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Abstract: At present, accessing and processing Earth Observation (EO) data on different cloud
platforms requires users to exercise distinct communication strategies as each backend platform is
designed differently. The openEO API (Application Programming Interface) standardises EO-related
contracts between local clients (R, Python, and JavaScript) and cloud service providers regarding
data access and processing, simplifying their direct comparability. Independent of the providers’
data storage system, the API mimics the functionalities of a virtual EO raster data cube. This article
introduces the communication strategy and aspects of the data cube model applied by the openEO
API. Two test cases show the potential and current limitations of processing similar workflows
on different cloud platforms and a comparison of the result of a locally running workflow and its
openEO-dependent cloud equivalent. The outcomes demonstrate the flexibility of the openEO API in
enabling complex scientific analysis of EO data collections on cloud platforms in a homogenised way.

Keywords: cloud computing; interoperability; virtual data cube; open standard; API

1. Introduction

With the free-of-charge release of high temporal resolution Moderate Resolution
Imaging Spectroradiometer (MODIS) imagery by the U.S. Geological Survey (USGS) in
1999, the enormous potential of Earth Observation (EO) time-series analyses became
apparent to a broad geoscientific community. Publishing the USGS Landsat Archive in
2008/2009 [1,2] further boosted the use of remote sensing data, allowing for large-scale
land-use studies at low costs [3]. Fortunately, the European Commission also adopted an
open data policy for its Copernicus program with its Sentinel satellites [4] and high-capacity
ground segment. This took the distribution of microwave and optical EO data with high
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geometric and temporal resolution to a new level [5]. The amount of available raw and
value-added data from Copernicus’ Sentinel satellites has been rising steadily since the
launch of the first Sentinel satellite (Sentinel-1A) in 2014, reaching levels of 18.5 TiB per day
in November 2019 [6]. The variety and unprecedented volumes of freely available EO data
provided by the MODIS sensors or by satellites such as from the Landsat or the Copernicus
Sentinel series forced a paradigm shift in how EO data are managed and processed at the
Petabyte scale [7], urging software and processing capabilities to be brought to the data
archives. New big data technologies capable of dealing with the increased volume, variety,
velocity, and veracity of the EO data [8] are emerging, paving the way for new market
players, service offerings, and new user groups.

With EO data becoming more and more attractive for science, the industry, and public
services alike, the amount of providers of backends (data access and processing layers
with an internal structure, normally hidden to the users) has grown quickly in recent
years [9]. All these backend providers have adopted their own customer-driven devel-
opment paradigm [10], leading to a lack of widely accepted and used standards [11].
The resulting technical challenges for end and intermediate users [12] are manifested in
their inability to switch easily between service providers and to compare the results
of different backends. With increasingly available data from new satellites and sen-
sors, the relatively slow progress regarding interoperability, transparency, and repro-
ducibility between cloud services [13] becomes an obstacle for users and information and
communication technology experts.

Addressing the need for cross cloud platform comparability, users and service providers
increasingly implement policies to develop consensus-based open standards for EO pro-
cessing [14]. Here, the International Organisation for Standardisation (ISO) and the Open
Geospatial Consortium (OGC) are leading organisations in defining formal standards for
geodata models (ISO on an abstract level and OGC following the implementation of EO
data). However, these standards, such as ISO 19123 or the subsequent OGC model, are de-
signed very strictly regarding data representation at the backend. Continuing this example,
to become Web Coverage Service (WCS) compatible, image collection would have to be
mosaicked into coverages in a preprocessing step, resulting in data loss by abandoning
overlaps and acquisition time information. Therefore, the current formal standards do
not offer flexibility to users and service providers about data representation. While the
developing process of these standards is inclusive, expected investments in the form of
member fees and long-term time consumption to jointly evolve them is an impediment to
openness [14]. Therefore, not all service providers follow these formal standards for the
usability of EO data and choose their own methods of data storage and distribution: such
as scenes/tiles (or granules) typically spread over different coordinate reference systems.
Tiles are homogeneous sections of the Earth, which may only be partly filled with imagery
when the satellite swath does not cover them entirely. Because most satellites move while
observing, the time stamp of an observation is aligned with the satellite’s path. Google
Earth (GE) and, later, Google Earth Engine (GEE) [15] have set a new benchmark about
the usability of EO data, creating a system that allows for interactive and responsive vi-
sualisation (GE) and analysis (GEE) despite huge data sizes by hiding the complexity of
tiles, by varying coordinate reference systems, and by using irregular time stamps from
the end users. GEE does that (i) by giving the user access to all tiles of image collections
from a certain sensor rather than spatially restricting the access to individual tiles; (ii) by
allowing users to work with arbitrary coordinate reference systems, coordinate extents,
and spatiotemporal resolutions while performing on-the-fly resampling; and (iii) by lazy
evaluation, meaning that only pixels that are actually requested to be visualised are queried
or computed.

As it is the case with most closed-source cloud-processing platforms, a limitation of
GEE is that its functionality, despite being large, cannot be easily extended by users; for
example, user-defined time-series models or machine learning prediction algorithms cannot
be applied easily to an image collection stored in such a system. Additionally, developing
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an independent implementation for validating the results against another backend tends
to be cumbersome and not very likely to be undertaken by dedicated researchers, which
questions the scientific relevance of such results. This limited reproducibility may be
increased by a possible lack of backend documentation regarding specific functions or
collections. Furthermore, it is not easy to compare the costs of a processing job (for jobs that
exceed the free limits) with the costs on another platform. All these difficulties contribute
in varying degrees towards a vendor lock-in of the cloud platforms. To encourage thriving
innovation processes, connecting user communities and service providers, innovation
processes need to be opened up to all active players so that knowledge can circulate more
freely in a multi-collaborative environment [16].

