings. They used these three features and the maximum likelihood classifier to map the
distribution of collapsed buildings. Their work showed that building damage assessment
using only post-event PolSAR images is both possible and effective. However, because the
work did not first remove non-building areas, many non-building pixels were misclassified
as collapsed buildings, which significantly influenced the detection accuracy of actual
collapsed buildings. Therefore, in 2012, Li et al. [29] used entropy H and the average
scattering mechanism « to first remove bare soil, and then used the circular polarization
correlation coefficient p to extract collapsed buildings. The detection accuracy of collapsed
buildings was clearly improved due to the removal of non-building areas, which proved
the importance of the process of non-building area removal. In 2013, Zhao et al. [30] im-
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proved the work of Li et al. They used the H — a« — wishart classification method to remove
non-building areas, and used the normalized circular polarization correlation coefficient
(NCCC) and the homogeneity (Hom) texture feature together to detect collapsed buildings.
Shi et al. [31] and Sun et al. [32] used more texture features to detect building damage,
and concluded that texture features were useful for classifying collapsed and standing
buildings. Zhai et al. in 2019 [1] used the texture features of the PolSAR image after opti-
mization of polarimetric contrast enhancement (OPCE) to detect building damage and also
obtained reliable results. To combine the advantages of polarization features and texture
features, multi-feature-based methods for building damage detection have been paid more
attention to. For these methods, machine learning algorithms such as random forest (RF)
and support vector machine (SVM) are usually chosen as the classifier. For instance, in
Shi’s work [31] 40 polarimetric features, 138 texture features, and three interferometric
features were stacked into a high-dimension feature cube and input into the RF classifier
to conduct the building damage assessment. In 2017, Bai et al. [33] employed the support
vector machine (SVM) classification algorithm to carry out a building damage assessment
based on 91 features using post-event dual polarimetric SAR image. These works showed
the effectiveness of machine learning algorithms for integrating multi-features to detect
building damage. In addition to supervised methods, unsupervised methods were also
proposed for building damage detection using a single post-event PolSAR image. For
example, in 2018, Ji et al. [4] proposed an automatic threshold unsupervised method for
building damage assessment using the circular polarization correlation coefficient p and
the double-bounce scattering power parameters after polarization orientation angle (POA)
compensation. However, deep learning algorithms have rarely been applied to this topic.
This is mainly because it is difficult to obtain a large number of samples from post-event
PolSAR images to train deep learning algorithms because the PoISAR data is more scarce
than other SAR data, especially in the context of disaster relief.

The above-mentioned research highlights that it is important to perform building
damage detection using only post-event PolSAR images. However, there are still some
problems that need to be addressed to improve the accuracy of building damage detection.
The first problem is that some non-building areas, especially mountain vegetation and
farmland areas, cannot be easily distinguished from built-up areas, which thus causes over-
estimation of building damage. The second problem is that obliquely-oriented buildings,
which have an undamaged structure but an orientation that is oblique to the satellite flight
path, are usually confused with collapsed buildings. This problem significantly influences
the accuracy of building damage detection. Moreover, highly damaged urban areas with a
small number of typical standing buildings, which have an undamaged structure and an
orientation parallel to or perpendicular to the satellite flight path, can be easily identified
as slightly damaged areas because the typical standing buildings influence the scattering
characteristics of these areas.

