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Abstract: In this study, we demonstrate that the Google Earth Engine (GEE) dataset of Sentinel-3
Ocean and Land Color Instrument (OLCI) level-1 deviates from the original Copernicus Open Access
Data Hub Service (DHUS) data by 10–20 W m−2 sr−1 µm−1 per pixel per band. We compared GEE
and DHUS single pixel time series for the period from April 2016 to September 2020 and identified
two sources of this discrepancy: the ground pixel position and reprojection. The ground pixel position
of OLCI product can be determined in two ways: from geo-coordinates (DHUS) or from tie-point
coordinates (GEE). We recommend using geo-coordinates for pixel extraction from the original data.
When the Sentinel Application Platform (SNAP) Pixel Extraction Tool is used, an additional distance
check has to be conducted to exclude pixels that lay further than 212 m from the point of interest.
Even geo-coordinates-based pixel extraction requires the homogeneity of the target area at a 700 m
diameter (49 ha) footprint (double of the pixel resolution). The GEE OLCI dataset can be safely used
if the homogeneity assumption holds at 2700 m diameter (9-by-9 OLCI pixels) or if the uncertainty
in the radiance of 10% is not critical for the application. Further analysis showed that the scaling
factors reported in the GEE dataset description must not be used. Finally, observation geometry
and meteorological data are not present in the GEE OLCI dataset, but they are crucial for most
applications. Therefore, we propose to calculate angles and extraterrestrial solar fluxes and to use
an alternative data source—the Copernicus Atmosphere Monitoring Service (CAMS) dataset—for
meteodata.

Keywords: Google earth engine; GEE; Sentinel-3; ocean and land color instrument; OLCI; medium
resolution imaging spectrometer; MERIS; Copernicus open access data hub service; DHUS; European
Space Agency; ESA; pixel uncertainty; SNAP; time series; Copernicus atmosphere monitoring
service; CAMS

1. Introduction

Many studies have been conducted on time-series of satellite images. Often a buffer of
several pixels around the area of interest (AOI) is used. A typical workflow is the following:
a user downloads all available images that contain AOI, extracts one pixel, and discards
the rest. The Internet speed is usually a bottleneck of such an approach. If a user operates
with European Space Agency (ESA) Sentinel data through Copernicus Open Access Data
Hub Service (DHUS), the Long-Term Archive (LTA [1]) reduces the download speed further:
a maximum of 2 simultaneous downloads per user, and a maximum of 20 requests per user
per 24 h are permitted. In this way, a download of an image collection of 800 images would
require 40 days. For popular satellites such as Sentinel-1 and Sentinel-2 alternative mirrors
and data banks are available, such as Data and Information Access Services (DIAS [2]),
which obtain their copy of data and do not have LTA-connected limitations.

In general, the approach described above—the “data-to-code” approach—does not
seem efficient for collecting per-pixel time-series. The alternative solution is cloud comput-
ing, operating in the paradigm “code-to-data” or “moving code”. The cloud computing
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platforms vary by the level of required expertise: either users must be able to build their
pipeline, specifying how CPU and memory resources of a cluster computer are used during
the task execution, or a provider hides the realization of the storage, processing and infras-
tructure behind abstractions. The aforementioned DIAS system is an example of the former
approach, whereas Google Earth Engine (GEE [3]) is an example of the latter. According to
a recent comparison/review [4], GEE is the most user-friendly solution, although alterna-
tive platforms (OpenEO) provide more flexibility for scientists. Nonetheless, numerous
scientific studies have been conducted in recent years with help of GEE [5,6]. If the data
do not come from an official data provider, the conducted transformations, if any, have to
be reported to ensure that the research is reproducible and independent from the chosen
workflow (“data-to-code” or “code-to-data”).

Our team has explored the theoretical applications of the recent Sentinel-3 [7] products
for land surface monitoring using model simulations [8–10]. However, at the following
proof-of-concept step using the “real-world” data [11], we faced the bottlenecks mentioned
above—the preparation of a time-series dataset takes several days. Fortunately, in October
2017, GEE introduced a new Image Collection of Sentinel-3 level-1 Ocean and Land Color
Instrument (OLCI) products. However, in July 2018 issues were reported [12]: the absence
of angle (and meteorological) data bands, and the usage of tie-point instead of per-pixel
geo-coordinates. These issues have not been resolved until now, although the Google Earth
Engine developers group shows scientists’ interest in it [13].

In this article, we demonstrate the challenges of an OLCI per pixel time series ex-
traction (1), warn potential GEE OLCI dataset users about the hidden data modifications
revealed during the comparison of per pixel time series between GEE and the official
DHUS products (2), propose the method to augment the GEE OLCI dataset with angle
and meteorological metadata (3), and propose a script for the Sentinel-3 data download
avoiding LTA requests (4).

The paper is organized in the following way. The Materials and Methods section gives
an overview of the Sentinel-3 OLCI product and its applications emphasizing time-series
land monitoring. This is followed by the description of the pixel extraction workflow,
GEE-DHUS name matching, and the proposed augmentation workflow. The Results and
Discussion section describes the pixel positioning issues due to geo-coordinates or tie-point
coordinates usage, pixel duplication and the absence of fixed tiles. This is followed by
the pixel radiance differences between GEE and the official DHUS products, closing with
the accuracy of the augmented data.

