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Abstract: Estimation of the number and geo-location of oil wells is important for policy holders
considering their impact on energy resource planning. With the recent development in optical remote
sensing, it is possible to identify oil wells from satellite images. Moreover, the recent advancement in
deep learning frameworks for object detection in remote sensing makes it possible to automatically
detect oil wells from remote sensing images. In this paper, we collected a dataset named Northeast
Petroleum University–Oil Well Object Detection Version 1.0 (NEPU–OWOD V1.0) based on high-
resolution remote sensing images from Google Earth Imagery. Our database includes 1192 oil wells
in 432 images from Daqing City, which has the largest oilfield in China. In this study, we compared
nine different state-of-the-art deep learning models based on algorithms for object detection from
optical remote sensing images. Experimental results show that the state-of-the-art deep learning
models achieve high precision on our collected dataset, which demonstrate the great potential for oil
well detection in remote sensing.

Keywords: oil well detection; satellite imagery; oil well dataset; optical remote sensing; deep learning

1. Introduction
1.1. Background

Oil remains one of the largest energy sources globally despite the fact that renewable
energy will be the fastest growing energy, according to BP’s 2019 Energy Outlook [1].
Petroleum production can affect soil and water (e.g., oil spills), which presents potential
risks to the environment and public health. The monitoring of the number and geological
distribution of oil wells, the status of oil exploitation, and an established energy early
warning mechanism are essential, especially to the policy makers in energy resource
management. Therefore, it is crucial to build an automatic oil well detection capability in
order to address the challenges in oil well resources planning and environment monitoring.
Traditional methods for oil well detection includes mainly relying on an on-site survey.
Collecting geo-information by conducting surveys of oil wells is impractical and time
consuming especially for large scale monitoring. Optical remote sensing techniques can
periodically monitor oil wells by obtaining both spatial and temporal information, which
show advantages of unrestricted national boundaries and objectivity of observation.

Oil is generally extracted from underground reservoirs based on drilling and pumping
approaches. As underground infrastructure of oil wells are not seen, we use the above-
ground infrastructure of oil well pump jacks (Figure 1) to detect the oil wells. Pump jacks
are small targets in remote sensing, they are generally 6–12 m long, 2–5 m wide, and
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5–12 m high, which may slightly vary depending on the model of the pump jack. In a
0.5 m resolution satellite image, a pump jack only has dozens of pixels with a small amount
of target information. As can be seen in Figure 1, the land background of oil well pump
jacks varies significantly including wetlands, forests, deserts, etc. Moreover, due to the
distinctions in the pump jack installation, even the pump jacks of the same model show
completely different shape in the images. Furthermore, the surrounding trees and other
types of machinery will increase the difficulty in the detection of oil wells.

Figure 1. Sample images of oil well pump jacks onsite images.

In recent years, the development of remote sensing technologies and the rapid im-
provement in deep learning-based object detection methods make it possible to monitor
oil wells from optical remote sensing images. Remote sensing techniques have the ad-
vantages of short-term, non-contact, and wide area coverage, repetitive monitoring in
earth observation, and are also able to monitor the objects objectively and periodically [2].
Object detection from optical remote sensing images determines objects of interests includ-
ing vehicles, buildings, airplanes, ships, etc. It also plays a major role in a wide range
of applications in environment monitoring and urban planning [3]. The aboveground
infrastructure of oil wells shown in Figure 2 have sharp boundaries, which make oil wells
independent from background environments; therefore, it is possible to detect oil wells
from optical remote sensing images. In addition, the well site and the surrounding facilities
of the oil wells, and the road connecting to the well site enable the oil well detection from
multiple scales.

Satellite-based remote sensing images are taken from a high-altitude angle of view.
There are several challenges in oil well detection. The oil wells are small targets in the
remote sensing images (see Figure 3). They are often in the complex backgrounds and dif-
ferent in observation angles, which lead to the uncertainties in remote sensing monitoring
and identification. Those challenges in oil well detection from remote sensing images are
shown in Figure 3.
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Figure 2. Sample images of oil well pump jacks from optical remote sensing images (red rectangle
boxes show the location of the oil well pump jacks).

