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Abstract: In smartphone indoor positioning, owing to the strong complementarity between pedes-
trian dead reckoning (PDR) and WiFi, a hybrid fusion scheme of them is drawing more and more
attention. However, the outlier of WiFi will easily degrade the performance of the scheme, to remove
them, many researches have been proposed such as: improving the WiFi individually or enhancing
the scheme. Nevertheless, due to the inherent received signal strength (RSS) variation, there still exist
some unremoved outliers. To solve this problem, this paper proposes the first outlier detection and
removal strategy with the aid of Machine Learning (ML), so called WiFi-AGNES (Agglomerative
Nesting), based on the extracted positioning characteristics of WiFi when the pedestrian is static.
Then, the paper proposes the second outlier detection and removal strategy, so called WiFi-Chain,
based on the extracted positioning characteristics of WiFi, PDR, and their complementary characteris-
tics when the pedestrian is walking. Finally, a hybrid fusion scheme is proposed, which integrates the
two proposed strategies, WiFi, PDR with an inertial-navigation-system-based (INS-based) attitude
heading reference system (AHRS) via Extended Kalman Filter (EKF), and an Unscented Kalman
Filter (UKF). The experiment results show that the two proposed strategies are effective and robust.
With WiFi-AGNES, the minimum percentage of the maximum error (MaxE) is reduced by 66.5%;
with WiFi-Chain, the MaxE of WiFi is less than 4.3 m; further the proposed scheme achieves the best
performance, where the root mean square error (RMSE) is 1.43 m. Moreover, since characteristics
are universal, the proposed scheme integrated the two characteristic-based strategies also possesses
strong robustness.

Keywords: smartphone; indoor positioning; outlier detection and removal; PDR; WiFi; Kalman Filter

1. Introduction

In recent years, location-based services (LBS) have become increasingly important due
to their potential applications such as parcel or vehicle tracking, parking service, emergency
responders, social networking, and mobile commerce [1]. To obtain a high-quality LBS,
trustworthy positioning is highly demanding. At present, the accurate positioning has
been perfectly provided by Global Navigation Satellite Systems (GNSS) in the outdoor
open-sky environment, while the indoor positioning is still an unsolved problem due to
the unavailability or degradation of GNSS signals [2,3], etc. Therefore, various excellent
indoor positioning technologies have been designed and developed, such as Bluetooth Low
Energy (BLE) [4,5], WiFi RTT [6,7], Light [8], Acoustic [9], Radio Frequency Identification
(RFID) [10], Ultra-Wideband (UWB) [11], Magnetic Matching (MM) [12], Visual [13,14],
Pedestrian Dead Reckoning (PDR) [15–23], and IEEE 802.11WLAN (WiFi) [24–49]. Since
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each technology has its advantages and disadvantages, the hybrid fusion scheme has
become the mainstream research direction. Among these schemes, owing to the strong
complementarity between PDR and WiFi, the fusion of them has gained plenty of atten-
tion [50–56], and therefore becomes the research content of this paper.

For PDR technology, it contains three critical procedures: azimuth estimation, step
detection, and step length estimation [16]. Various algorithms are designed for azimuth es-
timation based on the micro-electro-mechanical system (MEMS) inertial-measurement-unit
(IMU) built-in smartphone. And various algorithms are designed for step detection such
as peak detection, zero-crossing, and auto/cross-correlation, etc. Further, the step length
is estimated by some models, such as Weinberg model, Kim model, and Scarlet model,
etc. Although a Robust Adaptive Kalman Filter (RAKF) [20] or a Robust PDR (R-PDR)
algorithm [21] can enhance the positioning performance and maintain the accuracy in the
short-term, due to the low quality of smartphones’ built-in MEMS IMU, the accumulative
error inevitably exists without upper bounds.

For WiFi technology, many studies have developed different positioning approaches,
such as the time of arrival (TOA) [57], time difference of arrival (TDOA) [58], and angle
of arrival (AOA) [59]. However, these approaches require special hardware, which may
not be feasible for a smartphone [25]. As an alternative, the received signal strength (RSS)
which can be directly observed by smartphones has been utilized for positioning in two
approaches: trilateration [60] and fingerprinting [24]. The trilateration approach converts
RSS into distances between access points (APs) and a smartphone, therefore, it needs to
know the locations of at least three APs. Compared to the trilateration approach, the
fingerprinting approach has gained plenty of attention because it is infrastructure-free
and can provide a more excellent performance [25]. Therefore, we only focus on the
fingerprinting-based approach in this paper. The fingerprinting approach consists of two
phases: offline and online phase. In the offline phase, a radio map is established to describe
the relationship between the RSS and the reference points (RPs) within the area of interest.
In the online phase, the positioning coordinate will be estimated by matching the real-time
RSS measurement received from the smartphone with the established radio map. Previous
researches have demonstrated that the fingerprinting approach possesses an accuracy of
approximately 5 m [26]. Moreover, due to the inherent RSS variation, there inevitably exist
some outliers in WiFi technology.

Based on the abovementioned situation, the hybrid fusion scheme integrated PDR and
WiFi exists a significant problem: the outlier of WiFi will easily degrade the performance
of the scheme. To solve this problem, from the authors’ point of view, there are two main
types of solutions:

1. Improving the WiFi individually: Five nearest neighbor (NN)-based algorithms are
compared based on the same radio map named Database2 in [28], which contains
100 RPs and the distance between adjacent RPs is about 2.4 m. A physical distance
of the RSS algorithm is proposed in [29] to estimate the positioning coordinate and
achieves a root mean square error (RMSE) of 4.49 m and a maximum error (MaxE) of
about 10 m. An affinity propagation clustering (APC) algorithm is proposed in [30]
and achieves an RMSE of 4.90 m and a MaxE of about 10 m. An optimal weight
KNN (OWKNN) algorithm which employs the Euclidean distance is proposed in [31]
and achieves an RMSE of 5.54 m and a MaxE of about 10 m. ZiLoc is proposed
in [32] which employs the Manhattan distance and achieves an RMSE of 5.88 m and a
MaxE of about 10 m. An approximate-position-distance-based WKNN (APD-WKNN)
algorithm is proposed in [28] and achieves an RMSE of 3.52 m and a MaxE of about
10 m. In summary, although many excellent algorithms have been proposed, due to
the inherent RSS variation, the outliers of WiFi inevitably exist in WiFi technology,
which has become a challenge for the hybrid fusion scheme.