2. Materials and Methods
2.1. OLCI
2.1.1. Products Overview

OLCI aboard Sentinel-3 (since 2016) [7] is the successor of Medium Resolution Imaging
Spectrometer (MERIS [14]) aboard Envisat (operational from 2002 to 2012) [15]. The in-
struments provide observations in the visible–near-infrared domain from 0.4 to 1.0 µm
(21 narrow bands OLCI; 15 bands MERIS) with pixel sizes of 300 m (full resolution (FR))
and 1200 m (reduced resolution (RR)). The land products are disseminated at two levels:

• level-1:

– top of atmosphere (TOA) radiance per band

• level-2

– integrated water vapour (IVW)
– OLCI (MERIS) terrestrial chlorophyll index (OTCI, MTCI)
– OLCI (MERIS) global vegetation index (OGVI, MGVI)
– top of canopy (TOC) red (681 nm) and near-infrared (865 nm) reflectance

MERIS level-2 product contains more data: top of canopy (TOC) and top of atmosphere
(TOA) reflectance in all bands, ocean and cloud products, some of which are available as
individual Water and Synergy products of Sentinel-3, see Table A1 for details.



Remote Sens. 2021, 13, 1098 3 of 19

In the case of OLCI, RR products are distributed in the form of stripes (stretching from
pole to pole) and FR products are disseminated as frames [16] (pieces of those stripes).
Unlike fixed tiles of Sentinel-2 products, OLCI stripes and frames correspond to one of
365 orbits [17]. In this way, a single point can be viewed from up to 27 different orbits
(according to the repeat cycle). Furthermore, pixel coordinates are reported per flight line
(i.e., the grid is irregular or not orthorectified), which for time series analysis leads to
gridding artifacts [18].

OLCI is currently onboard two satellites: Sentinel-3A (launched 16 February 2016)
and Sentinel-3B (launched 25 April 2018). The employment of the constellation of Sentinels
reduces the revisit time from 1.8 (1 spacecraft) to 0.9 (2 spacecrafts) days (Table 1 on [19]),
yet it creates the need for a cross-calibration of the instruments. A unique 5-month cross-
calibration of the instruments was conducted in the so-called “tandem phase” [20] from
June to mid-October 2018 [21]. It is important to take this phase into account during
time series preparation, especially the drift phase (mid-October–end-November) when
Sentinel-3B satellite images were taken from non-nominal orbits that do not occur during
the normal operational use.

In terms of data availability, there are two types of products—near-real-time (NR)
and not-time-critical (NT). The products differ by meteodata but the radiance matches.
NR products are available within 3 h after the acquisition and retained in the archive
for up to 2 months. Finally, with the updates of algorithms the whole archive might be
reprocessed, which is indicated closer to the end of the full product name as operational
(O) or reprocessed (R) (Listing 1).

2.1.2. Time Series Applications for Land

The primary aim of both OLCI and MERIS instruments is the ocean color monitoring;
however, land applications have also been largely explored, mostly using vegetation
reflectance indices such as natural difference vegetation index (NDVI), MTCI, and MGVI.
The MTCIproduct was used for phenology monitoring in tropical India [22,23], in the
UK [24], and the whole of Europe [25]. Furthermore, Atkinson et al. [26] compared MTCI
smoothing methods in relation to the phenological stage. The MGVI was used as a seasonal
pattern indicator [27,28] or as a proxy of green instantaneous absorbed photosynthetically
active radiation [29–31]. Level-1 data have been used for biophysical properties retrieval:
leaf area index (LAI) [32–34] and leaf and canopy chlorophyll content [34,35]. Burned
area mapping is another application of MERIS products [36–38]. Zurita-Milla et al. [39]
proposed a MERIS pixel unmixing method for the resolution sharpening.

We found only three studies that used the time series of OLCI so far. Pastor-Guzman
et al. [40] demonstrated that OTCI is a robust successor of MTCI: the seasonal cycles of both
indices in various ecosystems were identical. Rather short (30 days) time series of level-1
data were used for burned area estimation with OLCI-derived NDVI [41]. Yang et al. [11]
made a time-series LAI retrieval algorithm from TOA OLCI data. Single-time applications
of single-image OLCI data were used for biophysical properties retrieval [42] (Synergy
product) and for demonstration of radiance calibration network [43].

As was mentioned in the introduction, many OLCI studies were conducted on syn-
thetic (either model-simulated or resampled) datasets: simulation of TOA signal [8], estima-
tion of leaf chlorophyll content [44], canopy chlorophyll content [45] grass chlorophyll and
nitrogen content [46], nitrogen–phosphorous ratio [47], LAI [48], and biochemical param-
eters [10]. Wang and Atkinson [49] proposed an algorithm of Sentinel-2 spatio-temporal
gap-filling with OLCI data for red, green, blue, and near-infrared bands. A number of stud-
ies focused on the future ESA Earth Explorer 8 (FLEX) mission [50]: scene simulation [51]
and sun-induced fluorescence retrieval [9].