Figure 3. The challenges in the detection of oil wells from remote sensing images. (a) Oil wells angle differences in remote
sensing images. (b) Oil wells background differences in remote sensing images.

1.2. Related Work
1.2.1. Oil-Related Monitoring Using Remote Sensing Techniques

Most of the current relevant studies in the areas of oil-related monitoring are focused
on oil spill detection, offshore drilling platforms, and oil tank detection. Oil spill monitoring
has been an important topic in the past few decades as it is related to environmental
monitoring or disaster monitoring [4–6]. For oil spill area detection, a variety of techniques
have been used including visible light [7], infrared [8], near-infrared [9], ultraviolet [4],
hyperspectral [10], image analysis [11], and satellite radar [12]. In recent years, there
has been a significant increase in the research for monitoring of offshore oil resources.
Liu et al. [13] used the contextual features extracted from the Defense Meteorological
Program/Operational Line-Scan System (DMSP/OLS) night light data. Good recognition
results had been achieved on extracting the spatial position information of the South China
Sea oil and gas drilling platform by using the time series Landsat-8 Operational Land
Imager (OLI) image and layered screening strategy. In recent years, most of the research
interests are among the area of remote monitoring of the existing oil tank detection [14]
from satellite images. In [15], a traditional machine learning algorithm with the Speeded
up Robust Features (SURF) technique and Support Vector Machine (SVM) classifier has
been used for oil tank detection. More recently, deep learning-based solutions have been
applied in the detection of oil tanks to address the high computational complexity of remote
sensing images [16]. In the detection of circular oil storage tanks, a circular support model
was established based on the radiological symmetry characteristics of the object, which
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was verified by GeoEye-1 high-score images [17]. Zhang et al. [18] proposed a recognition
algorithm based on deep environment features by using the convolutional neural network
(CNN) model and SVM classifier to recognize oil tanks from complex backgrounds and
achieved high recognition performance.

Some researchers [19] have used high-resolution satellite images and the Faster regional
convolutional neural network (R-CNN) deep learning network (Zhang, Liu et al., 2018) to
identify oil facilities and achieved good results. The facilities in well site represents the
distribution of oil wells in a certain sense, but the well site can be water injection wells or
multiple oil well deployments, which does not represent the true distribution of oil wells.
To the best of our knowledge, currently there is no research about the oil well identification
based on satellite remote sensing images.

1.2.2. Smart Oilfield

Digital oilfield [20] platform automates the workflow and monitoring the operations
in order to reduce the cost and risks. Smart oilfield [21] is a new trend in the oilfield
development based on the improvement in the previous digital oilfield. In the last few
decades, with the ever-increasing big data, internet of things (IoT), and artificial intelligence
(AI), the development of smart oil field has been further enhanced. Different sensors
including pressure, density, and temperature sensor have been proposed and deployed
to improve the safe and efficient oil pump extraction [22]. Some studies have focused on
the exploration and identification of oil wells based on dynamometer card. For example,
the electrical parameters from dynamometer card was used for recognition of the working
condition of oil wells [23]. Sun et al., used CNN to construct the recognition model of oil
well function diagram [24]. The recent remote sensing technologies can be used to remotely
monitor the oil wells/oil equipment periodically, which can potentially provide additional
data in the area of the smart oilfield.

1.2.3. Deep Learning in Remote Sensing

Recently, with the advancement in the area of optical remote sensing and deep learning
algorithms, researchers have been working on detection of various ground targets including
the detection of buildings [25,26], ships [27–29], airplanes [30,31]. Monitoring oil wells
from remote sensing images becomes possible with the advancement of the object detection
algorithms based on deep learning frameworks. The hand crafted features were used
in traditional machine learning based object detection methods, which are difficult to
be applied in massive data scenarios. More recently, a deep learning-based method has
replaced the traditional machine learning method by utilizing (more) higher level and
deeper features. Training of the deep learning models requires large scales of the dataset,
and there are different datasets available for ships, flights and buildings [32–34]. In terms of
applications related to oil, the detection of oil spills [35–37] and oil storage tanks [16] from
remote sensing images based on deep learning frameworks received significant attention
in recent years. In terms of oil well monitoring, very limited research has been done.
Our previous work [38] detected the oil wells from remote sensing images using a Faster
regional convolutional neural network (R-CNN) based model, but only a two-stage method
has been used.