Over the last years, acceptance of and demand for EO-related open source software
and data have increased among users from the industrial, academic, and governmental
sectors (see, e.g. [17]). Answering this demand, the open source openEO API [18] was de-
veloped. With its possibilities of a standardised communication and of hiding architectural
differences between cloud platforms [19,20], it reduces the described lack of cross cloud
platform comparability. Next to a growing amount of predefined EO data-related processes
to be accessed by users in a standardised way on the backend (currently 140+), openEO
enables users to process user-defined functions (UDFs) at cloud providers’ premises to al-
low for wide use of the API. While being platform independent, the openEO API currently
supports the most popular clients within the EO community: R, Python, and JavaScript.
Seven cloud platforms (see backend description) are presented here, serving as templates
for additional endpoints. While not all platforms support the full range of possible pro-
cesses, comparing and validating different cloud-processing platforms still becomes more
trivial using this API.

This article describes the functionality of the openEO API, its architecture, and its
communication strategies. The homogenisation of EO data access via the API is discussed as
well as specific strategies of its realisation for participating backend providers. Afterwards,
its functionality will be demonstrated on two use cases, showing its comparability between
different cloud platforms and with a locally implemented workflow.

2. openEO API
2.1. Communication Strategy to the Backends

The openEO API is a communication interface that enables standardised access to EO
data/processing capabilities across distinct cloud service providers with unique architec-
tures. It provides a common method for client software written in different programming
languages, such as Python, R, or JavaScript, to connect to EO backends. Thus, openEO
users can query and process EO data directly at the backend side. Instead of a direct many-
to-many communication between various programming languages and cloud providers,
many-to-one communication can be realised towards the openEO access points of compli-
ant backends (see Figure 1). Being placed between the clients’ applications and the service
providers’ backends, the openEO API establishes standardised contracts between them.

For this purpose, openEO provides a set of software components that are deployed by
participating cloud providers to interpret and run standardised processes on their EO data.
The provided functionality covers all aspects of the EO data life cycle—from querying and
accessing EO data, through their processing, to the distribution of resulting products. By
adopting these components, third-party platform providers are able to create new openEO
endpoints tailored to their backends and thus to become openEO compatible. Furthermore,
the openEO API can be extended by new process libraries or additional programming
languages. This requires either an adjustment of existing components or the one-time
development of new ones that follow the openEO specification and translate requests into
backend-specific operations.
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Figure 1. Communication between clients and backends. The openEO API specifies use of the
JavaScript Object Notation (JSON) format and the way in which backends should respond to requests.

To enable users to communicate with the backends via the API, an openEO client
library needs to be embedded into the locally written code. The client library’s syntax
is adapted to its representing programming language environment. While this implies a
limitation of comparability between the different programming languages’ workflows, it
is seen as user friendly to follow their respective syntax standards. Since the communi-
cation itself is designed as being language neutral, openEO is expandable to additional
programming languages.

The openEO API translates the locally implemented source code into a uniform human-
and machine-readable JavaScript Object Notation (JSON) format (see Figure 1), which is
sent via HTTP request to a compatible backend. To become compatible with the API, a
backend needs to provide an openEO endpoint that translates the received standardised
process chain to the local requirements. The process chain will then be executed using
EO data, hardware, and software provided by the cloud service. The resulting data can
be visualised or downloaded by the user on demand by sending another HTTP request
to the backend. The execution of this workflow can be done either (i) as a submitted
batch job, which will be processed once on request and stores the results at the backend
premises; (ii) via on-demand web services using protocols such as OGC Web Map Service
(WMS), OGC WCS, or XYZ tiles for web-based access; or (iii) by executing synchronously
lightweight processes, such as for small test areas.

openEO-compatible backends are currently run for the following EO cloud commercial
and academic service providers: CREODIAS (Warszawa / PL), EODC GmbH (Vienna /
AT), EURAC Research (Bolzano / IT), Google Earth Engine (Mountain View, CA / US),
Joint Research Centre (Ispra / IT), mundialis GmbH & Co. KG (Bonn / DE), Sinergise
Ltd. (Ljubljana / SI), and VITO N.V. (Mol / BE). These openEO backend drivers are
meant to serve as templates for third-party cloud providers to connect their additional
standards, architectures, technologies, or processes to the openEO syntax without having to
change their existing infrastructure. This eases creating new backends for other interested
cloud operators.

By accessing these service providers via their openEO endpoints, users do not have
to adapt their processes to possible backend-specific constraints regarding, e.g., complex
backend infrastructure, various software layers, virtual environments, or data representa-
tion. Instead, the access points provide users with a standardised data model, as described
in the following section. The only limitation for the users may result from backend internal
decisions regarding implementation of the available processes.

2.2. openEO Data Cube Model

openEO helps users connect to the compatible backend providers’ EO data in a
comparable way by mimicking the functionalities of geospatial data cubes, independent of
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the local data structure. With the API transferring standardised commands into the real data
storage structure, users are able to treat the backends’ EO data and meta-data as virtual data
cubes via the openEO access points. These principles, which are made to be compatible with
the currently evolving standards of the SpatioTemporal Asset Catalog (STAC) [21], involve
typical data cube aspects, as described in [22,23]. This section characterises firstly the
virtual data cube, provided by the openEO API, and secondly existing data representation
and access strategies of select compatible backends. Finally, the use of UDFs for the virtual
data cube is described.

2.2.1. Virtual Data Cube
Parameter Model

The virtual data cube itself, being visible to the client users, is designed as a multidi-
mensional array of diverse spatial, temporal, and band-related dimensions, representing
a function f : D → C. While the range of independent dimensions of the domain D
is designed to be backend-specific and to depend on the characteristics of the provided
geospatial data, it includes in the openEO syntax at least two spatial dimensions, typically
one temporal and one band/polarisation dimension. While the details of the co-domain
C may also depend on the backend’s policies, it is represented by a single scalar value.
For both the domain and co-domain, their data types and syntax are backend-specific and
depend on the nature of the underlying EO data. The virtual data cube is accompanied by a
meta-database, consisting of all the additional information (e.g., platform, dataset descrip-
tions, or user rights) and following the STAC metadata specifications. The meta-database
also entails ordering all nominal dimensions’ value ranges (including, e.g., spectral bands).