Overall, OLCI (mostly MERIS) data have been widely used for land monitoring in time.
In studies where mapping was not an objective of the study, a spatial smoothing of 3-by-3
pixel area has been used [32,40,52].
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2.1.3. OLCI Level-1 Full Resolution Product

OL_1_EFR product contains TOA data for 21 bands, quality flags, and tie-point
grid data. Data provided per band are reflected radiance (Oa*_radiance), solar flux (so-
lar_flux_band_*), central wavelength (lambda0_band_*), and full width half maximum
(FWHM_band_*). The coordinate set for these data is per pixel geo-coordinates (latitude,
longitude, and altitude).

The quality flag is a 32-bit integer: bits from 0 to 20 indicate per band saturation,
the remaining 11 bits provide additional information. Note that cloud flags are not present,
but quality_flags_bright (bit 27) can be a proxy for cloud detection. The goal of this study
was to compare all available images (not only cloud-free); thus, we did not use this flag.
Another important quality flag is quality_flags_duplicated (bit 23). If the pixel is marked as
duplicated (23% of any image) all per band data, including geo-coordinates, is taken from
the nearest (and the closest to the track) neighboring pixel (Figure 1). Duplicated pixels
are an unavoidable consequence of the swath width, satellite height, and the curvature of
the Earth; off-nadir pixels are viewed from larger angles which makes the projected area
(field of view, FOV) larger, while the product grid is equally spaced. Because tie-point
coordinates and meteodata (see the next paragraph) are interpolated, they are not prone
to duplication.

Figure 1. An OLCI image viewed with zoom in SNAP. Squares—single pixels, the blue stripe—
quality_flags_duplicated mask. The pins demonstrate that the duplicated pixel (Pin 2) copies radiance
and geo-coordinates (but not tie-point (TP) coordinates) from the nearest pixel (Pin 3). Duplicated
pixels occur very often (23% of any OLCI image).

An additional component of the OLCI level-1 product is tie-point grid data, compris-
ing sun–sensor–target geometry (solar and observation azimuth and zenith angles) and
meteorological metadata coming from a European Centre for Medium-range Weather Fore-
casts (ECMWF) dataset: wind speed, humidity at 850 hPa, sea level pressure, atmospheric
water vapor and ozone content, and atmospheric temperature profile. Tie-point data have
different coordinates (TP_latitude, TP_longitude) and different resolution in across-track
(along longitude) direction (77 columns for tie points versus 4865 columns for geo coordi-
nates) resulting in 16 km spacing. Tie-points (TP) are a subsampled version of the image
grid; as such, association between TP and pixels shall be done via their image coordi-
nates (with the appropriate sub-sampling factor (4865 − 1)/(77 − 1) = 64 (for FR)) and
not from geo-coordinates which are different. TP is the intersection of the line-of-sight
from the satellite with the reference ellipsoid, which entails the absence of the observation
parallax correction.

The Google Earth Engine “COPERNICUS/S3/OLCI” image collection [53] contains
only reflected radiation bands, the quality flags band, and some metadata within image
properties, including the official product name (PRODUCT_ID). Meteorological data and
observation geometry, required for the atmospheric correction and further processing,
are absent. As mentioned in the issues [12], GEE products use tie-point coordinates,
not per pixel geo-coordinates. There are several data transformations present in the GEE
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OLCI dataset. First, GEE reports per band scaling factors which are equal to those of
the corresponding DHUS NetCDF per band radiance files. In the example on [53], after the
scaling factor application visible radiance does not exceed 6 W m−2 sr−1 µm−1, which is
not realistic. From the range of provided radiance values (without scaling), we conclude
that they are just the rounded original values. Therefore, we operated with GEE values
without scaling and recommend the users to do so. Second, the images of the GEE
collection have different sizes: the original product is always [4865, 4090], while the GEE
version depends on the coordinate reference system (CRS), and often has the x-size of 4866,
whereas the y-size ranges from 2895 to 4604. The number of pixels changes, as well as
the ground resolution (from nominal 300 m to 318 m in GEE), but we were not able to find
the interpolation technique that GEE used during reprojection.

2.2. Workflow
2.2.1. Time Series Preparation

We downloaded all available 1987 not-time-critical (NT) products (from 26 April 2016
to 12 September 2020) of OLCI level-1 full resolution images containing Speulderbos eddy
covariance site (NL-Spe, 52.251185◦N, 5.690051◦E, elevation 64 m). The choice of a single
site located in the European area is a limitation of this study, which would benefit from a
multi-site comparison across different continents and altitudes.

Out of 1987 products, 1109 online (not in LTA) images were downloaded from Coper-
nicus Open Access Data Hub Service (DHUS [54]), the other 878 offline (in LTA) images
were downloaded from the alternative mirror—Level-1 and Atmosphere Archive and
Distribution System—Distributed Active Archive Center (LAADS DAAC [55]). Pixel time
series were extracted with Sentinel Application Platform (SNAP [56]) version 8.0 software,
Extract Pixel Values tool v1.3. Quality flags band was extracted incorrectly (probably,
rounded due to the length of the integer), thus we extracted it with a custom script di-
rectly from the product’s NetCDF file (“qualityFlags.nc”) taking the pixel x, y coordinates
suggested by the tool.