2. Enhance the hybrid fusion scheme: Li [50] proposed a robustly constrained Kalman
filter (KF) scheme. The integrated WiFi of the scheme achieves a MaxE of over than 13
m. To lessen the effect of outliers, a chi-square test which based on Gaussian assump-
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tion is employed. However, the Gaussian assumption is not easy to be guaranteed in
practical applications due to the RSS variation caused by the signal refraction, reflec-
tion, scattering, and multi-path fading. Thus, the unremoved outliers will degrade the
performance of the scheme. Hu [51] proposed a Segment-based PDR/WiFi scheme.
In the scheme, although the AP whose RSS less than -80 dBm is deleted in the online
phase, the integrated WiFi achieves a mean error (ME) of 5.3 m and a MaxE of over
20 m, which demonstrates that there still exist many outliers. Moreover, the scheme
defines a fixed size window and utilizes the averaged coordinate of the WiFi in the
window to realize the fusion. However, the WiFi positioning coordinates will concen-
trate on a small area sometimes [52]. Therefore, the averaged coordinate may be an
outlier and further will degrade the performance of the scheme. Chen [53] proposed
an INS/WiFi scheme. The scheme employs a pre-processing technique to enhance
the WiFi signal quality and a Multi-dimensional Dynamic Time Warping (MDTW)
to improve the WiFi. However, the improved WiFi achieves a ME of 6.33 m and a
MaxE of 11.78 m on handheld motion in the first experiment, which demonstrates
that there still exist many outliers. Although the scheme automatically adjusts the
weighting coefficients of WiFi, the unremoved outliers will still be integrated into the
scheme and inevitably degrade the performance of the scheme. In summary, although
many excellent hybrid fusion schemes have been proposed, due to the inherent RSS
variation, the outliers of WiFi still exist and has become a challenge for the hybrid
fusion scheme.

The outlier inevitably exists in WiFi technology due to the inherent RSS variation,
moreover, the unremoved outliers will easily degrade the performance of the scheme. To
this end, in this paper, we proposed two strategies to realize the outlier detection and
removal. The proposed rationale is: the strategy comes from the sufficient mining and
utilization of the positioning characteristics of PDR and WiFi and the complementarity
between them. A noteworthy difference from the existing schemes is that the existing
schemes only utilize the complementarity to fuse PDR and WiFi and unexpectedly ignore
the capacity of the complementarity in outlier detection and removal, which is sufficiently
utilized in this paper. The contributions of this paper are summarized as follows:

1. We reasonably assume that the motion state of the pedestrian in smartphone indoor
positioning comprises static and walking, then based on the extracted positioning
characteristics of WiFi when the pedestrian is static, we proposed the first outlier
detection and removal strategy using Machine Learning (ML) named WiFi-AGNES
(Agglomerative Nesting).

2. Based on the extracted positioning characteristics of PDR and WiFi and the comple-
mentary characteristics when the pedestrian is walking, we proposed the second
outlier detection and removal strategy named WiFi-Chain.

3. We proposed a hybrid fusion scheme which integrates the two proposed strategies,
fingerprinting-based WiFi, PDR with an inertial-navigation-system-based (INS-based)
attitude heading reference system (AHRS) via Extended Kalman Filter (EKF) for the
azimuth estimation of PDR and an Unscented Kalman Filter (UKF) for the final fusion.

The remainder of this paper is organized as follows: Related works are discussed
in Section 2. In Section 3, we present the proposed two outlier detection and removal
strategies, and Section 4 introduces the proposed hybrid fusion scheme for smartphone
indoor positioning. In Section 5, we discuss the experiments and results. Section 6 provides
the conclusion of this paper and presents some potential future researches.

2. Related Works

The hybrid fusion scheme integrated PDR and WiFi has been extensively researched
over the past decade. In contrast, the outlier of WiFi is still a challenge for the scheme.
Here, we only focus on the related work concerning the above two solutions in terms of
the challenge.
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For improving the WiFi individually: From the authors’ point of view, the previously
proposed algorithms can be roughly divided into four types: the NN-based algorithms,
the probability-based algorithms, the AutoEncoder (AE)-based algorithms, and the deep
learning-based algorithms. In the first type, RADAR [27] is the first RSS-based fingerprint-
ing algorithm which employs the KNN algorithm and achieves a 50% error of 2.94 m and
a MaxE of over than 20 m; a WKNN algorithm is proposed in [33] and achieves a ME of
3.06 m and a MaxE of about 10 m; an improved semi-supervised affinity propagation-based
WKNN (WKNN-SAP) algorithm is proposed in [34] and achieves a ME of 2.5 m and a
MaxE of over than 20 m in the entire environment; a feature scaling based KNN (FS-KNN)
is proposed in [35] to improve the positioning performance and achieves a ME of 1.93 m
and a MaxE of about 6.5 m; a signal weighted Euclidean distance-based WKNN (SWED-
WKNN) algorithm is proposed in [36] and achieves an RMSE of 2.74 m and a MaxE of
about 10 m. In the second type, a Kernel-Based Bayesian algorithm is proposed in [37] and
achieves an RMSE of 2.71 m and a MaxE of about 12 m; a Weibull-Bayesian density model is
proposed in [25] to improve the positioning performance and achieves an RMSE of 2.59 m
and a MaxE of about 9 m on the second floor; a pairwise signal strength differences (PSSD)
strategy is proposed in [26] and achieves an RMSE of 3.0 m and a MaxE of about 11 m on
Honor 8 smartphone. In the third type, three algorithms are compared in [28] based on the
same radio map named Database2. The AE based Multi-Layer Perceptron (MLP) algorithm
is proposed in [39] which achieves an RMSE of 4.94 m and a MaxE of about 9 m; an AE
based Extreme Learning Machine (ELM) algorithm is proposed in [40] which achieves an
RMSE of 4.35 m and a MaxE of about 9.5 m; a Stacked Denoising Autoencoder (SDAE)
based MLP algorithm is proposed in [41] which achieves an RMSE of 3.89 m and a MaxE of
about 9 m. In the last type, a deep neural network (DNN) utilized the data augmentation
scheme is proposed in [42] and achieves a ME of 2.54 m and a MaxE of about 9 m; In [43],
three deep learning-based algorithms are compared, on the office testing with data from 30
RPs, a Semi-supervised Deep Extreme Learning Machine (SDELM) algorithm proposed
in [44] achieves a ME of 2.16m and a MaxE of about 6 m; a Stacked Denoising Autoencoder
based DNN (SDA-DNN) algorithm proposed in [45] achieves a ME of 2.23 m and a MaxE
of about 9.5 m; a local feature-based deep long short-term memory (LF-DLSTM) algorithm
proposed in [43] achieves a ME of 1.75 m and a MaxE of about 10 m. It is obvious that
some algorithms achieve an improved performance, however, the outliers still exist in each
algorithm due to the inherent RSS variation.

Meanwhile, there are also some algorithms which achieve much excellent performance
in their experiments, such as the best bin fast based WKNN (BBF-WKNN) algorithm
proposed in [46] achieves a ME of 1.5 m and a MaxE of over 6 m; a DNN based algorithm
CellinDeep is proposed in [47] which achieves a ME of 0.78 m and a MaxE of about 5.7 m;
a Bisecting K-means (BKM) algorithm proposed in [48] achieves a ME of 1.51 m and a
MaxE of about 10 m. Although these algorithms achieve much excellent performance, the
established radio map is too heavy to be practical. Moreover, the outliers exist in these
algorithms as well. Further, it is worth noting that the abovementioned performances are
tested on the static state, which means that the performance will be worse and the outliers
will be more distinct when the pedestrian is walking in smartphone indoor positioning.