The use of deep learning based detection methods in remote sensing requires large
scale dataset of labeled optical remote sensing images. For example, ImageNet [39], Com-
mon Objects in Context (COCO) [40], and pattern analysis, statistical modelling and
computational learning (PASCAL) Visual Object Classes (VOC) [41] are widely used pub-
licly available datasets, but none of these datasets provides images for oil wells. To the best
of our knowledge, there are no available open oil well satellite image datasets. Therefore,
in this work, we construct an oil well dataset from Google Earth Images, which aims to
explore the feasibility of automatically detecting and dynamic monitoring of oil wells from
remote sensing images. The dataset contains 1192 oil wells in 432 images, which vary in
orientation and background. Moreover, we apply different state-of-the-art deep learning



Remote Sens. 2021, 13, 1132 5 of 21

frameworks on our dataset to explore the best performance model. Our dataset will be
publicly available online [42].

The remaining part of this paper is organized as follows. Section 2 introduces the con-
struction of the dataset. Section 3 describes the state-of-the-art deep learning frameworks,
which are used in this work. Section 4 describes the experimental results of applying
the state-of-the-art models on our dataset and presents the accuracy of different models.
Results are discussed in Section 5, and the conclusion is presented in Section 6.

2. Oil Well Dataset
2.1. Images Collection and Pre-Processing

We constructed a dataset named Northeast Petroleum University–Oil Well Object
Detection V1.0 (NEPU-OWOD V1.0) of oil wells that contains the geographical coordinates
and labels for each of the oil wells. Our selected research region for this work is in Daqing,
China. Daqing is located in North China and is known as “Oil Capital of China”. Our
dataset covers an area of 369 square kilometers as seen in Figure 4. The sample images in
our dataset are 768 × 768 pixels, 768 × 1024 pixels and 1024 × 1024 pixels. Our dataset
contains 432 images which contain 1192 oil wells from Google Earth Images with a very
high resolution of 0.41 m per pixel. Figure 5 shows the distribution of the number of oil
wells per image. It is noted that in most of the images, there are only 1 or 2 oil wells. In
order to increase the diversity of the dataset, we included the images with the different
backgrounds and various orientations of the oil wells (see Figure 6).

Figure 4. Map shows the image coverage of Northeast Petroleum University–Oil Well Object Detec-
tion V1.0 (NEPU–OWOD) V1.0 dataset.
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Figure 5. Distribution of the number of oil wells per image of NEPU–OWOD V1.0 dataset.

Figure 6. Sample images from NEPU–OWOD V1.0 dataset.
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2.2. Images Annotation/Labeling

The images annotation has been done by local experts and researchers using an open-
source annotation tool—RSLabel [43]. Each labeled oil well is saved to an XML file, which
includes the geo-location coordinates of the oil wells, images sizes, and bonding boxes
sizes, as shown in Figure 7.

Figure 7. Oil wells annotation details.

3. Methods

State-of-the-art methods/algorithms: in order to evaluate our dataset, we chosen sev-
eral state-of-the-art deep learning-based frameworks/models for comparison (see Table 1).
In general, the object detection algorithms are divided into two categories, including
two-stage method and one-stage method.

Table 1. State-of-the-art deep learning models used in this work.