To solve these problems and improve detection accuracy, in this research, we propose
a new method for building damage detection using a single post-event PolSAR image.
The proposed method adopts a two-step classification strategy. In the first step, through
the analyses, more competitive classification features were selected and a new built-up
area extraction method was developed to address the misclassification problem between
non-building areas and collapsed buildings. In the second step, a new polarization feature
was created by developing the OPCE matching algorithm to specifically address the
classification problem between obliquely-oriented and collapsed buildings. A new multi-
feature-based classification method was then developed by combining the created feature
and eight gray level co-occurrence matrix (GLCM) texture features to simultaneously
address the misidentification problem of some seriously damaged urban areas. In this
study, a damaged or collapsed building means buildings that have completely collapsed
following a disaster. The experiments were carried out on three PoISAR datasets: Radarsat-
2 PolSAR data in Yushu county after the 2010 Yushu earthquake (resolution: 12 m, scale
of the study area: 50 km?); ALOS PALSAR PolSAR data (abbreviated to ALOS-1 PolSAR
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data hereafter) in Ishinomaki city after the 2011 Tohoku tsunami (resolution: 23.14 m, scale
of the study area: 113 km?); and ALOS-2 PoISAR data in Mashiki town after the 2016
Kumamoto earthquake (resolution: 5.1 m, scale of the study area: 5 kmz). These PolSAR
data were obtained in fully polarimetric mode. Due to the scattering reciprocity of the
monostatic backscattering, we used the information of HH, VV, and HV components of
these PolSAR data in this work. The experimental results show that the proposed method
can well remove non-building areas in post-event PolSAR data, and effectively reduce
the misclassification between obliquely-oriented buildings and collapsed buildings. In
addition, it can simultaneously ameliorate the underestimation of building damage in
particular areas subject to significant damage.

2. Study Areas and Data Sets

In this paper, to adequately analyze the performance of features and evaluate the
applicability of the proposed method, three study sites were chosen for analyses and
experiments. These study sites are Yushu County in China, Ishinomaki City in Japan,
and Mashiki town in the Kumamoto area of Japan. The detailed information of the three
study sites and the parameters of data sets are shown below. Reference maps, which were
produced by interpreting optical images of Google Earth and referencing the report of the
field survey, are also shown below. Due to the resolution of the PoISAR data, it is difficult
to assess damage extent at the single building level. Therefore, these reference maps are at
block or grid levels.

2.1. Yushu County in China

On 14 April 2010, an earthquake with a magnitude of 7.1 struck Yushu County in
Qinghai Province, China. The location of the epicenter was at 33.1 °N and 96.7 °E. The
earthquake caused the deaths of more than 2690 people and a large number of buildings
collapsed. On 21 April 2010, one week after the Yushu earthquake, Radarsat-2 satellites
acquired post-earthquake PolSAR data of Yushu County. The PolSAR data was obtained in
fully polarimetric mode. The coverage of this POISAR data is shown by the red rectangle
in Figure 1a. We chose the urban area of Yushu County as one of our study sites (yellow
rectangle in Figure 1a). The PolSAR data had an azimuth spatial resolution of approxi-
mately 8 m, a range spatial resolution of approximately 12 m, and an angle of incidence
of approximately 21°. To ensure the azimuth and range pixels were of a comparable size,
three-look multi-look processing was first conducted on the PolSAR data. Figure 1b shows
the Pauli RGB image of the Radarsat-2 PoISAR data after multi-look processing.
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¢ { ' ) “,\\{ A 905 _1 2 S iometers Central Longitude: 9720031 E
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Figure 1. The basic information of the Radarsat-2 fully polarimetric synthetic aperture radar (PolSAR)
data in the Yushu study site: (a) Google Earth image, showing the coverage of the PolSAR data
(red rectangle) and the location of Yushu County (yellow rectangle); (b) the Pauli RGB image of the
PolSAR data.
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To provide a reference for verification of the accuracy, a block-level reference map of
building damage in urban area of Yushu County was produced, as shown in Figure 2. This
was interpreted according to the related reference maps [34,35] and the 0.5 m high-resolution
optical image acquired on 6 May 2010. The division of blocks refers to the similarity of the
building damage and the road network information. In the reference map, all blocks were
interpreted as three damage levels: slight damage (less than one-third of buildings collapsed
in this block); serious damage (more than half of the buildings collapsed in this block);
and moderate damage (more than one-third but less than half of the buildings collapsed in
this block).

Slight

Moderate

N Kilometers —1
A] 0-(;?-1:——2—3 - Serious

Figure 2. The block-level reference map of building damage in the Yushu study site.