Data Representation

The canonical data cube for EO data is typically a dense array [24], where for (nearly)
every combination of, e.g., 2D/3D coordinates, time, and spectral band, a valid pixel value
is available. In practice, EO data are collected along a satellite’s orbit and form a spatial
trajectory; an upscaling of the spatial and temporal dimensions may become necessary to
create dense data cubes (coverages of analysis ready data) from this information. These
resampling processes result in some data loss, which cannot be reversed. The virtual data
cube model created here does not create and store a dense data cube but gives access
to spatiotemporal array data that may be in dense form or that may consist of a very
sparse array, formed by the image collection of the originally distributed product (e.g., the
collection of Sentinel-2 scenes). The virtual data cube model of the openEO API allows users
to query such image collections using data cube queries, where backends—if necessary—
composite image collections to dense data cubes on the fly and where parameterisation of
this process can be controlled by the user’s query.

Data Organisation

The EO data on which the virtual data cube is based are structured by backend
providers in diverse local strategies (e.g., by granule, as collections of GRIB or NetCDF
files, or as a collection of arrays in an array database). Since the locally required access
commands are operationally translated into a data-cube-compatible form, the backends’
choices about the data management do not affect its access beyond a potential on-the-fly
transformation of data formats. Only with the download of products, the user has to settle
for a specific data format and characteristics. Although the API is format agnostic, backends
allow the data to be downloaded as NetCDF, GeoTIFF, PNG, GIF, JPEG, CovJSON, and
generic JSON. In addition, web services can be set up to interactively browse the computed
imagery with lazy calculation—triggered, e.g., by panning or zooming—or with already
pre-computed data.
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Access and Analysis

Following the Committee on Earth Observation Satellites (CEOS) OpenSearch Best
Practice [25], openEO classifies data extent into two granularity levels. Granules, being
the finest granularity of EO data that can be independently accessed, refer in the openEO
syntax typically to limited areas and single overpasses, leading to very short observation
periods (i.e., seconds) or pre-computed temporal aggregations of such data (e.g., MODIS
16-day composite MOD13Q1). Collections—a set of granules sharing the same product
specification—typically correspond here to the series of products derived from data ac-
quired by a sensor on board a satellite and having the same mode of operation. Being a
choice of the backend providers, fused data or value-added products also can be provided
within single collections. When accessing (a subset of) a collection, the openEO API pro-
vides on-the-fly spatiotemporally mosaicked and resampled EO data from the backend to
the user as a virtual geospatial sparse data cube. All further openEO functionalities are
designed to address this data cube format.

The openEO functionalities are represented by a set of EO data-related processes
between compatible clients and backends and cover aspects from all domains of processing
EO raster data in the cloud: (i) user authentication; (ii) data query and filtering; (iii) math
and logical operators for pixels and slices; (iv) binary reduction and subsetting operators;
(v) data merge, mosaicking, and layer stacking operators; (vi) sorting and ordering; (vii)
resampling processes such as reprojection to change the virtual data cube’s geometry; (viii)
processes to visualize, store, or download EO data from the backend; and (ix) contracts
regarding job management and process monitoring. A full and maintained list of pre-
defined processes can be found at https://processes.openeo.org/ (accessed on 9 March
2021). While several of the defined processes are dimension neutral, others explicitly are
designed for temporal or for spatial dimensions, e.g., aggregation over a spatial polygon or
particular temporal intervals.

The extent of the processes’ implementation, which is seen as a basic catalogue, finally
depends on the backend providers. Additionally, user-defined functions (UDFs, see below)
can be developed, accessing the virtual data cube. These UDFs can also be composed of
the available contracts, chained into higher-level workflows and stored for re-usage in
other processes.

Interoperability

While the used standards in the data cube design, the common processes, and the
communication via standardised HTTP requests foster comparability between different
backend services, the data availability and denomination of data resources are not influ-
enced by the virtual data cube. Therefore, interoperability between participating service
providers at the level of being able to execute identical (pieces of) code cannot be guaranteed
by the openEO API itself. Instead, the (intermediate or end) user has to take into account
these backend-specific decisions to be able to query and process similar EO data. Two
backends are interoperable, when all processes of the openEO standard are implemented
and they provide the same collection of EO data (including identical naming).

2.2.2. Description of the Compatible Backends

This section describes the openEO compatible backends currently available. The
existing driver APIs are tailored to serve as access points to these infrastructures. Due
to the platforms’ varying business models, not all functionalities of the openEO API are
implemented at the different platforms alike. Table 1 lists differences in the backend
implementations of the openEO API.

Apache Airflow + eoDataReaders

This driver targets file-based backends, storing Copernicus’ Sentinel Level-1 data
in a PetaByte scale in their original compressed format. A developed Python library
(eoDataReaders) based on OSGeo’s GDAL is able to read and process Sentinel-1, -2, and -3

https://processes.openeo.org/
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data as well as generic geocoded raster data. eoDataReaders is used in conjunction with
Apache Airflow to schedule and monitor jobs and with a Celery cluster for job execution.
With this approach, an openEO job is dynamically converted to an Airflow Directed Acyclic
Graph (DAG). Each task in the DAG is executed on a Celery worker using eoDataReaders.
The API layer is built with Python’s Flask and Nameko microservices. Metadata are stored
and published via OGC Catalogue Service for the Web (CSW). This driver additionally
supports UDFs in Python and R.

Table 1. Current characteristics of openEO compatible backends. Image collections do not reflect
overall available EO data at the platform but data provided by the backend. The Joint Research
Centre (JRC) backend is currently not publicly available.

Backends CREODIAS EODC EURAC GEE

Image Collections 3 8 86 516
Predefined functions 107 72 52 66

Processing

Batch processing Yes Yes Yes Yes
Synchronous processing Yes Yes Yes Yes
On-demand web services WMTS – – XYZ

File storage No Yes No Yes
UDF Yes Yes Yes No

Backends JRC mundialis Sentinel Hub VITO

Image Collections 4 365 4 33
Predefined functions 39 54 29 108

Processing

Batch processing Yes Yes Yes Yes
Synchronous processing No Yes Yes Yes
On-demand web services – – XYZ WMTS

File storage Yes No No No
UDF Yes Yes No Yes

Spring Boot Backend (Supporting Web Coverage Processing Service (WCPS) and Open
Data Cube (ODC))

Using Spring Boot 2, this implementation of the openEO backend API allows for
interacting with existing frameworks for data cube management. Currently, it sup-
ports the Open Geospatial Consortium (OGC) Web Coverage Processing Service (WCPS)
by translating an openEO process graph into a WCPS request and a newly developed
processing engine based on x-array and dask on top of the Open Data Cube (ODC).
The WCPS is provided by rasdaman version 10 [26], an array database that allows for stor-
ing and querying of data, which are organised as multi-dimensional arrays. Both ODC and
rasdaman can analyse arrays residing in file system directories as well as in databases.