We quantified the uncertainty of four approaches to pixel extraction:

1. single-pixel extraction based on geo-coordinates (Figure 2b), SNAP;
2. single-pixel extraction based on tie-point coordinates (Figure 2c);
3. 3-by-3 pixel extraction based on geo-coordinates with further averaging; and
4. 3-by-3 pixel extraction based on tie-point coordinates with further averaging.

SNAP Extract Pixel Values tool conducts extraction exclusively based on geo-coordinates.
This behavior does not depend on the reading option available in the Sentinel-3 Toolbox:
“Read Sentinel-3 OLCI products with per-pixel geo-coding instead of using tie-points”.
Therefore, for the cases of tie-point-coordinates-based extraction (cases 2 and 4), we ex-
tracted a larger area (7-by-7 pixels) and calculated the nearest pixel based on the corre-
sponding tie-point coordinates ourselves.

For the same period per pixel (NL-Spe, 52.251185◦N, 5.690051◦E) time series along
with PRODUCT_ID property (full product name), latitude, longitude, coordinate reference
system (CRS), pixel x and y coordinates, and image width and height were extracted from
the Google Earth Engine “COPERNICUS/S3/OLCI” dataset [53]. Single pixel extracts
were compared to DHUS single pixel extractions, the extractions with a 450 m radius mean
region reducer (the equivalent of 3-by-3 pixels) were compared to the spatially aggregated
DHUS extractions.
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expected pixel centre location (212m)
effective footprint  
DHUS pixel centre: tie-point
A
B

(a) tp (geo-based)

expected pixel centre location (212m)
effective footprint 
DHUS pixel centre: geo
A
B

(b) geo (geo-based)
expected pixel centre location (212m)
effective footprint 
DHUS pixel centre: tie-point
A
B

(c) tp (tp-based)

expected pixel centre location (212m)
effective footprint 
DHUS pixel centre: geo
A
B

(d) geo (tp-based)
expected pixel centre location (212m) 
effective footprint 1 pix  
effective footprint 3x3

GEE pixel centre
A
B

(e) GEE (tp-based)

Figure 2. The effective ground footprint of Sentinel-3 OLCI dataset at Speulderbos site from DHUS
images (red polygon). The pink circle is the 212 meter radius circle of the theoretically expected pixel
center location. The points show the actual OLCI pixel center location of Sentinel-3A (green) and
Sentinel-3B (purple) spacecrafts. The footprint was calculated based on (a) tie-point coordinates,
corresponding to (b), (b) geo-coordinates (standard SNAP extraction), (c) tie-point coordinates
(modified SNAP extraction), and (d) geo-coordinates corresponding to (c), (e) GEE coordinates
(reported to be tie-point coordinates).

2.2.2. Distance Control

The extracted pixel coordinates were imported to QGIS [57] 3.4.14-Madeira, where
a circular buffer of 212 m (radius of the circumscribed circle around a 300 m by 300 m square
pixel, i.e., the expected pixel center location) was drawn (225 m for GEE, as GEE OLCI
resolution is 318 m). The underlying map layer for visualization was Google Satellite from
QGIS Server. The distances between coordinate points were calculated with the distance()
function from the geopy package (v1.21.0) in Python 3.7.5.

2.2.3. GEE and DHUS Name Matching

GEE and DHUS extracted values were joined by the product name (either full or short)
and radiance values were compared by a simple root mean square error (RMSE) metric
and a relative RMSE (rRMSE)—the ratio of RMSE to the average band radiance.



Remote Sens. 2021, 13, 1098 7 of 19

For DHUS, out of 2002 products we were able to download 1987 and extract pixels
from 1908. For GEE, the number of products in the filtered by geo-region collection was
6795. However, most of them were wrongly reprojected (infinite image boundary boxes) or
did not have any assigned CRS, resulting in 2045 valid points. Some products (129 DHUS,
166 GEE) have no-data at their margins, leading to no radiance extracted. As long as
that influenced neither matching nor metrics, we did not remove them. Overall, we
matched 1146 images by the full name (PRODUCT_ID) and 1887 images by the short name
(“system:index” in GEE terminology) (Table 1).

Table 1. Statistics on image comparison.

DHUS Filter GEE

Left Dropped Left Dropped

2002 products 6795
1987 15 loaded/CRS present 2221 4574
1908 79 extracted/CRS valid 2045 176
1146 762 matched by full name 1146 899
1887 21 matched by short name 1887 158

The short name does not uniquely identify a product: the second half of the name
contains information about (re)processing time, the ground processing unit, and time
dependency. Listing 1 shows two full names, corresponding to the same short name.
Indeed, the images belong to the same acquisition (11 December 2018), still the first one
was released on 12 December 2018 by Land OLCI Processing and Archiving Centre 1 (LN1)
in operational (O) mode, whereas the second one was reprocessed (R) on January 2020 by
Marine Reprocessing Centre 1 (MR1).