2.2. Ishinomaki City in Japan

On 11 March 2011, a strong earthquake occurred in the Pacific Ocean in northeastern
Japan and caused a large tsunami. The earthquake and tsunami caused devastating damage
to Iwate, Miyagi, and Fukushima in northeastern Japan. One month after the earthquake,
on 8 April 2011, the ALOS PALSAR sensor acquired PolSAR data of Ishinomaki city,
Miyagi Prefecture, Japan. The PolSAR data was obtained in fully polarimetric mode. The
azimuth and range resolution of the data were 4.45 m and 23.14 m, respectively, and the
incident angle was approximately 23.83°. To ensure the azimuth and range pixel sizes were
comparable, we performed eight-look multi-look processing on the PolSAR data. Figure 3
shows the Pauli RGB image of the PolSAR data after the multi-look processing, and the
main study area, namely, the coastal area of Ishinomaki city, is shown in the red box in
Figure 3.

012 4 6 8 Central Longitude: 97°00'31” E
swmm mm Kilometers Central Latitude: 32°59'46” N

UOYIIP YINUWIZY

Figure 3. The Pauli RGB image of the ALOS-1 PolSAR data in Ishinomaki city.
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For the Ishinomaki study site, we also produced a block-level reference map of build-
ing damage. The urban area was first divided into 59 blocks according to the road network
and the similarity of building damage. Then, based on the ground-truth map interpreted
by Tohoku University and The University of Tokyo (Figure 4) [36], we counted the pixels
of the “washed away” and the “surviving” categories for each block. Thus, the preliminary
block-level reference map was obtained: for one block, if the “washed away” pixels were
less than 30% of the sum of “washed away” and “surviving” pixels, it was interpreted as
slight damage; if the “washed away” pixels were more than 50% of the sum of “washed
away” and “surviving” pixels, it was interpreted as serious damage; others were inter-
preted as moderate damage. Finally, referring to the reference maps of Ishinomaki city
from other papers [4,35], we adjusted the preliminary result to remove mistakes and obtain
the final reference map, as shown in Figure 5.

N o5 1 2 3 4 Surviving
LI |
A Kilometers Flooded arca

Figure 4. The ground-truth map interpreted by Tohoku University and the University of Tokyo [36].
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0051 2 3 4
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Figure 5. The block-level reference map of building damage in the Ishinomaki study site.

2.3. Mashiki Town in the Kumamoto Area of Japan

In April, 2016, a series of earthquakes occurred in Kumamoto, Kyushu Island, Japan.
The foreshock (epicenter was at 32.73 °N and 130.80 °E) occurred on April 14th with a
magnitude of 6.2, and the main shock (epicenter was at 32.75 °N and 130.79 °E) occurred
on April 16th with a magnitude of 7.0. Mashiki town in the Kumamoto area was one of the
areas most seriously affected by intensive ground-shaking, with more than 7000 buildings
damaged [19]. Five days after the main shock, on 21 April 2016, the ALOS-2 satellites
acquired PolSAR data of Mashiki town. The PolSAR data was obtained in fully polarimetric
mode. The nominal azimuth and ground-range resolution of the data were 4.3 m and 5.1 m,
respectively, and the incident angle was approximately 30.8°. Figure 6 shows the Pauli
RGB image of the PolSAR data in Mashiki town.



Remote Sens. 2021, 13, 1146

7 of 36

A 0 0.5 Central Longitude:32°47'30"
B Kilometers  Central Latitude: 130°48'56”

87 RN

Figure 6. The Pauli RGB image of the ALOS-2 PolSAR data in Mashiki town.

After the 2016 Kumamoto earthquake, the Architectural Institute of Japan carried
out a field survey. They investigated the damage situation of buildings and classified
them according to Okada’s damage level [37]. Based on the investigation, they produced a
series of grid-level damage maps with a grid size of 57 m x 57 m. These damage maps
were included in the quick report of the field survey on the building damage by the 2016
Kumamoto earthquake [38], which is from the website of National Institute for Land
Infrastructure Management (NILIM). The Figure 5.2-2 in the quick report [38] shows the
five-grade grid-level collapsed rate (CR) map, where the CR was defined as the number of
completely collapsed buildings relative to the total number of buildings in each grid cell.
This Figure could be used as our reference map theoretically.