For enhancing the hybrid fusion scheme: Li [54] proposed an improved dead-reckoning
(DR)/WiFi/MM scheme. The scheme employs QC Level #1 and QC Level #2 to remove
the outliers of WiFi and set the weight of WiFi, respectively. However, the performance of
WiFi achieves an RMSE of 5.9 m and a MaxE of over 10 m in the handheld motion of test
group #1 after QC Level #1, which demonstrates that there still exist many outliers. Further,
the rationale behind QC Level #2 is adjusting the weight via comparing the distance be-
tween the current WiFi coordinate and the previous fusion coordinate with the predefined
threshold. However, the distance cannot effectively reflect the uncertainty of the current
WiFi coordinate for the accuracy of the previous fusion coordinate is uncertain in the filter.
Therefore, an improper weight of an outlier will easily degrade the performance of the
scheme. Zhou [55] proposed a PDR/WiFi scheme in which a variable-size sliding window



Remote Sens. 2021, 13, 1106 5 of 23

is employed to improve the scheme of [51] in the turning point. The integrated WiFi
achieves a ME of 3.72 m, which demonstrates that there exist some outliers. Similar to [51],
the averaged coordinate may be an outlier and further will degrade the performance of
scheme. Deng [56] proposed a PDR/WiFi/Landmarks scheme. To improve the WiFi, the
scheme employs the previous fusion coordinate as a trusted area to limit the search area
of WiFi and proposes a strategy to remove the outliers. However, the performance of the
improved WiFi achieves a ME of 2.43 m and a MaxE of over 10 m, which demonstrates
that there still exist many outliers. Moreover, a kernel density estimation-based model
is utilized to adaptively measurement the measurement noise statistics of WiFi, which
means that all of the WiFi positioning coordinates including the unremoved outliers will be
integrated into the scheme, thus the performance of the scheme will inevitably be degraded.

According to the previous work, the inherent RSS variation will inevitably result in
the outliers in the WiFi algorithm and further the unremoved outliers will easily degrade
the performance of the scheme. Nevertheless, PDR and WiFi possess some distinct posi-
tioning characteristics, which can be utilized to remove the outliers out. Moreover, the
complementarity between PDR and WiFi can be utilized to not only fuse them but also
realize the outlier detection and removal, however, the latter is unexpectedly ignored in
the existing schemes to the best of our knowledge. Therefore, we proposed two strategies
named WiFi-AGNES and WiFi-Chain based on the positioning characteristics and the
complementary characteristics in terms of the positioning level and these strategies have
never been addressed before to the best of our knowledge.

3. Outlier Detection and Removal Strategy

In this section, we detail the two proposed outlier detection and removal strategies.
The proposed rationale is: strategy comes from the sufficient mining and utilization
of the positioning characteristics of PDR, WiFi, and the complementarity between them.
Therefore, it is a prerequisite to analyze the positioning characteristics and complementarity.
Since different motion states possess different characteristics, we reasonably assume that
the motion state of the pedestrian in smartphone indoor positioning comprises static
and walking, which is recognized via the step detection of PDR in this paper. Then, the
characteristics are analyzed at each state and further the strategies are proposed accordingly.

3.1. Strategy for Static State
3.1.1. Positioning Characteristics of WiFi

When the pedestrian is static, since there is no step detected, therefore we just analyze
the positioning characteristics of WiFi. A one-minute experiment is implemented, in which
the employed WiFi technology has been executed individually for about one minute in the
static state, and the experiment results are shown in Figure 1:

From Figure 1, we can extract four positioning characteristics of WiFi:

1. Any two WiFi are independent with each other, which indicates that there is no
cumulative error.

2. Among the received WiFi, relatively, some are approximately accurate and therefore
close to the true coordinate, while the others are jumping and therefore far from the
true coordinate.

3. Among the received WiFi, taking the radius of the blue circle as a threshold, in the
sense of Euclidean distance, the approximately accurate WiFi coordinates fall in
the circle and form a cluster, while the jumping WiFi are scattered and not formed
a cluster.

4. Among the received WiFi, the quantity of WiFi inside the circle is more than that outside.
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Figure 1. Experiment results in the static state. (a) The label next to the WiFi represents the received
number and error, respectively, the blue circle represents a circle with a center at the true coordinate
and a radius of 2 m; (b) The error histogram of WiFi.

3.1.2. WiFi-AGNES

Based on the above-extracted positioning characteristics of WiFi, the idea of WiFi-
AGNES can be detailed as follows:

In the smartphone indoor positioning, the approximately accurate WiFi described
in the second characteristic is what we desire certainly. To obtain them, based on the
third characteristic, the significant difference between the approximately accurate WiFi
and the jumping WiFi is that the former forms a cluster while the latter is not in the sense
of Euclidean distance when giving a predefined threshold, such as the blue circle shown
in Figure 1a, that is, if we obtain the cluster, we will obtain the approximately accurate
WiFi. This is an obvious clustering problem and further reminds us of the unsupervised
hierarchical clustering algorithm in ML [61], which will generate a dendrogram. Then,
by taking the predefined threshold as the distance of clusters, a bunch of clusters can be
obtained from the dendrogram. The bunch of clusters contains not only the desired cluster,
but also the clusters formed by the jumping WiFi. To pick out the desired cluster, based
on the fourth characteristic, the significant difference between the desired cluster and the
others is that the former possesses the largest quantity of WiFi, that is, if we pick out the
cluster which possesses the largest quantity of WiFi, we will obtain the desired cluster, and
the cluster contains the approximately accurate WiFi we desire. Based on this idea, the
specific workflow of WiFi-AGNES is detailed as follows:

Firstly: In static, a series of WiFi are received in chronological order such as:

T =
{
(x1, y1) · · ·

(
xt−n, yt−n

)
· · · (xt, yt)

}
(1)

where T represents a set which contains the received WiFi,
(
xt−n, yt−n

)
represents the WiFi

coordinate received at t− n.
Second: We adopt the average-linked AGNES as the unsupervised hierarchical clus-

tering algorithm of ML and initialize the AGNES as follows:

Ct−n =
{(

xt−n, yt−n
)}

CT = {C1 · · ·Ct−n · · ·Ct}
(2)

where Ct−n represents an initial cluster containing one sample which is obtained from the
set T and is the WiFi received at t−n in Equation (1), and the coordinate of the WiFi is
regarded as the feature of the sample, CT represents a set which contains all of the current
clusters.

Third: An obvious prerequisite to start AGNES is that there should be a certain number
of clusters in CT, therefore when Equation (3) is satisfied, we start AGNES and calculate
the linked metric of AGNES as follows:

t ≥ THR1 (3)
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M[m, n] = davg(Cm, Cn) =
1

|Cm||Cn| ∑
i∈Cm

∑
j∈Cn

dij (m 6= n, 1 ≤ m, n ≤ t) (4)

where Cm and Cn represent two different clusters, davg(Cm, Cn) represents the average
distance between Cm and Cn, M represents the linked metric, where the entry in the mth
row and nth column equals davg(Cm, Cn), |Cm| and |Cn| represent the sample size of Cm
and Cn, respectively, i and j represent a sample in Cm and Cn, respectively, THR1 represents
a predefined threshold of the number of clusters in CT and can be empirically determined,
dij represents the Euclidean distance between i and j, which can be calculated as follows:

dij =

√(
xi−xj

)2
+
(

yi−yj

)2
(5)

where (xi, yi) and
(

xj, yj

)
represent the feature of the sample i and j, respectively.