Model Backbone

Faster R-CNN

ResNet-50-FPN
ResNet-50-C4

ResNet-50-DC5
ResNet-101-FPN
ResNet-101-C4

ResNet-101-DC5
SSD VGG16

YOLOv3 Darknet-53
RetinaNet ResNet-50-FPN

3.1. Two-Stage Method

In the area of object detection based on deep learning neural networks, the convo-
lutional neural network (CNN) lays the foundation. The first important approach in the
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two-stage method is regional convolutional neural network (R-CNN) [44], which initially
extracts region proposal and computes features for each proposal based on CNN and then
classifies each region. A number of improved approaches have been proposed based on
R-CNN which include Fast R-CNN [45] and Faster R-CNN [46]. In this work, we mainly
use Faster R-CNN based frameworks which firstly generate several regions of interests by
using a Region Proposal Network and then send the proposed regions for object classifica-
tion and bounding-box regression [47]. It is believed that the two-stage method can achieve
higher accuracy rates but are typically slower compared with the one-stage method [48].

3.1.1. Faster R-CNN

In recent years, region proposal methods have been used in most of the object detection
applications from the remote sensing images. Based on the first region-based convolutional
neural networks (R-CNN) [44], new methods, including Fast R-CNN [45], and Faster
R-CNN [46] have been proposed to improve the effectiveness and computation efficiency.
As Faster R-CNN is better and faster, we only select Faster R-CNN for the second stage
model and it has been used with different backbones (see Table 1). In this work, we used
six different backbones for Faster R-CNN. Region Proposal Network (RPN) was proposed
by Ren et al. [46] and it has been used in enormous application areas in object detection.
For the objects from an input image, RPN is used to generate region proposals and an
objectness score for each of the generated proposals. RPN consists of a classifier, which
is used to determine the region proposal probability, and a regressor, which is used to
regresses the proposal coordinates.

As shown in Figure 8, the deep convolutional networks extract the feature map from
the input image, and Faster R-CNN uses convolutional network RPN to generate the
region proposals. Then a Region of Interest (ROI) pooling layer is used to converting all
the proposals to a fixed shape which is required by the final fully connected layer. ROI
takes two inputs, from RPN and feature map, respectively, and flattens and passes them to
two fully connected layers. Finally, two fully connected layers are applied to generate a
prediction of the target and the best bounding box proposal.

Figure 8. Faster R-CNN framework.

3.1.2. Backbone Network

Backbone network works as a very important component in CNN based object detec-
tion frameworks [49]. In our evaluation, different existing backbone networks e.g., Residual
Networks (ResNet) [50], Feature pyramid network (FPN) [51] with ResNet-50 and ResNet-
101 have been utilized for feature extraction. In this work, for Faster R-CNN model we
selected different combination of backbones including ResNet-50-FPN, ResNet-50-C4,
ResNet-50-DC5, ResNet101-FPN, ResNet-101-C4, and ResNet-101-DC5. The evaluation of
the performance of Faster R-CNN model with different backbone of oil well detections are
presented in Section 4.

3.2. One-Stage Method

One-stage method (or single-stage method) is proposed in recent years to address
the challenges in real-time object detection and it predicts straight from image pixels to
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bounding boxes and class probabilities utilizing only a single deep neural network. The
most commonly used one-stage method includes You Only Look Once (YOLO) [52], Single
Shot MultiBox Detector (SSD) [53], and RetinaNet [54]. These models usually run much
faster compared with the two-stage method.

3.2.1. YOLO

YOLO is the first one-stage method based on convolutional neural network proposed
by Redmon et al. [52]. It utilizes a unified architecture and predicts the bounding boxes
location and target classification at the same time as a single regression problem by directly
extracting the features from input images. Compared with the two-stage method, YOLO
is faster. Different versions of YOLO have been proposed, e.g., YOLOv2 and YOLOv3, to
improve the detection accuracy and shorten the running time. YOLOv2 [55] is the second
version of YOLO and improves YOLO detection performance by incorporating a verity of
techniques including batch normalization, high resolution classifier, convolutional with
anchor boxes, dimension clusters, direct location predication, fine-grained features, and
multi-scale training. YOLOv3 [56] is the third version of YOLO and has made further
improvements on YOLO by utilizing a multi-label approach, which better models the data
for complex dataset with overlapping labels. Moreover, three different scales were used in
YOLOv3 for predicting bounding boxes based on the extracted feature maps and finally
the last convolutional layers output three-dimensional (3D) tensor encoding bounding
box, objectness, and class prediction. In this work, we used the YOLOv3 framework and
the Darknet-53 as the backbone because Darknet-53 is better in detection accuracy and
faster than ResNet, according to Redmon and Farhadi’s work [56]. The output predictions
have been made at different scales. As in Figure 9, the YOLOv3 employs Darknet-53 as
the backbone and then uses Darknet_conv2D_BN_Leaky (DBL) structures. As the basic
element of YOLOv3, DBL structure is short for Darknet_conv2D_BN_Leaky which consists
of a convolution layer, a batch normalization layer and a leaky ReLU layer [57]. Three
different scale feature maps are used in the prediction stage.