Listing 1. An example of two full names (“PRODUCT_ID” in GEE) that result in the same short name
S3B_20181211T093534_20181211T093710 (“system:index” in GEE). The difference in the reprocessing time and the re-
processing unit is highlighted in bold. The number in red is the relative orbit number used for viewing angles calculation.

S3B_OL_1_EFR____20181211T093534_20181211T093710_20181212T133634_0096_019_307_1980_LN1_O_NT_002
S3B_OL_1_EFR____20181211T093534_20181211T093710_20200115T181744_0096_019_307_1980_MR1_R_NT_002

Among the 762 DHUS images that were not matched by the full name, we managed
to uniquely match 741 by the short name (Table 1). Those matched images include

• 211 GEE products that came from Svalbard Satellite Core Ground Station (SVL), which
is not presented in DHUS;

• 300 (including 211 SVL) GEE products were from near-real-time (NR) dataset, whereas
we took only non-time-critical from DHUS (NT);

• 218 GEE operational products (O), processed in 2019 by LN1, were reprocessed (R)
in 2020 by MR1;

• 2 products mismatched by processing time

We did not find any SVL products in the collection apart from the ones from 2018,
probably, GEE switched to the official DHUS archive. Finally, 336 GEE products did not
have any full name (empty PRODUCT_ID property), yet 221 of them matched by the short
name. As far as we could check, the absence of the full name is the case for the global
GEE collection only in 2017 (from February to December 2017); currently all images can be
successfully traced back by the full name.
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2.3. GEE Augmentation
2.3.1. Angles

The GEE OLCI product does not provide the sun–sensor–target geometry that is
crucial for scientific applications. Solar angles can be calculated based on point coordinates
and time. However, the calculation of observation angles is not that straightforward, due
to the absence of fixed tiles. We propose to use the relative orbit number information
(characters 74:77 of the official product name). As the repeat cycle is 27 days, it is enough
to download a set of images with unique orbits, extract viewing geometry from them and
use it for all other products from the same orbit. The orbits for the study site (NL-Spe) are
presented in Table 2.

Table 2. Frequent orbits for the NL-Spe site.

Orbit Number Counts Full Name Counts Short Name

8 77 15
22 81 15
36 80 15
51 53 15
65 78 15
79 79 16
93 77 14

108 81 16
122 79 16
136 80 16
165 78 17
179 76 15
193 77 15
222 79 14
236 78 15
250 79 15
279 78 15
293 77 15
307 79 15
336 78 17
350 77 15
364 77 15

2.3.2. Meteo

The GEE OLCI product does not have meteorological data, which is necessary infor-
mation for applying the atmospheric correction. We downloaded the data from the near-
real-time Copernicus Atmosphere Monitoring Service (CAMS [58]) dataset of ECMWF.
The CAMS dataset provides variables at model levels, pressure levels (from 1 to 1000 hPa),
and at surface level at 0.125 × 0.125 degree resolution. Air temperature profile (NetCDF
variable name t, parameter ID 130) and relative humidity (r, 157) at 850 hPa were taken at
pressure levels, the other parameters—total column water vapor (tcwv, 137), GEMS total
column ozone (gtco3, 210206), mean sea level pressure (msl, 151), and 10 meter U and V
wind components (horizontal wind vectors u10, v10)—at surface level. The dataset has
a 3-hourly timestamp. We used the initialization time of 00:00 UTC and steps of 9 and 12 h.
The value at the time of Sentinel-3 overpass was interpolated by time and geographical
coordinates with interp() function of xarray package (v0.16.0) in Python 3.7.5. As a proof of
concept we used January 2020 data for comparison.

Although the source of meteorological data is mentioned explicitly in the Product
Data Format Specification of SLSTR level-1 products (Section 4.2.1.9) [59]) , the specific
ECMWF dataset used in the OLCI dataset is not stated.
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2.3.3. Solar Flux

In contrast to the solar zenith angle, the extraterrestrial radiation only varies seasonally,
and not spatially. We used the data provided within the products to obtain a full annual cy-
cle (one value per day of the year) per band, interpolating over days without observations.

3. Results and Discussion
3.1. Pixel Positioning: Geo Versus Tie-Point

In this section, we discuss the actual field of view of the OLCI instrument, depending
on the chosen coordinates for extraction: per pixel geo-coordinates or tie-point. The dis-
tances discussed here relate to single pixels, and they have to be extended proportionally
in the case of 3-by-3 or other spatial aggregates. Two distance benchmarks are used in this
section: 212 m and 700 m. The 212-meter radius circle is the expected pixel center loca-
tion (see Section 2.2.2). The 700-m-diameter circle is the expected time-series footprint;
when all pixel centers are within 212 m from the point of interest, pixel borders are within
362 m (212 m + 300 m/2), resulting in approximately 700 m footprint. The other distances
mentioned in this section were measured within QGIS.