Then based on the AGNES algorithm, an iterative aggregation calculation will be
executed until the number of clusters in CT equals 1, and the abovementioned dendrogram
can be generated.

Fourth: Taking the predefined threshold as the distance of clusters, and obtaining the
bunch of clusters within the threshold from the dendrogram as follows:

S =
{

Cp
∣∣D(Cp

)
< THR2

}
(6)

where S represents a set which contains the bunch of clusters, Cp represents a cluster in
the dendrogram, D

(
Cp
)

represents the distance of clusters of Cp, which can be obtained
from the linked metric M, and THR2 represents the predefined threshold of the clusters
determination and can be determined based on the interval of the RPs in the established
radio map.

Fifth: Pick out the desired cluster from S as follows:

Cdes = argmax
Q

(S) (7)

where Cdes represents the desired cluster which contains the approximately accurate WiFi,
argmax

Q
(S) represents picking out the cluster which possesses the most quantity of WiFi

from S.
Finally: Based on Cdes, calculating the current coordinate as follows:

(
xcur, ycur

)
=

(
1
|Cdes| ∑

q∈Cdes

xq,
1
|Cdes| ∑

q∈Cdes

yq

)
(8)

where
(
xcur, ycur

)
represents the current coordinate via WiFi-AGNES, |Cdes| represents the

sample size of Cdes, q represents the qth sample in Cdes,
(

xq, yq

)
represents the coordinate

of the qth sample.
So far, based on the extracted positioning characteristics of WiFi in static, the strategy

named WiFi-AGNES is proposed using ML, and with which we realize the outlier detection
and removal and obtain the approximately accurate WiFi and the current coordinate(
xcur, ycur

)
simultaneously. Since characteristics are universal, the characteristic-based

WiFi-AGNES is robust. Further, we will integrate the WiFi-AGNES into the proposed
hybrid fusion scheme to mitigate the effect of outliers of WiFi and improve the performance
of the scheme when the pedestrian is static. The details of the unsupervised hierarchical
clustering algorithm of ML and the AGNES are shown in [61,62].
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3.2. Strategy for Walking State
3.2.1. Positioning Characteristics of PDR and WiFi

When the pedestrian is walking, an experiment is implemented, in which we have
executed the PDR technology and the employed WiFi technology simultaneously for about
forty seconds, and the experiment results are shown in Figures 2 and 3:
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From Figure 2, we can extract two positioning characteristics of PDR:

1. The maximum error difference of PDR does not exceed 0.3 m, which indicates that
the relative accuracy of PDR is high, regardless of the absolute error.

2. On the basis that there is no absolute error in the first step, the absolute error of the
last step reaches 11.83 m, which indicates that PDR has a cumulative error in the
long term.

From Figure 3, we can extract five positioning characteristics of WiFi:

1. Any two WiFi are independent with each other, which indicates that there is no
cumulative error.

2. Among the received WiFi, relatively, some are approximately accurate, while the
others are jumping.

3. Among the received WiFi, assuming that we take 3 m as the dividing line, the number
of approximately accurate WiFi is more than the jumping.

4. Due to the inherent RSS variation, there is a randomness in the jumping WiFi.
5. Among the received WiFi, the jumping WiFi is received intermittently.
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3.2.2. Complementary Characteristics between PDR and WiFi

According to the above-extracted positioning characteristics, it is obvious that there
exists a strong complementarity between PDR and WiFi: the cumulative error of PDR can
be revised by WiFi and the jumping of WiFi can be restrained by PDR simultaneously.
Moreover, the complementarity also has a capacity in outlier detection and removal which
is sufficiently utilized in WiFi-Chain. To this end, we couple PDR and WiFi by means of
the vector at first as follows:

Vpre
t−1 =

[
x̃t−1 − xpre

t−1
ỹt−1 − ypre

t−1

]
Vpost

t =

[
x̃t − xpost

t
ỹt − ypost

t

]
(9)

where
(

xpre
t−1, ypre

t−1

)
and

(
xpost

t , ypost
t

)
represent the coordinate of the scheme before and

after the time update of PDR at t− 1 and t, respectively,
(
x̃t−1, ỹt−1

)
and (x̃t, ỹt) represent

the coordinate of received WiFi at t− 1 and t, respectively, Vpre
t−1 and Vpost

t represent the
coupled vector.

Then, based on the second and fourth characteristics of WiFi, the error level of the
received WiFi at one moment can be relatively divided into two levels: approximately
accurate L0 and jumping L1, and let’s consider any two adjacent moments when the
pedestrian is walking as shown in Figure 4.
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Figure 4. Coupled PDR and WiFi for any two adjacent moments. The left and right red rectangle rep-

resent the coordinate
(

xpre
t−1, ypre

t−1

)
and

(
xpost

t , ypost
t

)
in Equation (9), respectively, the circle labelled

with WLi
j represents the received WiFi with the error level Li at j, the upward line segment labelled

with VLi
j represents the coupled vector by Equation (9), the green segment represents the time update

of the scheme via PDR.

Based on the first positioning characteristic of PDR and WiFi, an obvious complemen-
tary characteristic can be extracted from Figure 4: with a predefined threshold, if the two
Wi-Fi received at any two adjacent moments possess different error levels, then the two
corresponding coupled vectors will be very different, otherwise, the two vectors will be
approximately equal such as follows:

‖VLi
t −VLi

t−1‖2 ≤ THR3 (10)

where ‖•‖2 represents the Euclidean norm, THR3 represents the predefined threshold of
the complementary characteristic determination and can be determined based on the 68%
error of the WiFi technology.

We summarize all cases of the two coupled vectors and the corresponding comple-
mentary characteristics for any two adjacent moments as shown in Table 1:
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Table 1. Cases and Complementary Characteristics.

Complementary
Characteristics Case Two Coupled Vectors

≈ Case1
[
VL0

t , VL0
t−1

]
Case2

[
VL1

t , VL1
t−1

]
6= Case3

[
VL0

t , VL1
t−1

][
VL1

t , VL0
t−1

]
3.2.3. WiFi-Chain

So far, based on the positioning characteristics of PDR, WiFi and the complementary
characteristics of them, the idea of WiFi-Chain can be detailed as follows:

In the smartphone indoor positioning, based on the fifth positioning characteristic
of WiFi, the three cases will occur alternately. Whereas only Case1 which contains two
approximately accurate WiFi is what we want certainly. To obtain Case1, the significant
difference between Case1 and the others is that Case1 occurs more often based on the third
positioning characteristic of WiFi, therefore we can accumulate the number of occurrences
of Case1 by first picking it out based on the difference of the complementary characteristic
between Case1 and Case3. Although Case1 and Case2 possess the same complementary
characteristic, Case2 will easily transform into Case3 due to the fourth positioning char-
acteristic of WiFi and further can be separated from Case1 base on the complementary
characteristic as well. Based on this idea, the specific workflow of WiFi-Chain is detailed
as follows:

Firstly: Initialization. We define a combined variable 〈Num, V〉, and initialize it when
receiving the first WiFi WLi

t0
as follows:

〈Num, V〉 =
〈

1, VLi
t0

〉
s.t. Num >= 1 (11)

where the minimum value of Num is 1, and VLi
t0

represents the coupled vector of WLi
t0

by
Equation (9).