Figure 9. You Only Look Once (YOLO) v3 framework (with Darknet-53 backbone).

3.2.2. SSD

SSD [53] is another one stage method that has been proposed in 2016 and it is a
single-shot detector for multiple categories. It combines a feature extract and detection step
based on a feed-forward convolutional network with a non-maximum suppression (NMS).
Comparing with the two stage method, SSD removes the generation of the proposal region
and incorporates the computation of features in just one stage. Compared with YOLO, SSD
model adds several feature layers to the end of a base network [53]. As shown in Figure 10
below, SSD uses VGG16 to extract the feature map through using a Conv4_3 layer and a
Pool5 layer. Eight more feature layers have been added after the base network (VGG16)
in order to multi-scale feature maps for the detection. The use of multi-scale feature map
significantly improves the detection accuracy.
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Figure 10. SSD framework.

3.2.3. RetinaNet

RetinaNet [54] is believed one of the best one-stage methods. It utilizes focal loss for
the loss function, which addresses the class imbalance challenges among the one-stage
method. The method chosen in this work uses ResNet-50-FPN backbone network as
shown in Figure 11. In this framework, ResNet-50 is used to extract deep features. FPN is
employed on top of the ResNet backbone to construct rich multi-scale feature pyramid from
the input image. The probability of object presence at each spatial position and regresses
the offset for bounding boxes are predicted by a classification and box regression subnet
which is comprised of a fully convolutional network (FCN) attached to FPN.

Figure 11. RetinaNet framework.

4. Experimental Results
4.1. Training Details

In this work, we used our constructed dataset NEPU–OWOD V1.0, which contains
1192 oil wells from Google Earth Images with a very high resolution of 0.41 m per pixel.
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The size of images in our dataset varies from 768 × 768 pixels, 768 × 1024 pixels and
1024 × 1024 pixels. The training dataset included 345 images with 968 oil wells, which
are randomly selected and the remaining is test dataset which included 87 images with
224 oil wells. All of the experiments were carried out on a server with Intel i9-9900KF CPU
(3.60 GHz) and a NVIDIA GeForce RTX 2080Ti GPU (11264M).

Training Loss

The training loss changes are present in Figures 12 and 13 for both two-stage methods
and one-stage method, respectively. As shown in Figure 12, Faster R-CNN ResNet-101-
DC5 (Figure 12d) is more robust with a faster convergence compared with other two-stage
frameworks with different backbones used in this work. For one-stage model training loss
(Figure 13), RetinaNet converges more quickly and has more robust training loss compared
with YOLOv3 and SSD.

Figure 12. Cont.
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Figure 12. Training loss for two-stage method models.

Figure 13. Training loss for one-stage method models.
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4.2. Evaluation Metrics

In this work, we mainly used several metrics, including precision, recall, F1 score,
average precision (AP), and receiver operating characteristic (ROC) curve to evaluate
different models proposed in Section 3.

4.2.1. Intersection over Union (IoU)

IoU, also known as Jaccard index, is one of the most commonly used evaluation
metrics of object detection. IoU is computed as the Equation (1) below, it compares the
similarities between the prediction and ground truth area.

IoU =
|A ∩ B|
|A ∪ B| =

|I|
|U| , (1)

where A and B are the prediction and ground truth bounding boxes, respectively. I is
intersection Area and U is Union Area.