Spring Boot allows for flexible configuration with respect to the authentication and
authorisation workflow as well as data persistence. The current implementation at the
premises of EURAC Research uses keycloak linked to the EURAC Active Directory and
generally Microsoft Accounts as identity providers for authentication and authorisation and
a simple h2 database for persistent management of batch jobs, results, and process graphs.

The driver supports UDFs written in Python and R by hosting them as microservices
in independent docker containers.

Sentinel Hub

The Sentinel Hub accesses EO data from external data storage without storing copies
on its own infrastructure. Therefore, the data organisation and data representation are
slightly different for each dataset. In most cases, the data are stored in single-band two-
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dimensional image files organised by acquisition time, location, and band. The design
of the backend relies on the fact that many existing image formats are already optimised
for fast retrieval of partial data from encoded files—JPEG 2000 has built-in pyramids
based on wavelet transform, and cloud-optimised GeoTIFF and NetCDF/HDF are often
self-contained data cubes themselves. The service combines this with a comprehensive
catalogue, allowing for transfer of only the parts of source files that contribute to the
requested end result, and exploits the fast data access and parallelisation capabilities of
contemporary cloud infrastructures.

For accessing and analysing the data, the service offers low-level APIs for custom
per-pixel processing, both single-scene and multi-temporal. The results are produced on
the fly with user-defined grid spacing, projection, and encoding.

GeoTrellis

GeoTrellis is an open source Scala library that facilitates operations on data, organised
in a 2D raster or 2D/3D vector format using Scala and Apache Spark. Raster data must
be organised as single GeoTIFF files in a common location [27]. Compatible tile storage
or database backends are Apache Accumulo, Cassandra, GeoMesa, HBase, and S3. The
GeoTrellis library also includes a large collection of processes for accessing and analysing
geospatial data; Python bindings are used to enable integration of libraries available in
that ecosystem.

While the used libraries do not impose a specific data organisation, its choice does
affect the performance. File organisations based on cloud-optimised GeoTIFFs have been
shown to work well; other formats such as JPEG 2000 are equally possible. Ingestion into
dedicated systems, such as Accumulo, gives very good results performance wise but is
more costly to set up and operate.

The use of Apache Spark to distribute processing jobs makes this a very scalable
implementation as long as the workflows can be designed to work on smaller parts of the
data cube in parallel. Algorithms that are designed to work on the original files or depend
on a given file organisation are harder to integrate in this framework. Data are mostly kept
in memory, but Spark can dynamically decide to write intermediate results to a disk if
insufficient memory is available.

For very large-scale processing (e.g., global of Sentinel-2 archive), it is currently
recommended that the end user splits the processing job into smaller regions to prevent
requiring a very large processing cluster. The recommended size of a processing job
depends on the job complexity and type of input data.

GRASS GIS-Actinia

GRASS is an open source GIS for 2D/3D raster and vector data that includes a SQL-
based attribute management [28]. EO data of a specific geographic extent have to be
organised in the same projection (coordinate reference system). They can be accessed via
the geoprocessing platform actinia, ingesting and analysing EO and GIS data [29]. Data
storage and file format are handled internally by GRASS GIS. Supporting spatiotemporal
data cubes through its GRASS GIS backend, actinia can serve as an access point for EO
data cube-related processes of all aspects of the EO data life cycle. Using the PyGRASS [30]
or the GRASS GIS Temporal framework [31], these processes can be realised at a GRASS
GIS-based backend. Data are mostly kept on disk, typically only a single raster row is
loaded to memory, processed, and written out. This makes it possible to process very
large datasets with limited resources. Raster data cubes are represented as stacks of 2D
raster maps with associated metadata such as timestamps or band reference information
for multispectral data. Each stacked layer can be accessed as a particular slice of a raster
data cube or directly as a single 2D raster map, handled as a virtual dataset, and managed
in an internal database.
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JEODPP

The JRC Big Data Platform is a versatile data-intensive computing platform that has
been developed to accommodate different service levels ranging from large-scale batch
processing to interactive visualisation and analysis of geospatial data. Data collections
are described in a PostGIS database that holds metadata of all available geospatial data.
The data are stored in their original format and gridding. A representational state transfer
(RESTful) web service is implemented that can handle HTTP requests to query the collec-
tions in the database. The concept of a virtual data cube is implemented, using the open
source Python library pyjeo [32].

Data cubes are created in-memory on the fly in a target reference system. Re-projection,
resampling, and composition occur at the time of the data cube creation. The pyjeo library
uses a multi-band 3D model, where each band represents a 3D contiguous array. Two
dimensions refer to the spatial domain (x and y), and a third dimension refers to the
temporal domain. The datacube is tiled to reduce the memory footprint, and each tile
is processed in parallel in a cluster managed via Kubernetes. Processing performance is
further optimised via multi-threading.

Google Earth Engine

Google Earth Engine is an online platform offering free cloud-based computation on
EO data. It provides a set of JavaScript and Python processes that can be accessed via the
Google Earth Engine API. The internal architecture of the hosted service is mostly hidden
to the user community [15]. The openEO Google Earth Engine driver is a facade to the GEE
API, currently hosted by a separate infrastructure. It is a Node.js server implementation that
realises the openEO API and translates incoming openEO processes into corresponding
requests to the GEE API. Therefore, the driver capabilities are limited to the provided
functionality by GEE.

As a major difference to the openEO’s virtual data cube model, GEE works mostly on
images and image collections. The most similar element to the data cube in the backend is
image collection as well-defined by two spatial dimensions, one temporal and one spectral
dimension. It is defined as a stack of image data models. Due to differences in the image
collections regarding available operations and metadata structure, the openEO driver
internally manages the virtual data cube with metadata that is required to offer a data cube
view on top of Google’s data models.