However, due to the limitation of the resolution, it is difficult to classify building dam-
age into five grades accurately using space-borne PolSAR data. Therefore, we generated a
three-grade grid-level CR map according to the five-grade CR map in the quick report [38].
Specifically, we merged the first two grades of the five-grade CR map as slight damage
in the three-grade CR map, where CR > 0 and CR < 25%; then, we merged the last two
grades of the five-grade CR map as serious damage in the three-grade CR map, in which
CR > 50%; the third grade in the five-grade CR map was retained as moderate damage
(CR > 25% and CR < 50%) in the three-grade CR map. This three-grade grid-level CR
map was used as our reference map to evaluate the performance of the proposed method
in the Mashiki study site, as shown in Figure 7.
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Figure 7. The three-grade grid-level reference map of building damage in Mashiki town.

3. Methods

The framework of the proposed method of building damage detection is shown in
Figure 8. The proposed method uses a two-step classification strategy to detect build-
ing damage.

(1) Non-building area removal
Post-event PoISAR image

v Pauli n/4 feature , Non-building area
. = Random forest || ——————
‘ Pre-processing RVI feature glassifior
SE, feature Built-up area
| ]
v v
’ OPCE Matching ‘ GLCM texture extraction

Feature 1: MaxC

Feature 2-9: GLCM texture
features

A

Random forest classifier
|

v v

‘ Standing buildings ‘ ‘ Collapsed buildings ‘
l | (2) Collapsed and standing building classification

1
b £

Building damage detection result -

/

Figure 8. Flowchart of the proposed building damage detection method. PolSAR, polarimetric synthetic aperture radar;
OPCE, optimization of polarimetric contrast enhancement; GLCM, gray level co-occurrence matrix; RVI, the radar vegetation
index (RVI); SEI, the intensity component of the Shannon entropy.

The first step is non-building area removal. In this part, a random forest (RF)-based
non-building and built-up area classification method is proposed using three effective
polarization features. After pre-processing, three polarization features are calculated, and
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the RF-based classification is conducted to obtain the binary classification result of non-
building areas and built-up areas. With the mask processing, the built-up areas are retained
for the following step. The details and analyses are outlined in Section 3.1.

The second step is classification of collapsed and standing buildings. In this part,
based on the pre-processed PolSAR data, a new feature—the maximal power contrast
(MaxC) feature—is calculated using the proposed OPCE matching algorithm. In addition,
eight GLCM texture features are calculated. These nine features are input into the RF
classifier, and the pixels located in built-up areas obtained in the first step are classified
into collapsed and standing buildings to obtain the building damage detection result. The
details and analyses are displayed in Section 3.2.

3.1. Non-Building Area Removal

The classification of non-building areas and built-up areas is important for accurately
identifying collapsed buildings because it can effectively reduce the possibility that non-
building areas are misclassified as collapsed buildings. Previous research used entropy
H and the average scattering mechanism «, or surface scattering of the Yamaguchi four-
component decomposition with the rotation [39] to classify non-building areas and built-up
areas [1,29,30]. However, these features are only effective for removing a part of non-
building areas, and some non-building areas, such as mountain vegetation and farmland
areas, cannot be easily distinguished from built-up areas. Therefore, in this section, we
selected more effective classification features and developed a new classification method
for non-building area removal.

3.1.1. The Selection of Classification Features

In our previous work [34], we found that the 71/4 double-bounce scattering component
of the Pauli decomposition (abbreviated as the Pauli 7t/4 feature hereafter) had good ability
to separate non-building areas from built-up areas, as shown in Figure 9. Furthermore,
using only the Pauli 7t/4 feature to classify non-building and built-up areas resulted in
89.63% overall accuracy and 96% detection rates of built-up areas in the Yushu study
site [34]. These results show the potential of the Pauli 71/4 feature for non-building area
removal.

Samples

0 30 60 90 120 150 180

=5

Value of the Paulin/4 feature
|
D
5]
® o0
@
®

® non-building samples = @ building samples

Figure 9. Scatter diagrams of the 71/4 double-bounce scattering component of the Pauli decomposition
for the non-building samples and built-up area samples in the Yushu study site.