4.2.2. Precision, Recall, and F1 Score

Typically, we need to set a threshold of IoU to obtain the true positive (TP). When IoU > 0.5,
the result is considered as TP.

Precision =
TP

TP + FP
, (2)

Recall =
TP

TP + FN
, (3)

F1 =
2

1
Precision + 1

Recall

= 2 ∗ Precision ∗ Recall
Precision + Recall

, (4)

where TP is true positive, FP is false positive, and FN is false negative.

4.2.3. AP

AP combines recall and precision by computing the average precision over the recall
and is defined as the area under the precision–recall curve as in Equation (5) below [58]. In
object detection, the performance is usually evaluated by computing AP under different
IoU thresholds [49]. AP50 and AP75, referring to the IoU threshold at 50% and 75%, are
used, respectively. A higher AP value indicates a better performance.

AP =
∫ 1

0
p(r)dr , (5)

4.2.4. McNemar’s Test

In order to evaluate if different state-of-art-models are significantly different from each
other, McNemar’s test [59] is used. Equation (6) below shows the calculation of McNemar’s
test statistic. The p-value threshold of 0.05 is used and the p-value lower than this threshold
will indicate a significant difference between the two models.

χ2 =
(b− c)2

b + c
, (6)

where b is total number of test instances that the first model gets correct, but the second
model gets incorrect, and c is total number of test instances that the first model gets
incorrect, but the second model gets correct.

4.2.5. ROC Curve

ROC curve displays the sensitivity (TPR) on y-axis and (1-specitivity) (FPR) on x-axis
graphically for varying cut-off points of the test values [60]. The area under the curve
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(AUC) is an important and effective measure for the performance of a model. A good
model has an AUC close to 1, while a poor model has an AUC close to 0. Figure 14 shows
the ROC curves for all nine state-of-the-art models used in this study. RetinaNet has the
highest AUC (0.86) among all nine state-of-the-art models.

Figure 14. Receiver operating characteristics (ROC) curve for all the models.

4.3. Experimental Results for State-of-Art Algorithms
4.3.1. Comparisons of Oil Well Detection Accuracy of Different State-of-the-Art Models

We compared nine different deep learning models for oil well detection. The com-
parison results are summarized in Tables 2 and 3. The precision, recall and F1 score are
presented for all of the deep learning models at IoU = 0.5 in Table 2. The results show
that SSD model achieves the best precision with the shortest training time and lowest
memory cost. Faster R-CNN with R101-DC5 backbone has the best performance in recall
and F1-score. Faster R-CNN and RetinaNet models have relative high recall and F1-score.
In Table 3, different AP have been calculated based different deep learning models. Reti-
naNet model has the best AP and AP50 compared with all the other models and Faster
R-CNN with R50-FPN backbone has the best AP75. Figure 15 shows the samples of the
detection results.

Table 2. Oil well detection evaluation metrics (Precision, Recall, and F1 score) (Intersection over
Union (IoU) = 0.5). The bold font indicates the best performance.

Model Backbone Precision Recall F1 Score Training
Time (Min)

Memory Cost
(M)

Faster_R-
CNN

R50-FPN 0.684 0.919 0.784 102 2131
R50-C4 0.742 0.875 0.803 319 4379

R50-DC5 0.738 0.897 0.810 171 5688
R101-FPN 0.724 0.879 0.794 142 5200
R101-C4 0.734 0.924 0.818 354 5211

R101-DC5 0.764 0.928 0.838 196 7130
SSD Darknet-53 0.807 0.674 0.734 33 1803

YOLOv3 VGG16 0.166 0.267 0.205 92 5107
RetinaNet R50-FPN 0.645 0.892 0.749 147 6768
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Table 3. Oil well detection average precision (AP) of nine state-of-art algorithms. The bold font
indicates the best performance.