Second: For the next received WiFi such as WLi
tj

, we calculate the coupled vector VLi
tj

at first, then if V and VLi
tj

is approximately equal, we add 1 to Num, and let V equals VLi
tj

,
otherwise, we subtract 1 from Num while ensuring that its value is not less than 1, and let
V equal VLi

tj
only when Num equals 1.

In this workflow, with the number of received WiFi increases, V represents the coupled
vector of the approximately accurate WiFi for the third positioning characteristic of WiFi,
Num represents the number of WiFi with the error level represented by the coupled vector
V more than the WiFi with the other error level. Further based on the third positioning
characteristic of WiFi, the current WiFi will be regarded as the approximately accurate WiFi
when Num exceeds a certain threshold such as follows:

Num > THR4 (12)

where THR4 represents the predefined threshold of the cumulative number of Num and
can be empirically determined.

In summary, in WiFi-Chain, we sufficiently utilize the complementarity of PDR and
WiFi by coupling them in a way of vector, and based on the extracted positioning char-
acteristic and the complementary characteristics, we obtain the approximately accurate
WiFi even if the error level of the initial WiFi is unknown, and achieve the outlier detection
and removal simultaneously. Since characteristics are universal, the characteristic-based
WiFi-Chain is robust. Further, we will integrate the WiFi-Chain into the proposed hybrid
fusion scheme to mitigate the effect of outliers of WiFi and improve the performance of the
scheme when the pedestrian is walking.
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4. Proposed Hybrid Fusion Scheme
4.1. System Overview

Figure 5 overviews the architecture of the proposed hybrid fusion scheme for smart-
phone indoor positioning. In the scheme, we integrated the two proposed outlier detection
and removal strategies, and considering the effect of the pitch, roll, magnetic inclination,
and magnetic declination on azimuth, we design an INS-based AHRS via EKF to estimate
the azimuth of PDR, and a UKF is designed to fuse the PDR and WiFi ultimately. Moreover,
although the smartphone contains four basic poses, i.e., handheld, swinging, calling, and
pocket [16], this paper only considers the most common handheld pose.
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4.2. PDR Technology

PDR is a recursive positioning technology which contains three critical procedures:
azimuth estimation, step detection, and step length estimation. The principle of PDR can
be expressed as follows:

Pt = Pt−1 + Dt·
[

sin(ψt)
cos(ψt)

]
(13)

where Pt = (xt, yt) and Pt−1 =
(
xt−1, yt−1

)
represent the pedestrian’s coordinate at t

and t− 1, respectively, Dt and ψt represent the estimated step length and azimuth at t,
respectively.

4.2.1. Azimuth Estimation

Attitude Updating of INS Mechanization
The basic idea of the attitude updating in INS Mechanization is that the attitude can

be obtained by integrating the angular rates provided by the triple-axis gyroscope. Due
to the low quality of smartphones’ built-in MEMS IMU, we have neglected certain small
error correction terms (i.e., rotation of the Earth) of the INS mechanization for their slight
improvement in navigation performance. The discrete attitude updating algorithm of INS
mechanization with a unit quaternion can be expressed as follows:

Qnc
b(t) = Qnc

b(t−1) ◦Qb(t−1)
b(t)

Qb(t−1)
b(t) =

 cos
(

∆θt
2

)
∆θt
‖∆θt‖2

sin
(

∆θt
2

) 
∆θt =

(
ω̃b

ib − εb
g

)
∆t

(14)
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where ω̃b
ib represents the angular rate measurement vector from triple-axis gyroscope, εb

g
represents the drift vector of the triple-axis gyroscope, ∆t is the time interval between two
adjacent moments, Qnc

b is the quaternion rotation from the body coordinate system (i.e.,
b-frame) to the computed navigation coordinate system (i.e., nc-frame).

The transformation from the quaternion rotation Qnc
b = [q1, q2, q3, q4] to the rotation

matrix Cnc
b can be expressed as follows:

Cnc
b =

 q2
1 + q2

2 − q2
3 − q2

4 2(q2q3 − q1q4) 2(q2q4 + q1q3)
2(q2q3 + q1q4) q2

1 − q2
2 + q2

3 − q2
4 2(q3q4 − q1q2)

2(q2q4 − q1q3) 2(q3q4 + q1q2) q2
1 − q2

2 − q2
3 + q2

4

 (15)

System Model
As the low-grade MEMS IMU in the smartphone has large gyroscope drift, which

will degrade the accuracy of AHRS, an EKF is usually utilized to fuse multi-measurement
information to improve the performance. The state variables are defined as:

δx =

[
(φ)1×3

(
εb

g

)
1×3

]
(16)

where φ represents the attitude error vector in the n-frame, εb
g represents the drift of the

triple-axis gyroscope.
The discrete linearization of the system error model can be expressed as follows:{

δxt,t−1 = Φt−1δxt−1,t−1 + wt
δzt = Htδxt,t−1 + vt

(17)

where δxt−1,t−1 represents the previous error state vector, δxt,t−1 represents the predicted
error state vector, δzt represents the measurement misclosure vector, Ht represents the
design matrix, wt and vt represent the system process noise and measurement noise,
respectively, and Φt−1 represents the 6× 6 state transition matrix:

Φt−1 =

[
I3×3 −Cnc

b(t) · ∆t
03×3 I3×3

]
(18)

where ∆t is the time interval between two adjacent moments.
The rotation matrix Ĉn

b from the body coordinate system (i.e., b-frame) to the true
navigation coordinate system (i.e., n-frame) can be calculated via feedback as follows:

Ĉn
b= (1+φ×

)
Cnc

b (19)

The estimated azimuth ψt for PDR can be calculated as follows:

ψt =

{
−atan2(C 12, C22), i f |C32| ≤ 0.999999

0 i f |C32| > 0.999999
(20)

where Cij is the element at the ith row and jth column of Ĉn
b .

The azimuth rate
.
ψt can be calculated as follows:

.
ψt =

⌊
Ĉn

b

(
ω̃b

ib − εb
g

)⌋
3

(21)

where b c3 represents taking the third coordinate.
Measurement Model
Regarding Earth gravity sensing ability, the triple-axis accelerometers are usually

utilized to update the AHRS in the absence of external acceleration. The absolute value of
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the difference between the triple-axis accelerometer measurement vector and Earth’s gravity
is utilized to determine whether external acceleration exists, which can be expressed as:∣∣∣‖ f̃ b‖2 − ‖ f n‖2

∣∣∣ ≤ THR5 (22)

where f̃ b and f n =
[

0 0 −g
]

represent the triple-axis accelerometer measurement
vector and the Earth gravity vector, respectively, THR5 represents the predefined threshold
of the external acceleration determination and can be empirically determined.