However, because this previous work was only conducted in the Yushu study site and
there was almost no vegetation in the PoISAR data of the Yushu study site, the results only
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indicated that the Pauli 1/4 feature had a good ability to distinguish built-up areas from
non-vegetated non-building areas, such as water (river), roads, and bare soil. Whether the
Pauli 7t/4 feature is also suitable for distinguishing built-up areas from vegetation areas
needs more exploration.

Therefore, in this study, another two study sites—Ishinomaki study site after
the 2011 Tohoku earthquake and Mashiki town study site after the 2016 Kumamoto
earthquake— where more abundant non-building types exist, were also introduced.
Based on these new study sites, we further explored the ability of the Pauli 7t/4 feature.

The Pauli 7t/4 feature is one of the components of Pauli decomposition. For PolSAR
data, when applying the Pauli decomposition, the scattering matrix S can be expressed
as [40]:

SHH SH\/} a[l O] b|:1 O} C{O 1} d{O 7]}
S= =— +— +— +—| ,a
{ SVH SVV \/i 0 1 \/E 0 -1 \/E 1 0 \/E ] 0 ( )
where each basis matrix on the right side of the equal sign corresponds to an elementary
scattering mechanism, and 4, b, ¢, d are given by:

g SHH;—SVVI b SHH;SVV, o SHv-ZFSVHI d:]-SHV;SVH. o)

Because the third basis matrix in Equation (1) is associated with diplane scattering
(double- or even-bounce scattering) from corners with a relative orientation of /4, the
complex c in Equation (2) is defined as the /4 double-bounce scattering component of
the Pauli decomposition [40] (the Pauli 7/4 feature). According to Equation (2), it can
be determined that the Pauli 71/4 feature is mainly associated with the cross-polarization
scattering. The power P, of the Pauli 7t/4 feature can be expressed as:

P, = 101g(’cz‘). 3)

In the Ishinomaki and Mashiki town study sites, the non-building areas mainly
included water, roads, bare soil, mountain vegetation, and farmland. To further analyze
the ability of the Pauli t/4 feature, we chose samples for built-up areas and each kind
of non-building area in the two study sites, and drew the probability density function
(pdf) of these samples in the Pauli 7t/4 feature. These samples were selected by visually
interpreting the Google Earth images, as shown in Figure 10. The pdfs in the two study sites
are shown in Figure 11 (note that ‘built-up area” samples include both standing building
and collapsed building samples).

(b)

Figure 10. Built-up area samples (red) and non-building area samples (water samples—blue,

road samples—purple, bare soil samples—brown, mountain vegetation samples—green, farmland
samples—orange) in different study sites: (a) Ishinomaki study site; (b) Mashiki town study site.
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Figure 11. The probability density function (pdf) of the Pauli 71/4 feature of six kinds of samples in different study sites:
(a) Ishinomaki study site; (b) Mashiki town study site.

In Figure 11, the greater the overlap of the pdfs, the more difficult it is to classify
these kinds of objects using current features, and vice versa [41]. The pdfs of water, road,
and bare soil samples are clearly separated from the pdf of built-up area samples, which
again proves that the Pauli /4 feature has a good ability to separate built-up areas from
non-vegetated non-buildings areas. However, there is some overlap between the pdf of
farmland samples and that of built-up area samples. In addition, the pdf of mountain
vegetation samples almost completely overlaps with the pdf of built-up area samples.
These indicate that the Pauli 7t/4 feature has a limitation in distinguishing built-up areas
from vegetated non-building areas.

Therefore, to develop a non-building removal method with good performance in
both low vegetation and abundant vegetation areas, adding features that are sensitive to
vegetation areas is necessary.

The radar vegetation index (RVI) is sensitive to vegetation areas, and has been used
for the recognition of vegetation in numerous studies. In this study, we introduced the RVI
to help address the problem outlined above. The RVI is a polarization parameter that can
measure the randomness of scattering and can reflect the health of vegetation. It can be

expressed as [42]:
473 4

————  0<RVIL -, 4

AM+Ar+ Aj - -3 @

where A;, i =1, 2, 3 are the eigenvalues of the Cloude—Pottier decomposition [43].