2.2.3. User-Defined Functions

UDFs—arbitrary code snippets—can be embedded into the openEO process chains to
supplement the provided predefined processes. UDFs are currently supported for Python
and R. The custom scripts are uploaded to a backend file storage and are called via a
predefined process. Their I/O data need to be openEO compliant and can be defined
as a multi-dimensional array, a time series, or an array. They can be applied either to
individual values, to specific dimensions, or to a complete neighbourhood. Additionally,
they can reduce dimensions to single values. Their enhanced flexibility is offset by a
missing transparency for the backends regarding their functionality, preventing possible
support regarding processing efficiency or future optimisation.

Unlike the predefined processes, the UDF service is not directly accessible to the
clients. Instead, to avoid security issues, the scripts are sand-boxed at the backend. For
its execution, the uploaded UDF script (see Figure 2) is sent together with data from the
processing chain to a UDF platform. Upon completion of the processing, the result is sent
back and re-integrated into the process chain.
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Figure 2. Processing of user-defined functions (UDFs).

A backend can provide multiple runtime environments in which the function is exe-
cuted. That gives the user the ability to switch between different versions and combinations
of libraries and helps to ensure reproducibility. This is implemented by using Docker con-
tainers, which also provides a way to sandbox execution of user codes. As data cubes can be
very large, the backend might run the code on a smaller subset of the whole cube. Therefore,
depending on the context in which a UDF is invoked, a backend passes different subsets of
data into a single UDF call. This allows the UDF to be invoked in a parallel manner.

UDFs can be stored at the backend for reuse.

3. Materials and Methods

The openEO API can be used for general processing of EO data on the various partici-
pating backend infrastructures. A typical workflow consists of a sequence of the existing
predefined processes (currently 140). However, many EO algorithms require particular,
non-standard processing blocks that are beyond these tailored openEO processes and
beyond processes available at other EO cloud solutions. To demonstrate both possibilities,
two use cases are presented. At first, a workflow of predefined processes is executed on
three different backends to demonstrate their comparability with the API. Secondly, a more
complex workflow that combines both openEO predefined processes and UDFs is shown
and compared to a locally executed workflow.

The two use case descriptions firstly entail descriptions of the test areas and used EO
data. Afterwards, the workflows are described, followed by analyses of their results.

3.1. Use Case 1: Predefined Functions—Comparability of Backends

For this use case, a region of interest (ROI) was chosen in The Netherlands, between
the cities of Rotterdam and of Eindhoven (see Figure 3). This area is characterised by
diverse land cover types, including a national park, urban areas, agriculture, forestry,
grassland, bare soil, and open water bodies. This diverse landscape implies different radar
backscatter characteristics over time, which were monitored in this example. From the
time series of Sentinel-1 σ0 backscatter data between March and May of 2020, temporal
composites were created on different backends by using an identical workflow of available
predefined openEO processes.
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Figure 3. The region of interest with the test area to compare outcomes of equal workflow at different
backends. The base image is a Google Earth satellite image (Imagery ©2021, TerraMetrics, Map
data ©2021).

The workflow was written in Python (Listing 1) and executed at the backends of GEE,
Flemish Institute for Technological Research (VITO), and JRC mostly without changing
the syntax. Backend-specific definitions such as the backend URL or collection name
were written for GEE and added as comments for VITO and JRC. After importing the
openEO library, authentication details for the backend of choice were defined. An image
collection was loaded (line 16) and separated into three time periods of one month each.
The collection’s name was not standardised by the openEO API but was an internal decision
of the backend; it can be searched for with the process con. list_collections () . The lines 25 ff.
deals with the monthly composites that are merged into an RGB image in lines 30 ff. This
workflow was then sent with line 38 for execution to the backend of choice. Here, another
deviation between running this job on different platform providers can be seen: the defined
output formats were named differently.

Listing 1. Python workflow for creating monthly composites of Sentinel-1 data at different backends.
Varying code segments are illustrated here with Google Earth Engine (GEE), Flemish Institute for
Technological Research (VITO), and Joint Research Centre (JRC).

1 import openeo
2

3 DRIVER_URL = " ht tps :// earthengine . openeo . org/v1 . 0 " #GEE
4 #DRIVER_URL = " ht tps :// openeo−dev . v i t o . be " #VITO
5 #DRIVER_URL = " http :// openeo−dev . c idsn . j r c . i t : 4 6 1 0 4 " #JRC
6

7 COLLECTION_NAME = "COPERNICUS/S1_GRD" #GEE
8 #COLLECTION_NAME = "S1_GRD_SIGMA0_DESCENDING" #VITO
9 #COLLECTION_NAME = " EarthObservation . Copernicus . S1 . scenes . source . L1C" #JRC

10

11 # Connect to backend via b a s i c a u t h e n t i c a t i o n
12 con = openeo . connect (DRIVER_URL)
13 con . a u t h e n t i c a t e _ b a s i c (USER, PASSWORD)
14

15 # E x t r a c t monthly time s e r i e s
16 datacube = con . l o a d _ c o l l e c t i o n (COLLECTION_NAME,
17 s p a t i a l _ e x t e n t ={ " west " : 4 . 2 4 , " south " : 5 1 . 4 , " e a s t " : 5 . 5 , " north " : 5 1 . 9 3 , " c r s

" : 4 3 2 6 } ,
18 temporal_extent =[ " 2020−03−01 " , " 2020−06−01 " ] ,
19 bands =[ "VV" ] )
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20 march = datacube . f i l t e r _ t e m p o r a l ( " 2020−03−01 " , " 2020−04−01 " )
21 a p r i l = datacube . f i l t e r _ t e m p o r a l ( " 2020−04−01 " , " 2020−05−01 " )
22 may = datacube . f i l t e r _ t e m p o r a l ( " 2020−05−01 " , " 2020−06−01 " )
23

24 # Monthly means
25 m3 = march . mean_time ( )
26 m4 = a p r i l . mean_time ( )
27 m5 = may . mean_time ( )
28