Model Backbone AP AP50 AP75
Training

Time (min)
Memory Cost

(M)

Faster_R-
CNN

R50-FPN 52.941 89.547 56.974 102 2131
R50-C4 48.768 85.785 51.982 319 4379

R50-DC5 50.230 89.469 48.969 171 5688
R101-FPN 49.177 84.863 49.202 142 5200
R101-C4 52.292 88.720 56.013 354 5211

R101-DC5 50.034 87.408 52.935 196 7130
SSD Darknet-53 43.298 85.853 36.103 33 1803

YOLOv3 VGG16 3.698 7.653 3.061 92 5107
RetinaNet R50-FPN 55.529 99.795 55.317 147 6768

Figure 15. Cont.
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Figure 15. Object detection results of all the state-of-the-art models. The red boxes represent the detected oil wells.

Table 4 presents the results of McNemar’s Test in order to explore whether the perfor-
mance differences in different models are significant. Most of the Faster R-CNN models
and RetinaNet model are statistically similar while Faster R-CNN ResNet50-DC5, SSD, and
YOLOv3 show significantly differences with other models in model performance.
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Table 4. p-value of McNemar’s Test for comparing different deep learning model performances. p-values under 0.05 indicate
the two compared models are significantly different. (The bold font indicates models that were statistically different).

Faster_R-CNN SSD YOLO
v3 RetinaNet

McNemar’s Chi
Squared (p-Value)

R50-
FPN R50-C4 R50-

DC5
R101-
FPN

R101-
C4

R101-
DC5 Darknet-53 VGG16 R50-

FPN

Faster_R-
CNN

R50-FPN

R50-C4 0.025

R50-DC5 1 0.008

R101-
FPN 0.180 0.285 0.083

R101-C4 1 0.018 1 0.083

R101-
DC5 1 0.018 1 0.109 1

SSD Darknet-
53 <0.001 0.002 <0.001 <0.001 <0.001 <0.001

YOLOv3 VGG16 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

RetinaNet R50-FPN 0.593 0.074 0.637 0.371 0.637 0.637 <0.001 <0.001

4.3.2. Comparisons of Oil Well Detection Accuracy in Different Background
and Orientations

In order to further analyze the oil well detection performance under different back-
ground and at different orientations, we calculated the precision, recall, and F1-score for
each background including bare land, trees, buildings, lakes, and also two different ori-
entations of the oil wells which are horizontal and non-horizontal orientations. Table 5
shows the total number of the oil wells in different backgrounds and orientations in the test
dataset. Table 6 shows the performance metrics for each of the background and orientations.
It can be seen that the oil well detection accuracy varies with different backgrounds and
orientations. The lake background has the best detection performance but there are only 10
images in the test dataset. Bare land background outperforms trees and buildings, which
may due to the fact that the trees and buildings are more complicated. In terms of the
orientation of the oil wells, it can be seen that the horizontal oil wells are easier to be
identified than the non-horizontal oil wells.

Table 5. Total number of oil wells in the test dataset of different background and orientation.

Bare Land Trees Buildings Lakes Horizontal Non-
Horizontal

Total number of
the oil wells in the

test dataset
148 36 30 10 157 67

Table 6. Oil well detection performance in different backgrounds and orientations (precision, recall,
and F1 score (IoU = 0.5)) (The bold font indicates the best performance for each performance metric).

Model Backbone Performance
Metric Bare land Trees Buildings Lakes Horizontal Non-

Horizontal

Faster_R-
CNN

R50-FPN
Precision 0.623 0.459 0.472 0.909 0.569 0.401

Recall 0.926 0.944 0.833 1.000 0.924 0.821
F1 score 0.745 0.618 0.602 0.952 0.704 0.539

R50-C4
Precision 0.690 0.500 0.413 1.000 0.621 0.514

Recall 0.919 0.861 0.633 1.000 0.885 0.851
F1 score 0.788 0.633 0.500 1.000 0.730 0.640

R50-DC5
Precision 0.688 0.443 0.477 0.909 0.621 0.504

Recall 0.939 0.861 0.700 1.000 0.898 0.896
F1 score 0.794 0.585 0.568 0.952 0.734 0.645
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Table 6. Cont.