SNAP Extract Pixel Values tool conducts extraction exclusively based on geo-
coordinates (Figure 2b). Pixel extraction is not trivial, because the coordinates are re-
ported per each pixel, i.e., latitude and longitude are two-dimensional. The only method is
thus to calculate the metric distance to the point of interest. In addition, duplicated pixels
complicate the task of pixel extraction: duplication of geo-coordinates leads to two (or
more) equidistant pixels, forcing the software to make an arbitrary choice. Figure 2b shows
that SNAP sometimes chooses pixels incorrectly—the centers of the pixels lay outside
the circumference around the location of interest. This happens only in the east–west
direction, suggesting that it can be attributed to the degradation of the instrument reso-
lution at the swath edge. As a result, the footprint becomes wider: from the theoretical
700-m-diameter circle to an ellipse with the 700 m south–north minor axis and the 1000 m
east-west major axis. Yet, for time-series applications, this is the most accurate data one can
get, because it is based on geo-coordinates. We suggest to do manual control and remove
the pixels outside the circumference (red vertical threshold line in Figure 3).

An alternative option is to conduct the pixel extraction based on tie-point coordinates
(Figure 2c). Notice, however, that this is an approximation, because TP coordinates do not
have parallax correction, introducing even more uncertainty at high altitudes. The effective
footprint was even smaller—a 550 m diameter circle. However, the true (geo-coordinates
based) footprint was way larger and did not have a regular shape (Figure 2d), which is es-
pecially noticeable for the Sentinel-3B spacecraft. This fact imposes additional requirements
on the homogeneity of the area of interest from 700 m (theoretical) to 2700 m (actual). Given
that the average agricultural field area in the European Union is 16.6 ha [60] , Sentinel-3
with its 700 m (49 ha) or 2700 m (729 ha) resolution is unsuitable for agricultural area
mapping in the EU. Since the GEE product also uses tie-point coordinates (Figure 2e),
one might expect the same 2700 m actual footprint (Figure 2d). GEE extraction does not
suffer from outliers, but the distance threshold should be increased from 212 m to 225 m,
because the pixel size of the GEE product is 318 m (Figure 3). Furthermore, a comparison
of tiles c and e of Figure 2 shows that GEE reprojected the images: GEE pixels are strictly
north-oriented, while DHUS ones were tilted 15◦ clockwise for our study site.

Overall, if the area of interest is homogeneous within the 700-m-diameter circle,
the only option is to use geo-coordinates (DHUS product) and the time-consuming “data-
to-code” approach. At the same time, if the assumption of homogeneity can be extended to
the 2700-m-diameter area, GEE products can be a choice.
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Figure 3. Distance from the extracted pixels to the point of interest. The red line denotes the
theoretically acceptable threshold. See Section 3.1.

3.2. GEE versus DHUS: Radiance Difference

In this section, we compare radiance values reported in the GEE against the genuine
DHUS. We matched 1146 products by the full name, which means that their pixel radiances
should be identical. The other 741 were matched by the short name, which does not
uniquely identify the image (Listing 1), but still helped us to match them unambiguously.
Even after the short name matching, a number of products remained unpaired: 21 DHUS
products did not have a GEE counterpart and 158 GEE products vice versa (Table 1).

The root mean squared error (RMSE) between GEE and Copernicus OLCI band radi-
ance for single pixel time series is presented in Figure 4. This test quantifies the uncertainty
of GEE against properly (per pixel) geo-located pixels for our study site. The users who gap-
fill the offline products with the GEE products may expect similar disagreement in radiance.
The RMSE did not correlate with the distance to the location of interest, the pixel quality
flags, or with anything else that can be detected without direct radiance comparison. It also
did not differ for full-name or short-name matching; therefore, the rest of the comparisons
were made on all 1887 images together.
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Figure 4. Root mean squared error (RMSE) between GEE and Copernicus OLCI products with
the same name.
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At the next step, we quantified the uncertainty in radiance after spatial averaging
of 3-by-3 pixels, using tie-point coordinates (Figure 5). We show the data as relative
RMSE (rRMSE) to normalize for systematic difference among bands, and thus facilitate
the comparison of bands. We use a (somewhat subjective) threshold of 5% rRMSE as
acceptable. As expected, tie-point-based DHUS extraction showed closer values to GEE
(which is also tie-point based), especially after the aggregation; however, the values were
still not identical.
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rR
M

SE

Average 3x3 pixels GEE vs DHUS
geo 3x3 tp 3x3

Figure 5. Sentinel-3 OLCI from GEE and DHUS. Note that the data are supposed to be identical
(rRMSE = 0). The red line denotes the subjective acceptance threshold of 5% rRMSE.

Having discovered that pixel values deviate from the original data, we tried to under-
stand what the problem was—incorrect export or data transformation. We checked our
script on MODIS (Figure A1) and Sentinel-2 (Figure A2) datasets and confirmed that for
these datasets the script worked correctly and resulted in identical pixel values.

During the search for the data transformation, we found that GEE does reproject
the images. We selected 33 products with the highest RMSE, reprojected them in SNAP to
the GEE-corresponding CRS, and compared them again. The reprojected products matched
in shape, pixel x and y coordinates matched +/− 1 pixel index, but the RMSE of radiance
remained unacceptably high. Changing the SNAP interpolation technique from nearest to
bicubic or bilinear did not change the result either.