The pdfs of mountain vegetation, farmland, and built-up area samples in the RVI are
shown in Figure 12. It could be seen that with the RVI feature the mountain vegetation
and built-up areas can be effectively separated. However, the pdf of farmland samples still
severely overlaps with the pdf of built-up areas samples. Therefore, the introduction of
the RVI can well solve the problem of misclassification between mountain vegetation and
built-up areas, but cannot provide effective help for distinguishing farmland areas from

built-up areas.

RVI =
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(Ishinomaki study site)

Probability Dencity Function of the RVI feature
(Mashiki town study site)
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Figure 12. The pdf of the radar vegetation index (RVI) of mountain vegetation, farmland, and built-up area samples in
different study sites: (a) Ishinomaki study site; (b) Mashiki town study site.
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To further address the problem of the removal of farmland areas, we introduced the
intensity component of the Shannon entropy (SEj) feature. Shannon entropy (SE) was
introduced by Morio et al. [44,45] as a sum of two contributions, SE; and SEp. SE; is the
intensity contribution that depends on the total backscattered power, and is given by [40]:

SE; = 310g(7@:)’®>, ®)

where T3 is the coherency matrix, and Tr(+) is the trace operator of the matrix.

We drew the pdfs of the SE; of the farmland and built-up area samples in both
Ishinomaki and Mashiki town study sites, as shown in Figure 13. Regarding the SE| feature,
it can be noted that the pdf of farmland samples is separate from the pdf of built-up area
samples, which indicates that the SE; can be well used to separate farmland areas from
built-up areas.

Probability Dencity Function of the SE, feature
(Ishinomaki study site)

Probability Dencity Function of the SE, feature
(Mashiki town study site)

The Value of SE, feature

(a)

Farmland
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Figure 13. The pdf of the intensity component of the Shannon entropy (SEj) of farmland and built-up area samples in

different study sites: (a) Ishinomaki study site; (b) Mashiki town study site.
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(a)

Figure 14. Optical images (data source: Google earth) of: (a) collapsed buildings; (b) orthogonally-oriented buildings; (c)

3.1.2. Non-Building Area Removal Procedure

According to the above analysis, it can be noted that the Pauli 71/4 feature, RVI feature,
and SEj feature are sensitive to different types of non-building areas. If these features can
be used together in a suitable way, most kinds of non-building areas could be accurately
removed. In this study, we used the RF classifier to combine these three features and
perform the classification of non-building areas and built-up areas. RF is a supervised
ensemble learning classification algorithm that is constructed from a series of decision trees
that are generated based on random subsamples of training data and random subsets of
input features [46]. RF is highly robust and can effectively suppress overfitting caused by
noise and erroneous samples [47]. In this study, using the RF classifier, non-building area
removal can be conducted with the following three steps.

First, pre-processing is applied to the original post-event PolSAR data and the Pauli
71/4 feature, the RVI feature, and the SE; feature are calculated.

Then, the Pauli 7t/4 feature, the RVI feature, and the SEj feature are input into the RF
classifier and the pixels in each study site are classified into six classes, namely, water, roads,
bare soil, mountain vegetation, farmlands, and built-up areas with the training samples.

Based on the RF classification results, a class-merging process is then implemented
to obtain a binary classification result of non-building and built-up areas. Specifically,
the classes of water, roads, bare soil, mountain vegetation, and farmlands are merged
into the category of non-building area, and built-up areas are regarded as the category of
built-up area. Next, using mask processing, the category of non-building area in the binary
classification result is removed, and the category of built-up area is retained. The retained
built-up area is then used in the following step.

3.2. Collapsed and Standing Building Classification

After removing the non-building areas, the most important task in building damage
detection is the classification of collapsed and standing buildings. Due to the limitations
of the resolution of space-borne PolSAR data, in this study, a collapsed building refers
to those buildings whose structure is completely damaged or missing after a disaster, as
shown in Figure 14a. A standing building refers to buildings that retain their structure
and remain standing after a disaster. Furthermore, standing buildings can be divided into
orthogonally-oriented standing buildings (orthogonally-oriented building) and obliquely-
oriented standing buildings (obliquely-oriented building) according to the arrangement
of the building. The former refers to buildings whose structure remains standing after a
disaster and whose orientation is approximately parallel to or perpendicular to the satellite
flight path, as shown in Figure 14b; and the latter refers to the buildings whose structure
remains standing after a disaster but whose orientation is at an angle to the satellite flight
path, as shown in Figure 14c.