Model Backbone Performance
Metric Bare land Trees Buildings Lakes Horizontal Non-

Horizontal

R101-FPN
Precision 0.659 0.484 0.500 0.909 0.604 0.492

Recall 0.912 0.833 0.733 1.000 0.885 0.866
F1 score 0.765 0.612 0.595 0.952 0.718 0.627

R101-C4
Precision 0.664 0.500 0.481 1.000 0.606 0.508

Recall 0.946 0.889 0.833 1.000 0.930 0.910
F1 score 0.780 0.640 0.610 1.000 0.734 0.652

R101-DC5
Precision 0.688 0.443 0.477 0.909 0.646 0.541

Recall 0.939 0.861 0.700 1.000 0.943 0.896
F1 score 0.794 0.585 0.568 0.952 0.767 0.674

SSD Darknet-
53

Precision 0.735 0.452 0.536 1.000 0.703 0.530
Recall 0.730 0.528 0.500 0.900 0.739 0.522

F1 score 0.732 0.487 0.517 0.947 0.720 0.526

YOLOv3 VGG16
Precision 0.172 0.074 0.123 0.000 0.093 0.195

Recall 0.311 0.194 0.233 0.000 0.178 0.478
F1 score 0.221 0.107 0.161 0.000 0.123 0.277

RetinaNet R50-FPN
Precision 0.604 0.394 0.424 0.909 0.569 0.401

Recall 0.926 0.778 0.833 1.000 0.924 0.821
F1 score 0.731 0.523 0.562 0.952 0.704 0.539
Precision 0.614 0.417 0.434 0.838 0.559 0.454

Averages Recall 0.839 0.750 0.666 0.878 0.812 0.785
F1 score 0.706 0.532 0.520 0.856 0.659 0.569

5. Discussion

It is noted that many factors have influences on oil well detection, including the
complex backgrounds and differences in observation angles, etc. Therefore, in our dataset,
the oil wells in different backgrounds and orientations are included. Oil well clusters will
be included in the future to further supplement this dataset.

We trained and tested our dataset on nine different state-of-the-art models, in which
six models are two-stage detection models based on Faster R-CNN with various backbones
and three models are one-stage detection models based on YOLOv3, SSD, and RetinaNet.
The results presented in Section 4 show the SSD achieves the best performance with the
highest precision (0.807) and SSD has the lowest training time and lowest memory cost
in training. Faster R-CNN R101-DC5 model achieves the best recall (0.928) and F1 score
(0.838). To further improve the model performance, we will focus on adjusting the structure
of the current nine models to make them achieve better performance for oil well detection.

In the experimental results section, we also compared the model performance of the oil
wells in different background and different orientations. For all of the models, the oil wells
in the horizontal angle outperform the oil wells in the non-horizontal angle. It is known
that the oil wells have the largest shadow when in the horizontal angle, which might work
as a more distinguishable feature in training of the model. For oil well detection in all
different backgrounds, the two stage model generally has better performance compared
with the one stage method. For one stage models, RetinaNet outperforms SSD and YOLOv3
model. It is also noted that the background of lakes and bare land background have better
performance than that of the trees and buildings. It may be due to the background of the
trees and buildings make the image more complex.

6. Conclusions

In this work, we created an oil well remote sensing image dataset, NEPU–OWOD
V1.0, which consists of 1192 oil wells in 432 images collected from Google Earth in Daqing,
China. Several state-of-the-art models, including both two-stage methods and one-stage
methods, were applied on this dataset. Nine state-of-the-art models were trained and tested
on our dataset including Faster R-CNN based frameworks with five different backbones,
SSD, YOLOv3, and RetinaNet. The experimental results show that deep learning-based
methods are effective in the detection of the oil wells from the remote sensing images.
The comparison between different methods and the results show that the deep learning
based model is able to detect the oil wells effectively from optical remote sensing images.
Moreover, this dataset will provide the opportunity for researchers to develop new object
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detection algorithms and improve the oil well detection in remote sensing. Researchers
will be able to design new oil well detection algorithms utilizing our published dataset.
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