29 # Prepare RGB imagery
30 R_band = m3. rename_labels ( dimension=" bands " , t a r g e t =[ "R" ] , source =[ "VV" ] )
31 G_band = m4. rename_labels ( dimension=" bands " , t a r g e t =[ "G" ] , source =[ "VV" ] )
32 B_band = m5. rename_labels ( dimension=" bands " , t a r g e t =[ "B" ] , source =[ "VV" ] )
33

34 RG = R_band . merge_cubes ( G_band )
35 RGB = RG. merge_cubes ( B_band )
36

37 # Execution
38 RGB. execute_batch ( " output . t i f " , out_format=" GTIFF−THUMB" ) #GEE
39 #RGB. execute_batch ( " output . t i f " , out_format ="GTIFF " ) #VITO
40 # datacube = RGB. s a v e _ r e s u l t ( format ="GTIFF " ) #JRC
41 # job = datacube . send_job ( ) #JRC

3.2. Use Case 2: UDFs—Comparison with Local Workflows

This second example used a more complex workflow that combined both openEO
predefined processes and UDFs and compared the results of the workflow executed at
a backend and locally. The example was based on the Breaks For Additive Season and
Trend (BFAST) algorithm [33] and its underlying bfastmonitor method (http://bfast.r-forge.
r-project.org/ (accessed on 9 March 2021) that detects abnormal events (breaks) at the end
of satellite-image time series (in the monitoring period) [34,35]. The method was used to
detect activity data in the Brazilian Amazon and was applied on the Spring Boot backend
of EURAC Research’s cloud platform, using the openEO API.

3.2.1. Test Area and Data Description

The ROI was located in the Brazilian Amazon rainforest (Figure 4). This area is affected
by anthropogenic impacts (mainly logging), resulting in a loss of total forest area and in
degradation of the remaining primary forest [36]. According to [37], by 2013, only 20% of
the tropical forest regions were without any remotely detectable sign of human activity,
modifying their state either to secondary forest or to degraded primary forest. This use case
demonstrated detection of the time of disturbances by determining the breaks in Sentinel-1
satellite time series with the bfastmonitor method on the EURAC platform.

The test area covers about 40,000 hectares (20 km× 20 km) and is located east of the
Tapajos river in the central-west part of Para state, Brazil (Figure 4). It is characterised
by intensive logging, resulting in a typical fishbone deforestation pattern with regularly
shaped forest loss parcels spreading laterally from local roads. Beside deforestation, the
region undergoes other land cover and land use conversions, which should ensure enough
time-series breaks to test the openEO-BFAST workflow.

The workflow required Sentinel-1 backscatter images as input data. EURAC Research
does not provide Sentinel-1 data at a global scale on its Spring Boot backend. Therefore,
Sentinel-1 images were processed locally for the test area and then uploaded manually to
the backend, where they are provided to the users as an image collection. This processing
started from Sentinel-1, IW (interferometric wide-swath) mode, Level-1 ground range
detected (GRD) images. To reduce the data volume and the upload time, only Sentinel-1A
images acquired from 2017 to 2020 with the VH polarisation were considered. This resulted
in a total of 92 images with time steps of 12 days between consecutive images. The pro-
duced Sentinel-1 image collection was an analysis-ready dataset (radiometrically corrected
radar backscatter images) that is now available at this backend under the collection name
“openEO_WUR_Usecase”.

http://bfast.r-forge.r-project.org/
http://bfast.r-forge.r-project.org/
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Figure 4. The region of interest with the 20 km× 20 km area (the red rectangle) selected for testing
the openEO UDF workflow on the EURAC backend and locally. The base image is a Google Earth
satellite image (Imagery ©2021, TerraMetrics, Map data ©2021).

3.2.2. Workflow

The openEO-BFAST workflow combines an UDF and the sequential execution of pre-
defined processes, where both parts are implemented using the R client. The major steps of
the workflow are presented below, whereas the complete code is available online (https:
//github.com/Open-EO/openeo-usecases/tree/master/WUR_BFAST_UseCase/R (ac-
cessed on 9 March 2021).

UDF Implementation

The UDF performs a BFAST-related workflow, processing input data in the form
of a virtual data cube that is defined in the R client from the prepared Sentinel-1 image
collection. The definition of the data cube in the R client is explained in the following
section. Within the openEO UDF data framework, this virtual data cube was then injected
as a stars-object data structure defined by the stars library for multi-dimensional array
inputs.

Listing 2 shows the UDF code in R. After injecting the input data as a stars object and
loading required R packages, a SpatialBFM (Spatial BFast Monitoring) function was defined
(line 6) to create a single time-series object for the bfastmonitor method. The time series was
set here to start at the beginning of 2017 and to include 30.67 observations per year (line 8),
while the monitoring period of the bfastmonitor method itself began in 2019 (line 10). The
output of bfastmonitor was a single value, representing the date of a potentially detected
break. The function was applied pixel-wise (i.e., along the time dimension), resulting in a
spatial raster with the break times given as a fraction of the year (line 16).

Listing 2. Breaks For Additive Season and Trend (BFAST) UDF in R environment.

1 # @require x : s t a r s
2 l i b r a r y ( b f a s t )
3 l i b r a r y ( abind )
4

5 # Define the pixe l −wise funct ion
6 SpatialBFM = funct ion ( p i x e l s )
7 {
8 l s t s = t s ( p ixe l s , c ( 2 0 1 7 , 1 ) ,

https://github.com/Open-EO/openeo-usecases/tree/master/WUR_BFAST_UseCase/R
https://github.com/Open-EO/openeo-usecases/tree/master/WUR_BFAST_UseCase/R
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9 frequency =30 .666667)
10 bfastmoni tor ( l s t s , 2019 ,
11 formula=response~trend )
12 $ breakpoint
13 }
14

15 # apply the pixe l −wise funct ion
16 S t a r s R e s u l t = s t _ apply ( x , c ( " x " , " y " ) ,
17 SpatialBFM ,
18 PROGRESS=TRUE)
19

20 # deal with NA−a :
21 S t a r s R e s u l t [ i s . na ( S t a r s R e s u l t ) ] = −9999
22 #
23 S t a r s R e s u l t

Client Implementation

This implementation part was based on the openEO R client library and its predefined
processes. They were used to build, send, and run the processing graph for the openEO-
BFAST workflow at the Spring Boot backend. The code developed for that is shown in
Listing 3.