In conclusion, the tie-point nature of GEE OLCI data resulted in a 10–20% error
in radiance for our study site. The cause is the erroneous pixel positioning. The reprojection
done by the GEE team during the image ingestion is the most likely cause of the residual
5% rRMSE. We were able to reproduce the image dimensions but not the radiance values
with the SNAP reprojection tool. Gridding artifacts, described by Gomez-Chova et al. [18]
for MERIS, might have played a role as well.

3.3. GEE Augmentation

This section shows the accuracy of the proposed estimation of the geometric and
meteorological data missing in the GEE product, but present in the original DHUS. An im-
portant note regarding near-real-time (NR) products is that their meteodata differs from
non-time-critical (NT) products. In this comparison (and the whole study), we used only
NT products.

3.3.1. Angles

The calculation of solar angles from latitude, longitude, and time is straightforward.
However, due to varying orbits, wide swath, and satellite inclination, the observation
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angles calculation is not that easy. The repeat cycle of 27 days suffices to download all
unique relative orbits and use those values to complete the metadata. For NL-Spe, we
had 22 frequent orbits and 11 orbits that were encountered only once (Table 2). The latter
belongs to Sentinel-3B at the beginning and the end of the tandem phase. For those
11 products (and other 15 observed during the drift of satellites) our method does not work.
The accuracy of angles retrieval from orbit numbers is presented in Figure 6. The outliers
belong to Sentinel-3B during its fast drifting phase from tandem (from 26 October 2018 to
18 November 2018).

Despite the fact that the relative orbit number is reported in the full name, GEE
products always have the relative_orbit_num property. Therefore, it is possible to restore
angles even for those GEE images that do not contain the PRODUCT_ID property, i.e. the
full 2017 year collection.
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Figure 6. Performanceof the estimation of observation zenith (OZA) and azimuth (OAA) angles
for GEE OLCI product. Blue dots correspond to the nominal orbits, and orange dots correspond
to the orbits taken by Sentinel-3B spacecraft during the drift phase (from 26 October 2018 to 18
November 2018).

3.3.2. Meteorological Data

The meteorological data, missing in the GEE product, can be retrieved from the CAMS
dataset. We linearly interpolated the 3-hourly data to the time of the satellite overpass.
Figure 7 shows that CAMS-derived values are in a good agreement with the values reported
in the original products. Aerosol optical thickness at 550 nm (AOT) is another variable that
can be acquired from the CAMS dataset and used for atmospheric correction. However,
AOT is not included in the original OLCI product.

Figure 8 demonstrates that the interpolated CAMS values at pressure levels can
be used to augment GEE products. However, the RMSE increases at lower pressures
(levels 20–25).



Remote Sens. 2021, 13, 1098 13 of 19

10 20
OLCI

5

10

15

20

25

CA
M

S

total_columnar_water_vapour
RMSE = 1.31 kg m 2

0.006 0.008 0.010
OLCI

0.005
0.006
0.007
0.008
0.009
0.010

CA
M

S

total_ozone
RMSE = 0.0 kg m 2

1000 1025 1050
OLCI

1000

1020

1040

CA
M

S

sea_level_pressure
RMSE = 0.64 hPa

0 5
OLCI

0.0

2.5

5.0

7.5

CA
M

S

horizontal_wind_vector_1
RMSE = 0.56 m s 1

0 5
OLCI

5

0

5

CA
M

S

horizontal_wind_vector_2
RMSE = 0.65 m s 1

0 50 100
OLCI

0

25

50

75

100

CA
M

S

humidity
RMSE = 10.49 \rm %

Figure 7. Comparison of CAMS-derived (y-axis) and in-product (x-axis) meteorological data.
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Figure 8. Comparison of CAMS (y-axis) and in-product (x-axis) meteorological data—temperature profile at pressure levels.

3.3.3. Solar Flux

Extraterrestrial (TOA) solar irradiance data, missing in the GEE product, can be taken
from the mean annual cycle (see Section 2.3.3). We were expecting the estimated value
to match perfectly with the in-product value. However, Figure 9 shows that retrieving
the solar flux without considering the in-field-of-view pixel position (instrument pixel,
provided by the detector_index band) yields large uncertainties in solar irradiance at some
bands (especially the first OLCI band Oa01) where local variability with wavelength is
the highest. These uncertainties will directly propagate into the conversion of radiances
into reflectance, as the presence of per-pixel solar flux in DHUS products is precisely meant
for that. Due to cross-FOV central wavelength variations, in-band radiance values can vary
by up to 4% within the FOV as demonstrated by Lamquin et al. [61].
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Figure 9. Comparison of the estimated (y-axis) and in-product (x-axis) extraterrestrial (top of atmo-
sphere) solar flux, all in W m−2 sr−1 µm−1.