Then, the accelerometer measurement model can be expressed as follows:

δza =

[
f̃ b

‖ f̃ b‖2
− f̃ b

ins
‖ f̃ b

ins‖2

]
=

[
f̃ b

‖ f̃ b‖2
− −(Ĉn

b)
T

f n

‖ f n‖2

]
= Ht1 × δx + v1 =

[
−Cb

nc(
f n

‖ f n‖2
×) 03×3

][ φ

εb
g

]
+ v1

(23)

where f̃ b represents the accelerometer reading vector, v1 represents the measurement noise.
Regarding geomagnetic field sensing ability, the triple-axis magnetometers are usually

utilized to update the AHRS in the absence of any external magnetic field interference.
Whereas, there are frequent magnetic field disturbances caused by the man-made infras-
tructure in indoor environments, to mitigate the effect of the disturbance, the weight for
the magnetometer measurements was set at a very small value in our model. Moreover,
to avoid the effect of horizontal angle error, the triple-axis magnetometer readings rather
than the absolute azimuth are utilized by means of tight coupling. The magnetometer
measurement model can be expressed as follows:

δzm =

[
m̃b

‖m̃b‖2
− m̃b

ins
‖m̃b

ins‖2

]
=
[

m̃b

‖m̃b‖2
− Ĉb

nCn
m Hm

‖Hm‖2

]
= Ht2 × δx + v2 =

[
Cb

nc(
(

Cn
m Hm

‖Hm‖2

)
×) 03×3

][ φ

εb
g

]
+ v2

(24)

where m̃b represents the triple-axis magnetometer measurement vector, v2 represents the
measurement noise. Hm =

[
0 H 0

]
represents the geomagnetic field in the magnetic

coordinate system (i.e., m-frame), and Cn
m represents the rotation matrix from the m-frame

to the n-frame and can be expressed as follows:

Cn
m =

 cos(ηz) − cos(ηx) sin(ηz) − sin(ηx) sin(ηz)
sin(ηz) cos(ηx) cos(ηz) sin(ηx) cos(ηz)

0 − sin(ηx) cos(ηx)

 (25)

where ηx = 47.22◦ and ηz = 4.68◦ represent the magnetic inclination angle and declination
angle in WuHan, respectively, which can be calculated from the IGRF model [63,64].

Based on the system model and measurement model, the AHRS can be executed
according to Figure 6.

4.2.2. Step Detection and Step Length Estimation

We employ the peak detection algorithm to detect the step due to its small computation
and high success rate, and the Weinberg model to estimate the step length due to its
practicability [15]. Weinberg model assumes that the step length D is proportional to the
vertical movement of the human hip and can be expressed as follows:

D =K· 4
√

amax
z − amin

z (26)

where amax
z and amin

z represent the maximum and minimum value of the vertical accelera-
tion in one step period, respectively, K represents the predefined parameter to obtain the
appropriate step length and can be empirically determined.
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4.3. WiFi Technology

In this paper, a probabilistic algorithm of fingerprinting positioning technology
named Weibull probability density function fingerprinting algorithm based on the Weibull-
Bayesian density model with dynamic bin is employed, since the algorithm not only
possesses an excellent positioning accuracy, but also reduces the workload in establishing
the radio map [25], Figure 7 presents an overview of the architecture of the employed WiFi
technology.
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4.4. Hybrid Fusion via UKF

Although many researchers adopt different filters to fusion PDR and WiFi, such as KF,
EKF, and Particle filter (PF) [65,66], in this paper, the UKF which is a non-linear filtering
algorithm based on the unscented transform is adopted for the following considerations:

1. There exists a non-linear in the proposed hybrid fusion scheme when considering
the azimuth as a state variable. In this situation, KF is inapplicable for its linear
nature. EKF is also inapplicable for its linearization error and hence will degrade the
positioning accuracy [52].

2. Compared with PF, UKF is a lighter filter that is more suitable for real-time positioning
on the resource-limited smartphone.

The state equation of UKF is designed as follows:

Xt =


xt
yt
st
ψt.
ψt

 =


xt−1 + st·∆t· sin(ψt)
yt−1 + st·∆t· cos(ψt)

st−1

ψt−1 +
.
ψt·∆t

.
ψt−1

+ wt (27)

where (xt, yt), st, ψt, and
.
ψt represent the two-dimensional coordinate, speed, azimuth and

azimuth rate, respectively, ∆t represents the time interval between two adjacent moments,
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and wt represents the system process noise with the covariance matrix Qt = E
(
wtwT

t
)
, and

Qt can be empirically determined.
The measurement equation of UKF is designed as follows:

Zt =
[

xt yt st ψt
.
ψt

]T
= HtXt + vt (28)

where (xt, yt) represents the two-dimensional measurement coordinate from WiFi, st =

Dt/∆t represents the measurement speed from PDR, ψt and
.
ψt represent the measurement

azimuth and azimuth rate from AHRS, Ht represents the design matrix and is a five-
dimensional identity matrix I5×5, vt represents the measurement noise with the covariance
matrix Rt = E

(
vtvT

t
)
, and Rt can be empirically determined.

The implementation of the UKF algorithm is detailed in [52].

5. Experimental Evaluation
5.1. Experimental Environment Deployment

The experimental environment is provided by Siriandhorn Research Center at Wuhan
University, which is a typical office environment. Figure 8 shows the layout of the exper-
imental site, the experimental path, and the RPs. The site is about 90 m in length and
contains 12 control points with known coordinates in terms of CGCS2000 [67]. To establish
the radio map, 47 RPs were established on a grid map at intervals of approximately 2.5 m,
and 30 sets of RSS samples were collected at each RP via a Samsung Galaxy S8 smartphone
with the Android 8.0 operation system to estimate the parameters of the Weibull signal
model [25].

The smartphone is also employed as the positioning device which outputs the posi-
tioning coordinates of the proposed hybrid fusion scheme at a frequency of 50 Hz, and the
raw data sampling frequency of WiFi, accelerometer, gyroscope, and magnetometer are
0.72 Hz, 50 Hz, 50 Hz, and 50 Hz, respectively. Another positioning device is a handheld
SLAM which comprises a single scan lidar with a frequency at 40 Hz and an IMU with a
frequency at 100 Hz, the SLAM can output the local coordinates with a frequency at 50 Hz
by executing an algorithm named Cartographer SLAM of Google [68]. The output local
coordinates can be transformed into the coordinates in terms of CGCS2000 and further be
utilized to evaluate the positioning performance of the smartphone. Figure 9 shows the
two employed devices.
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Besides, in this paper, we predefined the value of THR1, THR4, THR5, and THR6 as 6,
3, 0.05 m/s2, and 0.556 based on our testing results, respectively, the value of THR2 as 3 m
based on the interval of RPs which is approximately 2.5 m in our established radio map, and
the value of THR3 as 2.5 m based on the 68% error of the employed WiFi technology [25];
further, the value of Qt and the initial value of Rt in UKF is predefined as follows:
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Qt =


2e− 3 0 0 0 0

0 2e− 3 0 0 0
0 0 5e− 5 0 0
0 0 0 0.01 0
0 0 0 0 0.01

 Rt =


3 0 0 0 0
0 3 0 0 0
0 0 0.02 0 0
0 0 0 16 0
0 0 0 0 9

 (29)

Finally, based on the abovementioned deployed environment, the running time for
once filtering is approximately 8 ms on the employed smartphone.
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5.2. Experimental Setup and Performance

We set three experiments, and the performance can be evaluated as follows:

E = ‖Ptrue − Ploc‖2, (30)

where Ptrue and Ploc represent the two-dimensional true coordinates and the to be evaluated
positioning coordinates, respectively, E represents the positioning error.