Satellite flight path

(b) (c)

obliquely-oriented buildings.

For the classification of collapsed and standing buildings, two problems influence the
accuracy. The first is the misclassification between obliquely-oriented buildings and col-
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lapsed buildings. In previous research, features such as the circular polarization correlation
coefficient (p), double-bounce scattering component of the Yamaguchi four-component
decomposition with the rotation [39] (P;), and the total power (Span), were proven to
have the ability of distinguishing standing buildings from collapsed buildings. However,
these features can usually only distinguish orthogonally-oriented buildings from collapsed
buildings. For the classification of obliquely-oriented buildings and collapsed buildings,
they do not perform well. To illustrate this, we took Yushu study site as an example
and drew the pdfs of orthogonally-oriented building, obliquely-oriented building, and
collapsed building samples in these features. The samples used for drawing the pdfs are
shown in Figure 20a. The pdfs are shown in Figures 15-17. It can be seen that the pdfs of
orthogonally-oriented building samples are separated from the pdfs of collapsed building
samples in these features, whereas the pdfs of obliquely-oriented building samples overlap
with the pdfs of collapsed building samples. To address this problem, it is necessary to
construct a new feature that can not only effectively distinguish orthogonally-oriented
buildings from collapsed buildings, but also between obliquely-oriented buildings and
collapsed buildings. Therefore, we developed the OPCE matching algorithm and gener-
ated a new polarization feature, called the MaxC feature, which can effectively distinguish
collapsed buildings from both obliquely-oriented and orthogonally-oriented buildings.
Details are provided in Section 3.2.1.
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Figure 15. The pdfs of the circular polarization correlation coefficient (p) feature: (a) pdfs of collapsed buildings and
orthogonally-oriented buildings; (b) pdfs of collapsed buildings and obliquely-oriented buildings.
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Figure 16. The pdfs of the double-bounce scattering component of the Yamaguchi decomposition (P;) feature: (a) pdfs of
collapsed buildings and orthogonally-oriented buildings; (b) pdfs of collapsed buildings and obliquely-oriented buildings.
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Figure 17. The pdfs of the total power (Span) feature: (a) pdfs of collapsed buildings and orthogonally-oriented buildings;
(b) pdfs of collapsed buildings and obliquely-oriented buildings.

The second problem for the classification of collapsed and standing buildings
is the misclassification of collapsed buildings in “special” seriously damaged areas.
These special seriously damaged areas usually contain a few typical orthogonally-
oriented buildings whose structure is retained after the disaster and arrangement
direction is almost completely parallel to or perpendicular to the satellite flight path,
as shown by the red circles in Figure 18. These typical orthogonally-oriented buildings
usually have a strong double-bounce scattering characteristic and affect the scalttering
characteristic of the surrounding pixels, in turn affecting the surrounding collapsed
buildings and causing them to be easily identified as standing buildings. To address
this problem, we introduced texture features to add information regarding the spatial
distribution to the classification. To combine the polarization and texture features, the
RF classification algorithm was used, and a multi-feature-based classification method
was developed. The details are provided in Section 3.2.2.

Satellite flight path

Figure 18. The optical images (data source: Google earth) of the special seriously damaged areas
with a few typical orthogonally-oriented buildings (red circles).

3.2.1. The OPCE Matching Algorithm and the Feature MaxC

For target detection using PolSAR images, OPCE is an effective method to discriminate
the desired target from the background using the power image [48]. The traditional OPCE
algorithm aims to choose the optimal polarization states to enhance the power ratio between
the desired target and the background clutter [49-53].