In a preprocessing step, the user firstly connected to an openEO backend via the
openEO connect process, specifying the host URL and the appropriate user authentication
details (Block 1). Secondly, a virtual data cube was defined from the Sentinel-1 data
collection, using a specific identifier and limited spatially, temporally, and to the VH
polarisation (Block 2). This data cube served as an input dataset for the UDF, as explained
above. Therefore, the UDF code (Listing 2) was imported here as a string variable (Block 3);
a processing graph was then built from the UDF with the run_udf process, using the data
cube as input data (Block 4). This processing graph was then sent to be run on the backend
as a batch call (Block 5).

Listing 3. BFAST in an R client environment.

1 l i b r a r y ( openeo )
2

3 #BLOCK 1 : Connection
4 euracHost = " ht tps : //openeo . eurac . edu "
5 user = " "
6 password = " "
7 eurac = connect ( host = euracHost ,
8 vers ion=" 0 . 4 . 2 " ,
9 user = user ,

10 password = password ,
11 log in _ type = " b a s i c " )
12

13 #BLOCK 2 : Sent ine l −1 datacube
14 s1 = p$ load _ c o l l e c t i o n (
15 id = p$ data $openEO_WUR_Usecase ,
16 s p a t i a l _ e x t e n t = l i s t ( west = −54.815 ,
17 south = −3.515 ,
18 e a s t = −54.810 ,
19 north = −3.510) ,
20 temporal _ e x t e n t=c ( " 2017−01−01T00 : 0 0 : 0 0Z" ,
21 " 2019−12−29T00 : 0 0 : 0 0Z" ) ,
22 bands = c ( ’VH’ ) )
23

24 #BLOCK 3 : Reading the BFAST UDF code
25 udfName = "BFAST_udf . R"
26 udfCode = readChar ( udfName ,
27 f i l e . i n f o ( udfName ) $ s i z e )
28

29 #BLOCK 4 : Apply UDF code/ c r e a t e process graph
30 t e s t 1 = p$run_udf ( data = s1 , udf = udfCode ,
31 runtime = "R" )
32 graph_ t e s t = p$ save _ r e s u l t ( t e s t 1 , format=" GTif f " )
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33

34 #BLOCK 5 : Run the process graph as a batch c a l l
35 job _ id = c r e a t e _ job ( con = eurac ,
36 graph = graph_ t e s t )
37 s t a r t _ job ( con = eurac , job = job _ id )
38 done = download_ r e s u l t s ( job = job _ id ,
39 f o l d e r = " . " )

Local Implementation

To compare the openEO-based implementation with an independent result, the BFAST
UDF was also executed on a local computer, called by an openEO and backend independent
workflow in an R environment (see Listing 4). Its output was used to identify possible
backend-specific circumstances that may affect the results of openEO-dependent workflows
at the cloud platforms (e.g., data transformation, resampling, and data type conversion).
Therefore, the input dataset (line 2) used here is a multiband raster that is identical to the
Sentinel-1 data collection used for the backend (Listing 3, Block 2).

Listing 4. R code for local execution of BFAST UDF.

1 l i b r a r y ( s t a r s )
2 x = read _ s t a r s ( " s1 _vh_ 2017 _ 2019 _ aoi . t i f " )
3 source ( "BFAST_udf . R" )
4 #
5 S t a r s R e s u l t # @require x : s t a r s
6

7 # deal with the NaN values
8 S t a r s R e s u l t [ S t a r s R e s u l t == −9999] = NA

4. Results
4.1. Use Case 1: Predefined Functions—Comparability of Backends

Figure 5 shows the output of the same workflow based on openEO-predefined func-
tions executed at three different service providers. It can be seen that the results are similar
but not identical. This is due to differences in the input data. For example, VITO provides
data in a range of natural number values, while GEE does it in decibels. To avoid idle
comparison between linear and logarithmic scaled input data, VITO’s EO data underwent a
preprocessing step for this example, which resulted in not identical input data. More about
the speciality of the chosen workflow and why these results do not stand for a general
interchangeability of backends can be found in the Discussion section.

4.2. Use Case 2: UDFs—Comparison with Local Workflows

Figure 6 shows the output of the BFAST workflow, calculated as an UDF with ope-
nEO syntax at the EURAC backend. Its comparison with the result, calculated in a local
R environment, revealed no visually distinguishable differences. The maximum abso-
lute difference between the two outputs (see Figure 6) is below 50 min, which is sev-
eral orders of magnitude lower than the 12-day temporal sampling of the Sentinel-1
time series used in the calculation. This confirms the ability of the openEO API to re-
produce local EO-related workflows on a cloud platform with differences only at the
magnitude of computational accuracy.
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Figure 5. Results of use case 1, executed at GEE, VITO, and JRC (from top to bottom).

Figure 6. (a) The output of the openEO-BFAST workflow calculated at the EURAC backend. The
values show the time of detected breaks in Sentinel-1 time series in decimal years. (b) The difference
between the outputs calculated at the EURAC backend and in a local R environment. The values
show the time difference between the detected breaks.

5. Discussion

Following the explosive increase in freely available high-quality EO data, the land-
scape of cloud-based platforms that offer access to this information became confusing.
This is an obstacle for conducting equal analyses of EO data on different platforms. The
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Copernicus Data and Information Access Service (DIAS) platforms, for instance, offer
mostly cloud infrastructure but require users to install their own software and to find their
way through millions of image tiles. Systems such as GEE or Sentinel-hub offer higher-level
interfaces but do not allow users to run their own code, e.g., in the form of Python or R
scripts for time-series analysis.