The first experiment is designed to demonstrate the capacity of the handheld SLAM
device in evaluating the positioning performance of the smartphone. We run the device
along the experimental path shown in Figure 8 with a normal walking speed of approxi-
mately 1 m/s and then transform the output local coordinates into the coordinates in terms
of CGCS2000 via a planar four-parameter coordinate transformation model [69]. Further
taking the known coordinates of control points as the true coordinates, the performance of
the transformed coordinates can be evaluated by Equation (30).

Figure 10 shows the cumulative distribution function (CDF) of the transformed coor-
dinates for the handheld SLAM device. The RMSE, 95% error, 68% error, ME, MaxE, and
Minimum error are 0.097 m, 0.165 m, 0.116 m, 0.083 m, 0.188 m, and 0.005 m, respectively.
This performance is much more accurate than the meter-level positioning performance
of the smartphone, therefore the handheld SLAM device is competent to evaluate the
positioning performance of the smartphone.

The second experiment is designed to evaluate the performance of WiFi-AGNES. We
randomly select 9 control points in Figure 8, and the employed WiFi technology is executed
individually for about four minutes at each control point in the static state. When Equation
(3) is satisfied, we will execute WiFi-AGNES. Further taking the coordinates of the control
points as the true coordinates, the performance of the WiFi technology with and without
WiFi-AGNES can be evaluated by Equation (30), respectively.

Table 2 and Figure 11 show the various statistical results and the CDF for the evaluated
9 control points, respectively. Where AGNES and NO-AGNES represent the positioning of
WiFi technology with and without WiFi-AGNES, respectively. In Table 2, compared to the
68% error of NO-AGNES which are 1.62 m, 1.73 m, 2.05 m, 1.02 m, 1.94 m, 1.35 m, 1.58 m,
0.72 m, and 1.11 m at the 9 control points, respectively, the MaxE are 7.34 m, 6.47 m, 13.89 m,
2.06 m, 12.32 m, 11.06 m, 5.55 m, 2.44 m, and 2.95 m, respectively, which demonstrates that
there are many outliers of WiFi technology at each control point and verifies the extracted
characteristics in Section 3.1.1; with AGNES, the MaxE are 1.09 m, 0.67 m, 2.05 m, 0.60 m,
0.85 m, 0.61 m, 0.72 m, 0.35 m, and 0.92 m at the 9 control points, respectively, compared
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to NO-AGNES, the improved percentages are 85.1%, 89.6%, 85.2%, 70.9%, 93.1%, 94.5%,
87.0%, 85.7%, and 68.8%, respectively, which demonstrates that the proposed strategy
WiFi-AGNES can effectively achieve the outlier detection and removal. Moreover, the
RMSE of AGNES are 0.87 m, 0.58 m, 1.14 m, 0.50 m, 0.45 m, 0.41 m, 0.35 m, 0.22 m, and
0.90 m at the 9 control points, respectively, which are more excellent than NO-AGNES of
2.96 m, 2.6 m, 2.33 m, 1.27m, 1.89 m, 2.54 m, 2.06 m, 1.33 m, and 1.13 m, respectively, the
improved percentages are 70.6%, 77.7%, 51.1%, 60.6%, 76.2%, 83.9%, 83.0%, 83.5%, and
20.4%, respectively; further taking P7 as an example, the RMSE, 95% error, 68% error, ME,
MaxE, and Minimum error of AGNES are 0.41 m, 0.59 m, 0.52 m, 0.38 m, 0.61 m, and 0.19 m,
respectively, which are better than the corresponding values 2.54 m, 5.27 m, 1.35 m, 1.76 m,
11.06 m, and 0.69 m of NO-AGNES, the improved percentages are 83.9%, 88.8%, 61.5%,
78.4%, 94.5%, and 72.5%, respectively. Moreover, it is worth noting that except for P6, we
even reduced the Minimum error at other control points by AGNES, which are 0.79 m,
0.36 m, 0.44 m, 0.36 m, 0.19 m, 0.26 m, 0.07 m, and 0.57 m, respectively, while the Minimum
error of NO-AGNES are 0.81m, 0.63 m, 0.59 m, 0.94 m, 0.69 m, 0.44 m, 0.52 m, and 0.92 m,
respectively, the improved percentages are 2.5%, 42.9%, 25.4%, 61.7%, 72.5%, 40.9%, 86.5%
and 38.0%, respectively, these improvements come from the average of the coordinates of
the selected cluster via Equation (8) in WiFi-AGNES. These performances demonstrate that
the proposed strategy WiFi-AGNES is effective. Figure 11 verifies the above performance
from another perspective.
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The third experiment is designed to evaluate the performance of the proposed strategy
WiFi-Chain and the proposed hybrid fusion scheme which integrates the two proposed
outlier detection and removal strategies. We take the experiment along the experimental
path showed in Figure 8 with a normal walking speed of approximately 1 m/s, and a
snapshot is showed in Figure 9. To evaluate the performance of WiFi-Chain, we record the
WiFi which satisfies both Equation (10) and Equation (12), and to evaluate the performance
of WiFi-AGNES again, considering the requirement of evaluation and time costs, we will
stand at each of the remaining three control points (i.e., P3, P9, and P12) for about 1
minute (i.e., about 40 WiFi coordinates will be received at each control point) during the
experiment. Further taking the transformed coordinates of the handheld SLAM device
as the true coordinates of the scheme and WiFi-Chain, and the coordinates of the control
points as the true coordinates of WiFi-AGNES, the performance can be evaluated via
Equation (30).
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Table 2. Various statistical results for the evaluated 9 control points.