Remote Sens. 2021, 13, 1146

16 of 36

Let Pryyger and Pcyyper denote the received power of the desired target samples and
the background clutter samples, respectively, Kyrger and Kcyytrer denote the Kennaugh
matrix of the desired target samples and the background clutter samples, respectively, and
¢ =1[1g192¢3]" and i = [1 hy hy h3]" indicate the Stokes vectors of the transmitting and
receiving polarization states, respectively, of the radar antennas; then, the traditional OPCE
algorithm can be expressed as:

.. Prarget . .. hT [KTarget}g . g% + g% + g% =1
Maxumze( Clutter) maximize ( TUTET, ,subject to h% " h% n h% - (6)
where T denotes the matrix transpose [53,54].

Using the traditional OPCE algorithm, we can obtain a pair of optimal polarization
states, g, and hy,. Theoretically, by applying g, and h;, to each pixel in the PoISAR image,
the power of the target is enhanced, and the power of the background is weakened. The
traditional OPCE algorithm has good performance in ship detection research [55]; however,
in the classification of collapsed and standing buildings, the traditional OPCE algorithm
does not perform well, as our previous work shows [56]. We think the main reason for
this is that the environment of urban areas is more complicated than that of the sea. In
urban areas, standing buildings that are regarded as background clutter in the task of
collapsed building detection usually have different shapes and arrangement directions,
which results in different scattering characteristics. Therefore, it is difficult to identify a pair
of the optimal polarization states g;;, and h,, that are suitable for all pixels in urban areas.

To solve this problem, we imported the idea of template matching to the traditional
OPCE algorithm and proposed the OPCE matching algorithm. In the OPCE matching
algorithm, the desired target samples are first selected as the target template. Then, the
maximal power contrast between each pixel and the target template is calculated using
the traditional OPCE algorithm. In this way, each pixel obtains a new feature value, which
indicates the maximum of the contrast between this pixel’s power and the target template’s
power. In this study, we set collapsed buildings as the desired target sample. Algorithm 1
summarizes the OPCE matching algorithm.

Algorithm 1 OPCE matching algorithm

Input:
PolSAR image L and target sample set CB
Output:
Feature MaxC
1: Kcp <+ GetAvarageKennaughMatrix(CB)
2: for i < 0 to M do
3 for j <~ 0 to N do
4 Ky(ij ¢ GetKennaughMatrix(x(i,j))
5: MaxCx_CB(i,j) < OPCE Kx(i,j)/ KfCB
6 MﬁXCCB_x(i,j) +— OPCE @, Kx(i,j)
7 MaxC(i,j) <+ GetMax(MaxCy;(i,), MaxCcp (i,f))
8: end for
9: end for
10: return MaxC

In Algorithm 1, CB denotes the sample set of the collapsed buildings, and Kcp denote
the average Kennaugh matrix of the sample set CB. For a given PolSAR image L, M denotes
the rows of the image, N denotes the columns of the image, i indicates the row number,
j indicates the column number, x(i, j) represents an arbitrary pixel, K, ; ; corresponds to
the Kennaugh matrix of x(i, j). MaxC, cp denotes the maximal power contrast between
pixel x(i,j) and the target template, as shown in Equation (7), and MaxCcp_, denotes
the maximal power contrast between the target template and pixel x(i, j), as shown in
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Equation (8). MaxC represents the final maximal power contrast which is also the output
result of the OPCE matching algorithm.

T [K,
MaxCy cp(i,j) = maximize([x("’)]g>,

1T [Kep |3 7
subiject to g% + g% N gé . §
j Wby +hy=1"
o
MaxCcp (i,j) = maximize(M)’
x(i,j
8)

S+ +g=1

subject to B =1

The schematic diagram of the OPCE matching algorithm is shown in Figure 19.
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Figure 19. The schematic diagram of the OPCE matching algorithm.

By implementing the OPCE matching algorithm, we can obtain a new feature image,
i.e., the MaxC feature image. Theoretically, in this image, pixels belonging to the collapsed
building category have a lower value of MaxC than pixels belonging to the orthogonally-
oriented or obliquely-oriented standing building categories because similar objects usually
have a smaller contrast.

We implemented the OPCE matching algorithm in Yushu, Ishinomaki, and Mashiki
town study sites. For each study site, only a few collapsed building samples are re-
quired to implement the OPCE matching algorithm, as shown by the yellow rectangles
in Figure 20a,c,e. The results of the MaxC features i