A major roadblock for navigating this landscape is that each platform or system
has its own interface, even when a very large portion of the user demands is limited to
a rather small set of problems. This leads to a situation where (i) comparing whether
two systems give identical results when given the same task is too cumbersome to be
carried out; (ii) moving activities from one system to another is very costly (vendor lock-in);
and (iii) comparing the costs between identical computations on different platforms is
complicated, if not impossible. By providing a single API that can be adapted to each of
these platforms, the openEO API is a step to solve these problems. It helps users work
reproducibly and extend validation studies; for all users, vendor lock-in decreases and
costs become clear and comparable.

However, backends do not become automatically interchangeable by using the ope-
nEO API. The described first use case to compare the results of different backends was
tailored towards an ideal case, where all commands, input, and output data are identical for
the backends accessed. Since this cannot generally be guaranteed due to distinct business
models of the platform providers, workflows of predefined openEO functions do differ at
the individual backends. These differences can be caused by one of the following aspects:

• Implementation of predefined functions and UDFs—while future cloud platforms are
encouraged to implement all developed predefined functions as openEO compatible,
its realisation is up to each backend provider. UDFs have not been realised for all
participating platforms (see Table 1).

• Image collections—the EO data provided at the cloud platforms can differ, e.g., in time,
region, sensor, or value-adding products. Data can be preprocessed differently, which
would require unique processing steps for several backends. As an example, the
Sentinel-1 data for the first use case described here are stored in different value ranges
at GEE, VITO, and JRC. This leads to the need for preprocessing steps to guarantee
similar input data for this study.

• Metadata—the data stored at cloud platforms do not have identical metadata. Dif-
ferences can occur, e.g., in the naming of bands: bands of Sentinel-2 data are called,
e.g., at GEE “B1”, “B2”, etc., while at VITO, they are “B01”, “B02”, etc. These special
aspects must be taken into account by the users. Additionally, data may be stored in
different projections, resulting in another preprocessing step.

• Output format—another backend internal decision that the openEO API passes on
to the user is the choice of format of the process’ result. This includes, next to the
data format, its label. For example, in Listing 1, the GeoTIFF format of GEE is called
“GTIFF-THUMB” and the one from VITO is “GTIFF”.

These limitations, resulting from internal choices of the cloud providers mean that the
openEO API does not automatically guarantee an interchangeability but rather allow for an
easy way to compare platforms. For realising the first use case using identical workflows,
the different backends internally preprocessed their data to generate similar input image
collections. These preprocessing steps (e.g., reprojection or changing value range) resulted
in differences in the input data and thus in the final results.

However, the use cases shown in this manuscript should not be confused with toy
examples. The partners involved in developing the use cases work with massive EO data
archives on an daily basis and have taken the openEO API into production. One of the
experiences was that new employees need a shorter time to become productive using
openEO than with the legacy systems used. The second use case also shows the possibility
to execute locally developed workflows as UDFs via the openEO API. This brings about
additional possibilities in using the API in a diverse and specialised manner. All software
from clients, backends, API and supporting tools is open source and found at a single
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GitHub organisation. The API is being further expanded, adding additional backends and
functions to the standards.

6. Conclusions

The openEO API aims to standardise the interface between frontend users and backend
platforms to process big EO data. The approach of accessing data and services in the form
of a virtual data cube permits a more profound comparison between compatible EO cloud
services than via accessing them directly. The use case of a disturbance mapping in the
Brazilian Amazon forest shown here was conducted on a local computer and on a cloud
platform, where the latter bases on predefined processes of the openEO standard. The
differences in the results are within computational accuracy. This indicates a comprehensive
possibility to use diverse predefined and user-defined processes from the openEO tool at
the service providers, covering different aspects of the EO data life cycle. The possibility of
using similar process chains at different backends creates a new level of flexibility for users
regarding the choice of and switch between EO data service providers. For instance, users
are able to divide their workflows for execution on several platforms and thus to make
use of possibly optimised EO datasets that are only provided on distinct cloud platforms.
Theoretically, backends can also serve as intermediate users, redirecting commands in the
openEO syntax to other EO cloud service providers that host an instance of the API. In this
way, de-centralised, federated EO data processing, and combined offerings and services
can become possible in the future for cloud service providers.

However, as explained in the model description, several aspects of describing data
cubes are not driven by the openEO API itself but depend on the data centre’s policy regard-
ing services and data storage. The different availabilities of input data, their characteristics,
or their preprocessing strategies affect every processing results; therefore, their detailed
documentation is crucial for the users. This also includes information about specific naming
conventions of image collections, dimensions, and their discretisation (e.g., band names).
As an example, the quality of the raw EO data, regarding, e.g., cloud coverage, is a limiting
but variable factor for backends in storing or preprocessing them. In addition, different
policies regarding, e.g., the spatial, temporal, and radiometric resolution of the stored EO
data or their chosen projection influence the need for possibly additional processing steps
by the users. The processes provided by the openEO API are currently concentrating on
raster representations. A future implementation of vector data-related processes would
grant the development of a wider spectrum of EO-related workflows.

The openEO API is designed as an open source project to connect diverse clients with
multiple EO cloud platform providers, using chains of an increasing set of representative
pre- and user-defined processes. The implemented client and backend repositories are
seen as templates for future connectivity to additional service providers and programming
languages. The currently implemented processes answer to existing needs for a diverse
range of EO-related big data processing. However, processing specific state-of-the-art
workflows often requires the use of UDFs. Future enhancements to cover expectations
from additional user communities are planned but can also be suggested/provided by
interested users. In this way, future work will directly build on the current implementation
and expand it to allow for a federation of backends. This will further benefit users by
removing one more layer of complexity in the growing ecosystem of EO data centres. With
the planned federated approach, the user will be able to transparently see and process
data collections available in different backends while the logic and monitoring of resources
used will be implicitly handled by the system. This will help foster further uptake of the
openEO API across scientific and commercial users.

A limitation of the cloud processing is that no provider currently offers public access
to processing on large EO data collections for free. Because computing is not a free resource,
this is not expected to happen any time soon. However, partners of the openEO project
were successful in their bids for scientific follow-up projects to fund the deployment of
a number of backends with openEO interfaces that will be open to the public for several
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years. Once such a critical mass builds and users become aware that DIAS-like platforms
can provide rich analytical functionality, third-party backend providers (and open source
software) will find motivation to also offer access to processing using this API.
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