Control Point & Strategy Error (m)

RMS 95% 68% Mean Maximum Minimum

P1 AGNES 0.87 70.6% * 1.02 86.1% * 0.89 45.1% * 0.87 61.7% * 1.09 85.1% * 0.79 2.5% *NO-AGNES 2.96 7.34 1.62 2.27 7.34 0.81

P2 AGNES 0.58 77.7% * 0.63 85.1% * 0.63 63.6% * 0.57 72.6% * 0.67 89.6% * 0.36 42.9% *NO-AGNES 2.6 4.23 1.73 2.08 6.47 0.63

P4 AGNES 1.14 51.1% * 2.05 57.1% * 0.67 67.3% * 0.93 41.9% * 2.05 85.2% * 0.44 25.4% *NO-AGNES 2.33 4.78 2.05 1.6 13.89 0.59

P5 AGNES 0.50 60.6% * 0.58 71.8% * 0.53 48.0% * 0.49 58.8% * 0.60 70.9% * 0.36 61.7% *NO-AGNES 1.27 2.06 1.02 1.19 2.06 0.94

P6 AGNES 0.45 76.2% * 0.67 75.5% * 0.56 71.1% * 0.40 69.0% * 0.85 93.1% * 0.21 0.0% *NO-AGNES 1.89 2.74 1.94 1.33 12.32 0.21

P7 AGNES 0.41 83.9% * 0.59 88.8% * 0.52 61.5% * 0.38 78.4% * 0.61 94.5% * 0.19 72.5% *NO-AGNES 2.54 5.27 1.35 1.76 11.06 0.69

P8 AGNES 0.35 83.0% * 0.49 91.2% * 0.34 78.5% * 0.34 75.2% * 0.72 87.0% * 0.26 40.9% *NO-AGNES 2.06 5.55 1.58 1.37 5.55 0.44

P10 AGNES 0.22 83.5% * 0.28 88.5% * 0.24 66.7% * 0.21 80.6% * 0.35 85.7% * 0.07 86.5% *NO-AGNES 1.33 2.44 0.72 1.08 2.44 0.52

P11 AGNES 0.90 20.4% * 0.92 17.1% * 0.92 17.1% * 0.90 15.1% * 0.92 68.8% * 0.57 38.0% *NO-AGNES 1.13 1.11 1.11 1.06 2.95 0.92

* The degree of performance improvement of AGNES compared to NO-AGNES.

Table 3 and Figure 12a show the various statistical results and the CDF of the posi-
tioning error, respectively. Where Fusion represents the fusion scheme with neither WiFi-
AGNES nor WiFi-Chain, Fusion+WiFi-AGNES and Fusion+WiFi-Chain represent the fusion
scheme which only integrates WiFi-AGNES and WiFi-Chain, respectively, Fusion+WiFi-
AGNES+WiFi-Chain represents the proposed hybrid fusion scheme which integrates both
WiFi-AGNES and WiFi-Chain. In Table 3, compared to Fusion, which achieves an RMSE,
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95% error, 68% error, ME, MaxE, and Minimum error of 2.08 m, 4.12 m, 1.93 m, 1.67 m,
7.47 m, and 0.04 m, respectively, the improved percentages of Fusion+WiFi-Chain are
18.8%, 20.6%, 9.3%, 15.0%, 42.4%, and 50.0%, respectively, the improved percentages of
Fusion+WiFi-AGNES are 9.1%, 5.1%, 16.1%, 13.8%, 0.0%, and 0.0%, respectively, and the
improved percentages of Fusion+WiFi-AGNES+WiFi-Chain are 31.3%, 35.9%, 19.2%, 28.7%,
46.6%, and 50.0%, respectively. It is obvious that the proposed hybrid fusion scheme
achieves the best performance, which demonstrates that the two proposed strategies are
effective in outlier detection and removal. Figure 12a verifies the above performance from
another perspective.
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Table 3. Various statistical results.

Algorithm Error (m)

RMS 95% 68% Mean Maximum Minimum

Fusion
+WiFi-AGNES+WiFi-Chain 1.43 2.64 1.56 1.19 3.99 0.02

Fusion+WiFi-AGNES 1.89 3.91 1.62 1.44 7.47 0.04
Fusion+WiFi-Chain 1.69 3.27 1.75 1.42 4.30 0.02

Fusion 2.08 4.12 1.93 1.67 7.47 0.04
PDR 18.83 30.10 22.31 16.87 32.37 0.25

All-WiFi 2.97 6.97 2.25 2.10 9.44 0.02
WiFi-Chain-WiFi 1.64 3.64 1.82 1.23 4.2 0.02

No-WiFi-Chain-WiFi 4.96 7.79 5.19 4.39 9.44 0.04

Table 3, Figure 12b, and Figure 13 show the various statistical results, the CDF of
the positioning error, and the frequency distribution histogram, respectively. Where All-
WiFi represents the total received WiFi during the third experiment, WiFi-Chain-WiFi
and No-WiFi-Chain-WiFi represent the WiFi which satisfies and dissatisfies WiFi-Chain,
respectively. In Table 3, compared to All-WiFi, which achieves an RMSE, 95% error, 68%
error, ME, MaxE, and Minimum error of 2.97 m, 6.97 m, 2.25 m, 2.10 m, 9.44 m, and 0.02 m,
respectively, the improved percentages of WiFi-Chain-WiFi are 44.8%, 47.8%, 19.1%, 41.4%,
55.5%, and 0.0%, respectively. As shown in Figure 13b, there are totally 274 WiFi received
during the third experiment, which possesses the characteristics extracted in Section 3.2.1,
and we have picked out 203 WiFi which satisfy WiFi-Chain as shown in Figure 13a, the
maximum error of WiFi-Chain-WiFi is less than 4.3 m. Moreover, we showed the WiFi
which dissatisfies WiFi-Chian in Figure 13c, which includes all WiFi with an error greater
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than 4.3 m. The abovementioned results demonstrate that the proposed strategy WiFi-
Chian possesses an excellent performance in outlier detection and removal. Figure 12b
verifies the above performance from another perspective.
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Figure 14 shows the performance of WiFi-AGNES for the evaluated 3 control points
during the third experiment. Compared to NO-WiFi-AGNES, which achieves a MaxE of
7.72 m, 3.65 m, and 6.94 m for P3, P9, and P12, respectively, WiFi-AGNES achieves a MaxE
of 2.59 m, 0.55 m, and 0.86 m, respectively, the improved percentages are 66.5%, 84.9%,
and 87.6%, respectively. This performance again demonstrates that the proposed strategy
WiFi-AGNES possesses an excellent capacity in outlier detection and removal.
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6. Conclusions

In this paper, based on the extracted positioning characteristics of WiFi when the
pedestrian is static, we proposed the first outlier detection and removal strategy using ML
named WiFi-AGNES, and based on the extracted positioning characteristics of PDR, WiFi,
and the complementarity between them when the pedestrian is walking, we proposed the
second outlier detection and removal strategy named WiFi-Chain, further, a hybrid fusion
scheme integrated the two proposed strategies is proposed. The designed experiment
result shows that the RMSE of the proposed scheme is 1.43 m, which is 31.3% higher than
the fusion with neither WiFi-AGNES nor WiFi-Chain. This performance demonstrates
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that the proposed two strategies possess an excellent performance in outlier detection
and removal. Furthermore, since characteristics are universal, the characteristic-based
strategies are robust, and the proposed scheme integrated the two characteristic-based
strategies also possesses strong robustness.

In the future, we will integrate other smartphone indoor positioning technologies,
such as MM and Visual, etc., into our proposed hybrid fusion scheme to provide more
excellent performance.
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