4. Conclusions

We quantified the uncertainty in the GEE OLCI dataset and proposed a method to
augment the dataset with meteorological and geometric data distributed with the original
ESA products. We expect this to be useful for scientists working with per-pixel time-series,
the acquisition of which is complicated by the fact that half of the products are offline
in the long-term archive (LTA), and no more than 20 products per day can be requested.
We discovered that GEE transformed the original data (rounded values and, probably,
conducted reprojection), which led to the deviation of pixel values from the original data of
15 W m−2 sr−1 µm−1 (average RMSE) per band. At least 1 W m−2 sr−1 µm−1 of RMSE can
be attributed to the rounding: GEE OLCI values are stored as integers but the reported scal-
ing factors, which should convert them to floating point numbers, are wrong and should
not be used. Unfortunately, we could not find any other way of detecting the deviating
pixels (by a quality flag or a metadata property), besides the direct comparison of radiance
values. Another discrepancy in the GEE ingestion of OLCI products is the usage of tie-point
coordinates. Those coordinates lack the parallax correction, which results in larger foot-
prints (4-times larger for our study site: 2700 m vs. 700 m). This imposes the homogeneity
constraint on the area of interest, which would increase further in high altitudes.

Suppose the error level of GEE is not acceptable or the area of interest is not homoge-
neous at 2700 m diameter (9-by-9 pixels). In this case, we propose using the LAADS DAAC
archive, which has all genuine products online. However, even with the original products
there are challenges in per-pixel time-series acquisition, originating from the absence of
fixed tiles and the presence of duplicated pixels (23% of any OLCI image). These require
additional distance control and impose the homogeneity constraint of at least 700 m diame-
ter. Despite all the difficulties, pixel extraction from the original OLCI products with SNAP
Extract Pixel Values tool (geo-coordinates-based) produces the best possible OLCI-radiance
time-series one could get.

We expect that this article will encourage vigilance in using third-party datasets,
and will stimulate dataset providers to meticulously describe the data transformation they
conducted for the benefit of reproducible science.
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Appendix A. Sentinel-3 Products Availability

Table A1. Sentinel-3 products availability from the Since date to 23 September 2020: Level 1—top of atmosphere, level
2— surface.

Instrument Product Type Content Resolution, m Since Structure # Images Offline Size, MB

OLCI

OL_1_EFR 21 bands 300 2016-04-26 frame 2164 901 620
OL_1_ERR 21 bands 1200 2016-04-26 stripe 2164 901 700
OL_2_LFR 2 indices, 2 TOC red bands 300 2016-04-26 frame 2164 957 120
OL_2_LRR 2 indices, 2 TOC red bands 1200 2016-04-26 stripe 2164 957 170

SLSTR
SL_1_RBT 24 radiance/10 BT 500/1000 2016-04-19 frame 4372 2715 430
SL_2_LST 2 indices, LST, masks 1000 2016-04-19 stripe 4548 2842 60
SL_2_FRP ? ? ? ?

Synergy

SY_2_SYN 26 bands, AOT550 and exponent 300 2018-10-08 frame 1146 3 400
SY_2_VGP 4 bands, atmosphere 1000 2018-10-09 stripe 1133 2 50
SY_2_VG1 4 bands, NDVI, atmosphere 1000 2018-10-04 tile 1374 3 120
SY_2_V10 4 bands, NDVI, atmosphere 1000 2018-09-22 tile 136 0 250

SRAL

SR_1_SRA ? 300 × 1640 2016-03-01 stripe 696 3 52
SR_1_SRA_A ? 300 × 1640 2016-04-07 line 351 99 2300
SR_1_SRA_BS ? 300 × 1640 2016-04-07 line 351 99 1700
SR_2_LAN ? 300 × 1640 2016-03-03 stripe 713 1 100
SR_2_WAT ? ? ? ?

https://doi.org/10.17026/dans-xb8-efke
https://github.com/Prikaziuk/S3_loader
https://github.com/Prikaziuk/S3_loader
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https://code.earthengine.google.com/abeda236ca3783dd532c44e2fc7c6270?noload=true
https://code.earthengine.google.com/abeda236ca3783dd532c44e2fc7c6270?noload=true
https://code.earthengine.google.com/abeda236ca3783dd532c44e2fc7c6270?noload=true
https://code.earthengine.google.com/abeda236ca3783dd532c44e2fc7c6270?noload=true
https://doi.org/10.5067/MODIS/MCD43A4.006
www.cost.eu
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Appendix B. Performance of the Extraction Script on Other Google Earth
Engine Datasets
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Figure A1. MCD43A4-006 [64] single-pixel reflectance time-series from GEE (y-axis [65]) and Ap-
pEARS (x-axis [66]) datasets. The nearest pixel to Speulderbos forest site (NL-Spe, 52.251185◦N,
5.690051◦E) for the period from 1 January 2016 to 1 October 2020 (1736 products).
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Figure A2. Sentinel-2 level-2 [62] single-pixel reflectance time-series from GEE (y-axis [63]) and
DHUS (x-axis [54]) datasets, both resampled to 20 m. In spite of the outliers in bands with native 20 m
resolution (B5, B6, B7, B8a, B11, B12), probably caused by GEE pixel weighting during the resam-
pling [67], all pixels demonstrate the expected behavior. The nearest pixel to the Sudan agricultural
field site (14.40551◦N, 33.39137◦E) for the period from 1 July 2019 to 31 March 2020 (54 products).
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